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Abstract 
 
This paper presents a modular approach to testing 

concurrent programs that are modeled using labeled 

transition systems. Correctness is defined in terms of 

an implementation relation that is expected to hold 

between a model of the system and its implementation. 

The novelty of our approach is that the correctness of 

a concurrent software system is determined by testing 

the individual threads separately, without testing the 

system as a whole. We define a modular 

implementation relation on individual threads and 

show that modular relations can be tested separately in 

order to verify a (non-modular) implementation 

relation for the complete system. Empirical results 

indicate that our approach can significantly reduce the 

number of test sequences that are generated and 

executed during model-based testing. 

1. INTRODUCTION 

A concurrent program contains two or more 

threads that communicate and synchronize with each 

other to perform some task. One general approach to 

testing a concurrent program is to execute the program 

with carefully selected test sequences. Model-based 

testing uses abstract models for test selection. That is, 

an abstract model is used to specify the intended 

program behavior, and test-sequences selected from 

the model are used to test a concrete implementation. 

Abstract models for concurrent programs are 

often expressed as, or can be translated into, a labeled 

transition system (LTS). An LTS models program 

behavior as a type of state machine. Each state in an 

LTS is an abstraction of a state in the program. 

Transitions are labeled with the program events 

performed during state transitions. Our objective is to 

use model-based testing to determine whether a 

desired implementation relation exists between an 

abstract LTS model M and a concrete implementation 

CP. An example of such a relation is that the 

sequences of events allowed by M are also allowed by 

CP. When the implementation relation holds, we say 

that M is implemented by CP.  

Black-box techniques have been developed for 

selecting test sequences from LTS models. However, 

concurrent threads execute non-deterministically 

during black-box testing. This makes it difficult to 

conclusively determine whether a selected test 

sequence is or is not allowed by the implementation. 

Gray-box testing techniques also generate test 

sequences from LTS models, but they require special 

testing tools that control inter-thread synchronization 

and force the implementation to deterministically 

execute selected test sequences [1-3]. Most black- and 

gray-box, model-based testing techniques use an 

interleaving concurrency model. This creates an 

explosion in the number of modeled states, which 

prevents a complete state space from being built, and 

an explosion in the number of modeled sequences, 

which makes it impractical to execute the 

implementation with all the test sequences. 

In this paper, we present a modular approach to 

model-based testing for concurrent programs that use 

message passing for communication and 

synchronization. We assume the existence of an 

abstract model M containing two or more LTSs, and a 

concrete implementation CP with two or more 

concurrent threads. Our approach constructs a thread 
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interaction model for each thread in the 

implementation. A thread interaction model is an 

annotated labeled transition system (ALTS) that 

captures the intended interactions between a single 

thread P and the other threads in M. A thread 

interaction model for P is typically much smaller than 

global model M, and can be constructed in an 

incremental manner. The thread interaction models are 

then traversed to derive abstract, modular test 

sequences for each thread. The annotations in the 

ALTSs are used to translate the abstract test sequences 

into concrete sequences that can be used to test P. The 

salient contributions of this paper are: 

 A modular implementation relation: We define a 

new type of implementation relation, called a 

modular implementation relation, between a 

single implementation thread of implementation 

CP and the corresponding LTS(s) in model M. 

We show how to verify a global implementation 

relation between M and CP by verifying modular 

implementation relations between individual 

implementation threads and their LTS model(s). 

 A modular testing technique: Modular 

implementation relations are verified by 

generating test sequences from M and testing each 

implementation thread in CP separately. The 

number of tests generated for an individual thread 

is typically small, so the total number of tests 

generated for modular testing may be significantly 

less than the number of tests generated by non-

modular techniques. Also, since only one 

implementation thread executes during modular 

testing, modular testing does not require control 

over inter-thread synchronization and it never 

produces inconclusive test results.  

 An implementation of modular testing: Modular-

testing has been implemented using the Modern 

Multithreading class library [4]. The library 

contains thread and synchronization classes that 

provide testing and debugging services for 

multithreaded programs.  

Our test generation technique makes one important 

assumption, which is that the sole source of non-

deterministic behavior in the model and the 

implementation is the order in which LTSs/threads 

synchronize and communicate. Other sources of non-

deterministic behavior, such as uninitialized variables 

in the implementation, are assumed to be absent. This 

assumption is discussed in detail in Section 2.  

To illustrate our contributions, consider an LTS 

model and Java implementation of a well-known 

distributed mutual exclusion (DME) algorithm [5]. An 

interleaving model for DME contains more than 3.5 

trillion sequences. A partial order model that we 

generated for DME contains 4,032 (non-modular) 

sequences. The stateless, modular testing technique 

presented in this paper produces only 315 modular test 

sequences for DME. 

Model-based testing requires a model to be 

written at a suitable level of abstraction. One approach 

is for the model to express the behavior that a user is 

expected to observe. This requires a distinction to be 

made between observable and unobservable events in 

the implementation. The model is expressed using 

observable events only. Model-based testing is used to 

verify that the implementation and model have the 

same observable sequences of events. For example, for 

the DME implementation described above, a high-

level model of what DME does can be written using 

enteri and exiti events for each of the three processes. 

This very abstract model admits only a handful of 

sequences. The DME implementation, however, can 

execute over 1.4 billion sequences – hundreds of 

millions of sequences for each abstract sequence 

generated from the model. It is not possible to obtain 

conclusive test results for the DME implementation 

with test sequences that abstract away all of the 

information about how the DME implementation 

achieves mutual exclusion. 

Our approach is to develop an LTS model that 

includes the observable events of the implementation, 

i.e., events that represent interactions with the 

environment, and events internal to the 

implementation. These models can be verified against 

very abstract models, which are typically expressed 

using observable events only, and then used to test the 

implementation. This does not require the model and 

the implementation to be written at the same level of 

abstraction. The labels for the events in the LTS and 

the events executed by the implementation are simple 

strings that abstract the meaning and structure of 

program events. We add event annotations to the LTS 

model to supply the event details that are needed for 

test execution. The models can be written in 

specification languages that are problem oriented, not 

implementation oriented, and in specification styles 

[6] that express solutions using implementation-

independent structures. These specification languages 

need not provide all the details that are provided by 

programming languages, the latter being concerned 

with things like efficient execution and opportune 

code reuse through inheritance. 

The remainder of this paper is organized as 

follows. In Section 2, we show how the intended 

behavior of a concurrent program is modeled during 

modular testing. Section 3 defines a modular 

implementation relation and describes how modular 

testing can be used to verify this relation. Section 4 

presents a technique for generating modular test 

sequences. Section 5 reports the results of an empirical 

study on modular testing. Related work is described in 
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Section 6, including a comparison between two other 

modular testing techniques and our technique. Section 

7 provides concluding remarks and our plans for 

future work. 

2. LTS MODELS  

The modular testing technique presented in this paper 

is for concurrent programs that use message passing 

for communication and synchronization. The intended 

execution behavior of a message-passing program is 

modeled using an extended LTS model called an 

annotated LTS [7]. The LTS and annotated LTS 

models are described below. 

2.1 Labeled Transition Systems 

LTS models contain nodes representing the state 

of a program and labeled edges representing 

transitions from state to state. LTSs can be composed 

in parallel and they can be synchronized by 

performing matching send and receive events, where e 

represents a synchronous receive event that matches 

synchronous send event e’. Synchronizations 

involving matching events are considered to be hidden 

from external observers and are represented by a 

special   (pronounced “tau”) event. We assume that 

LTSs are composed using the laws in CCS (Calculus 

of Communicating Systems) [8] and an interleaving 

concurrency model. 

Formally, an LTS is a 4-tuple <Q,E,R,q0>, where 

Q is a non-empty finite set of states, E is a set of 

transition labels, R  Q E Q is the transition relation, 

and q0 is a state in Q denoting the initial state. For 

message-passing programs, the labels in E encode 

send and receive events. An LTS may contain one or 

more termination states, which are states without 

outgoing transitions. The  events in an LTS are called 

internal events. All other events are called external 

events. A transition labeled with an internal (external) 

event is referred to as an internal (external) transition.  

2.2 Adding Annotations 

The send and receive events in an LTS model are 

encoded by simple transition labels. Formats that have 

been developed for representing test sequences for 

implementations encode send and receive events with 

more complex event descriptors, such as the ID of the 

sending or receiving thread, the operation performed, 

and the destination or source port of the operation [9], 

[2], [10]. (A port p is a communication channel 

through which messages are sent using p.send() and 

received using p.receive(). Only one thread can 

receive messages from a given port.) Event descriptors 

are not included in LTS models, but they are needed to 

transform an abstract sequence of the model into a 

concrete sequence of the implementation, and to 

generate modular test sequences.  

Koppol et al. [7] extended the LTS model and the 

algebraic laws used in CCS to allow implementation 

event descriptors to be encoded in an LTS. Their 

extended LTS model is called an annotated labeled 

transition system (ALTS). We use the ALTS model in 

this paper. 

A formal definition of the ALTS model is given 

in [7]. Informally, an ALTS is an LTS in which each 

transition is annotated with information about the 

associated synchronization event in the 

implementation. A transition annotation has the form 

(Li,Lj,port,op,label), where Li is the sender and Lj the 

receiver for an operation op performed on port and 

labeled label. For synchronous message passing, op is 

either synch_send or synch_receive, or a 

synchronization between a synch_send and a 

synch_receive, denoted as a synchronous-

synchronization. For asynchronous message passing, 

op is either asynch_send or asynch_receive.  We use 

Eannotated to denote the set of transition annotations in 

an ALTS. A technique for generating the annotations 

in an ALTS is described below. 

The values for Li and Lj in an annotation are 

handled differently for synchronous and asynchronous 

message passing. For synchronous message passing, 

the sending and receiving LTSs are modeled as having 

a direct synchronous interaction with each other, so 

the values for Li and Lj refer to the IDs of the LTSs 

modeling the sender and receiver threads, respectively. 

Since LTS models use synchronous message passing 

semantics, asynchronous message passing must be 

simulated using synchronous communication. This is 

done by having the sending and receiving LTSs 

interact with an LTS that models a communication 

medium between the sender and receiver. Note, 

however, that the values of Li and Lj refer to the IDs of 

the LTSs modeling the sender and receiver threads, 

respectively, not the medium involved in the 

communication. Medium objects are modeling 

artifacts that do not exist in the implementation. 

We assume that each send or receive event in the 

implementation is expected to appear in the ALTS 

model of the implementation. The ALTS model may, 

however, contain extra events that are not actually 

implemented. These events, e.g., can be used for 

specifying and verifying correctness properties of the 

model. We also assume that these extra events are 

removed from test sequences generated from the 

model before the sequences are used to test the 

implementation.  

ALTs are composed using the laws in CCS, with 

extra rules about forming annotations for 
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synchronizations. For example, consider a 

composition of ALTS B1 and ALTS B2, denoted by (B1 

| B2) \ {msg_in}. A synchronization between B1 and B2 

on receive event msg_in 

(B1,B2,in,synch_receive,msg_in) and send event 

msg_in’(B1,B2,in,synch_send,msg_in) results in a  

event with annotation (B1,B2,in,synchronous-

synchronization,msg_in). The annotation for the  

event denotes that B1 was the sender and B2 the 

receiver for a synchronous synchronization labeled 

msg_in that occurred on port in. The annotation for the 

 event carries the annotation information from the 

events that were synchronized to create it. 

The sole source of non-deterministic behavior in 

an LTS of the model, or a thread in the 

implementation, is assumed to be the non-

deterministic order in which sent messages can be 

received. Other possible sources of non-determinism 

in the implementation, such as uninitialized variables, 

or accessing memory after it has been de-allocated, are 

assumed to be absent. Non-deterministic selections 

between an input statement and an output statement 

are not allowed. Likewise, non-deterministic 

selections between two send statements, or between 

two receive statements that access the same port, is 

not allowed. These latter types of non-deterministic 

selections could potentially be modeled as a state in an 

ALTS that has two or more outgoing transitions that 

have the same event label and annotation. However, 

these types of selections are typically not allowed by 

implementation-level message-passing constructs, and 

we do not find such selections useful at the 

implementation level.  

We point out that some types of non-determinism 

that are not useful at the implementation level may be 

useful earlier in the modeling process, e.g., for 

modeling design decisions that are to be made at some 

later point in development. Making a design decision 

amounts to a reduction of the non-determinism in the 

specification model [11], [12]. We do not discourage 

this type of design-level non-determinism. It can be 

used in earlier stages of modeling as long as it is 

reduced before the model is used to generate test 

sequences, reflecting the fact that all of the design 

decisions have been made.  

The events in an ALTS model M may represent 

message-passing between threads, or they may instead 

represent I/O operations (e.g., reading from a 

keyboard, or file) between the threads and their 

environment. Model M thus identifies the inputs that 

are used to verify the implementation relation between 

M and CP, and also the expected outputs of CP when 

CP is executed with the inputs in M. In the remainder 

of this paper, we will refer to the I/O values specified 

by M as the inputs and outputs of M, and the possible 

inputs and expected outputs, respectively, of CP. 

Likewise, if a sequence s of model M contains events 

that represent input and output operations, then the 

values specified in the input and output events of s are 

referred to collectively as the inputs and outputs of s. 

We assume that when sequence s is used to test CP, 

the inputs of s are translated into the required input 

format for CP. 

Annotations must be generated in order to create 

an ALTS model instead of an LTS model. Chen and 

Carver [13] showed how annotations can be generated 

for models written in the Lotos specification language 

[14]. Annotations are automatically computed when 

the Lotos model is compiled into an LTS. The 

annotations appear as part of the LTS transition labels. 

This is analogous to the way event descriptors are 

generated when an implementation is executed. We 

used this approach in the empirical study in Section 5 

to create ALTS models from Lotos models. Refer to 

Chen and Carver [13] for details about this approach. 

3. MODULAR TESTING 

Modular test generation begins with an abstract model 

M comprised of a set of ALTSs {L1, L2, …, Lm}, and a 

concrete implementation CP of M with concurrent 

threads {P1, P2, …, Pn}. We assume that a mapping 

exists between the ALTSs in M and the threads in CP, 

but we allow some flexibility in this mapping. In some 

cases, two or more ALTSs in M may be composed to 

create a single ALTS that is mapped to a thread in CP. 

In other cases, some ALTSs in M may not be mapped 

to any thread in CP. For example, M may contain an 

ALTS that models the behavior of an unreliable 

communication medium for which there is no 

equivalent thread in CP. Ultimately, we require each 

of the n threads in CP to be mapped to the ALTS(s) in 

M that the thread implements. To simplify our 

presentation, we assume that the number n of threads 

equals the number m of ALTSs and that thread Pi of 

CP is mapped to ALTS Li of M. We also assume that 

the alphabets of event labels for Pi and Li are intended 

to be the same. Our objective is to determine whether 

a specified implementation relation exists between M 

and CP by generating test sequences from M and using 

these sequences to test the threads in CP.  

3.1 Implementation Relation M F CP  

The correctness of an implementation CP can be 

defined in terms of an implementation relation that is 

required to hold between CP and the ALTS model M 

= <Q,E,R,q0> of CP.  The set of all possible sequences 

that can be written using the labels in set Eannotated of 

model M is denoted by Eannotated*.  

Definition 1: A sequence s in Eannotated* is feasible 

for model M if s is a sequence of events along 
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some path through M, starting at the start state of 

M; otherwise, s is infeasible for M.  

Definition 2: A sequence s in Eannotated* is feasible 

for implementation CP if an execution of CP can 

exercise sequence s. 

A non-modular implementation relation that is often 

used for test generation is denoted by M F CP. 

Definition 3: M F CP def for any sequence s in 

Eannotated*: s is feasible for M  s is feasible for 

CP. 

Relation M F CP requires each feasible sequence s of 

model M to be feasible for implementation CP. 

However, CP may have feasible sequences that are not 

feasible for M. This relation indicates perhaps that M 

is incomplete and thus is extended by CP, i.e., CP adds 

behavior that is not in M, but all the behaviors of M 

are still allowed by CP [11].  

3.2 A Modular Implementation Relation 

for F 

The implementation relation in Definition 3 is for the 

full model M and its implementation CP. In this 

section, we define an implementation relation for an 

individual thread Pi in CP and the ALTS Li = 

<Qi,Ei,Ri,qi> in M to which Pi is mapped. 

Definition 4: A local sequence with respect to 

ALTS Li is a sequence sLi  Eannotated* such that all 

of the send and receive events in sLi have Li as the 

sender or receiver, respectively. 

A sequence that is local with respect to ALTS Li may 

or may not be allowed by Li. 

Definition 5: Let sLi be a sequence that is local 

with respect to Li. Local sequence sLi is feasible 

for Li if sLi is a sequence of events along some 

path through Li, starting at the start state of Li; 

otherwise, sLi is infeasible for Li.  

A feasible local sequence of Li may not actually be 

allowed to occur when the constraints imposed on Li 

by Li’s environment in M are considered. For 

example, Li may allow two messages to be received in 

either order; while Li’s environment may require the 

first message sent to Li to be received before the 

second message can be sent to Li. 

Definition 6: For feasible sequence s of M, the 

projection of s onto Li is the (feasible) local 

sequence sLi that is obtained by removing from s 

all of the send events for which Li is not the 

sender and all of the receive events for which Li is 

not the receiver.  

 If e is an asynch_send (asynch_receive) event 

in s that is executed by Li, then e is an 

asynch_send (asynch_receive) event in sLi.  

 If e is a synchronous-synchronization event 

in s, then e is a synch_send (synch_receive) 

event in sLi if Li executed the synch_send 

(synch_receive) event synchronized at e. 

Definition 7: A feasible local sequence sLi of Li is 

constrained with respect to model M if sLi is the 

projection onto Li of some feasible sequence of 

M. The set of constrained sequences of Li with 

respect to model M is denoted Constrained-

Sequences(Li,M), or just Constrained-

Sequences(Li) when M is understood. 

Definition 7 shows that Constrained-Sequences(Li) is 

not determined by analyzing Li and ignoring the other 

ALTSs in M. To the contrary, a sequence in 

Constrained-Sequences(Li) must be a projection of 

some feasible sequence of M. Thus, Constrained-

Sequences(Li) captures the constraints imposed on Li 

by the other ALTSs.  

When a feasible sequence s of M is projected to 

obtain a constrained local sequence sLi of Li, the 

annotations on the events in s are retained by the 

events in sLi. These annotations specify the 

interactions that occur between Li and its environment 

when the events in sLi are exercised. If Li exercises a 

receive (send) event then the environment exercises a 

matching send (receive) event. An environment that 

interacts as specified by the annotations in sLi is 

referred to as a conforming environment of sLi. 

Definition 8: A feasible local sequence sLi in 

Constrained-Sequences(Li,M) is feasible for 

implementation thread Pi if Pi can exercise 

sequence sLi when Pi is executed with a 

conforming environment of sLi. 

A procedure for checking the feasibility of a 

constrained local test sequence for an implementation 

thread is given in Section 3.3. 

Theorem 1: Let s be a feasible sequence of M and 

sLi be the projection of s onto ALTS Li, 1  i  n. 

Then constrained local sequence sLi is feasible for 

thread Pi, 1  i  n, iff sequence s is feasible for 

CP. 

Proof: See Appendix 1. 

Based on Theorem 1, we can test each thread 

separately with the constrained local sequences of its 

corresponding ALTS instead of testing all the threads 

together with all of the feasible sequences of M. 

Building on this, we define a modular implementation 

relation for an ALTS Li and the thread Pi to which it is 

mapped.. This relation mirrors the relation in 

Definition 3: 

Definition 9: Li F Pi def for any sequence sLi in 

Constrained-Sequences(Li): sLi is feasible for Pi. 

Modular implementation relation Li F Pi is used in the 

following theorem, which is the basis for modular 

testing: 

Theorem 2: Li F Pi, 1  i  n, iff M F CP. 



 6 

Proof: The if-part is obvious – Theorem 1 says 

that if a feasible sequence s of M is feasible for 

CP, then the constrained local sequences obtained 

by projecting s onto Li, 1 i n, are feasible for the 

individual threads of CP. It follows directly from 

this that if all the feasible sequences of M are 

feasible for CP, then all of the constrained local 

sequences of Li, 1 i n, are also feasible for the 

individual threads of CP.  

For the only-if part, assume relation Li F Pi, 

1 i n, holds but relation M F CP does not. Then 

there is an event e that is one of the (possibly 

many) events that can be the first event in some 

feasible sequence s of M that is not feasible for 

CP. (An event e is one of the first infeasible 

events in s if no event in s that happened before 

[15] e is infeasible. The possible first events are 

executed concurrently.) Assume that e is executed 

by ALTS Lj and let sLj be the projection of s onto 

Lj. Sequence sLj is a local sequence of Lj that is 

not feasible for Pi due to e, but we are assuming Lj 

F Pj, which is a contradiction.  

According to Theorem 2, the implementation relations 

between the individual threads in CP and the ALTSs 

in M can be verified separately in order to verify the 

implementation relation between M and CP. Testing 

each ALTS-Thread pair separately is more efficient in 

cases where the local sequences of an ALTS Li are 

repeated many times, perhaps even an exponential 

number of times, in the feasible sequences of M.  

We point out that our approach is modular in the 

sense that it tests an individual thread Pi separately; 

however, as we will see, our approach derives the 

constrained local sequences for testing Pi from a 

reduced version of M, not just Li. Thus, our approach 

is not modular in the stronger sense that it tests an 

individual thread Pi with test sequences that are 

generated from ALTS Li and only ALTS Li. Note that 

Li may allow local sequences that are not projections 

of any of the feasible sequences of M. Using these 

local sequences to test Pi may cause spurious test 

failures — if these local sequences are not feasible for 

Pi, it does not imply that M F CP is violated. 

Likewise, if these local sequences are infeasible for Pi, 

but they cause runtime assertions in Pi to fail during 

test execution, it does not imply that Pi has faults. 

3.3 A Modular Testing Procedure for M F 

CP 

Modular testing is performed using the following 

procedure: 

Procedure Test F: For each mapped pair (Li, Pi), 1  i 

 n: 

(a)  Generate Constrained-Sequences(Li) (see 

Section 4.2).  

(b)  For each local test sequence sLi in 

Constrained-Sequences(Li):  

(b1)   Test Pi with sequence sLi and assign a 

test verdict, which is either pass or fail. 

The assignment of verdicts is discussed 

below. 

(b2) If Pi fails with sLi, a failure has been 

detected in CP and testing halts. 

 

Note that the key step in the above procedure is 

deriving Constrained-Sequences(Li) in step (a), which 

is described in Section 4. In step (b1), thread Pi is 

executed with a test driver. The driver behaves as a 

conforming environment by supplying the send and 

receive events that match the events executed by Pi in 

local sequence sLi. That is, whenever sequence sLi calls 

for Pi to execute a send (receive) event on port p, a 

receive (send) event on port p is executed by the 

driver. The implementation information that is needed 

for mapping the abstract events in sLi to concrete 

events of Pi is provided by the transition annotations in 

Li, as described in Section 2. Note that the execution 

of thread Pi interacting with a test driver will be 

deterministic.  

The test driver must supply message objects for 

the send events that it executes. To assist in this 

process, we can perform reachability testing on 

implementation CP and capture the message objects 

that are sent. During reachability testing, message 

objects are stored in a map structure that maps a 

message label to its associated message object. When 

the test driver needs to send a message with a given 

label, it uses the label to retrieve the appropriate 

message object from the map. Note that it is not 

necessary for reachability testing that is used in this 

way to complete; reachability testing can stop when all 

or most of the message objects have been seen, or 

when a user-specified time limit is reached. If some 

message labels are not observed before reachability 

testing stops, then the user must supply the missing 

objects, possibly by modifying captured objects.  

The test verdict in (b1) is assigned as follows: 

if (Pi executes an event that is not in the alphabet 

Ei of Li or local sequence sLi is infeasible for Pi)  

then the test fails else the test passes. 

If procedure Test F is performed and all the tests in 

Constrained-Sequences(Li) are passed for each 

mapped pair (Li, Pi), 1  i  n, then Li F Pi , and by 

Theorem 1, M F CP. Note that when thread Pi is 

tested with the local sequences in Constrained-

Sequences(Li), the tests are used to determine whether 

Pi will interact as intended with the other threads in the 

program. There is no circular reasoning used in this 

approach — we do not assume that the other threads 
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are correct when testing Pi (or that Pi is correct when 

each of the other threads are tested). The other threads 

may have faults that would prevent them from 

correctly interacting with Pi. These faults will be 

detected when the other threads are tested in turn with 

their local test sequences.  

The sum of the sizes of Constrained-

Sequences(Li) over all Li may be a small fraction of 

the number of sequences of M. This is, however, not 

necessarily the case. For example, if ALTS L models a 

thread that interacts with all the other threads in the 

system, then each feasible sequence of M might 

correspond to a different local sequence of L and no 

reduction will be achieved by generating Constrained-

Sequences(L). Such a result is reported in the case 

study in Section 5.  

4. Modular Test Generation Using 

Thread Interaction Models 

The objective of modular test generation is to generate 

a set of constrained local test sequences, Constrained-

Sequences(Li), for each ALTS Li in model M. These 

test sequences are used in step (b) of procedure Test F 

in Section 3.3. In this section, we show how to build 

an ALTS model called a thread interaction model 

(TIM). The thread interaction model for Li, denoted 

TIMLi, models Li’s interactions with the other ALTSs 

in M. Constrained-Sequences(Li) is generated by 

traversing TIMLi.  

One approach to generating TIMLi is to use 

reachability analysis to build a global ALTS Mg for 

model M and then use an equivalence-based reduction 

to derive a TIMLi that is smaller but equivalent with 

regard to Li’s behavior in global ALTS Mg. A second 

approach is to use incremental reachability analysis to 

build TIMLi [16-17]. Incremental techniques also use 

equivalence-based reductions, but they do so without 

first generating Mg. As a result, incremental 

techniques may be much more efficient. The TIMLi 

produced by non-incremental and incremental 

approaches is the same.  

A number of equivalence relations have been 

defined for LTSs [8]. Observational equivalence is 

used to relate two LTSs whose behaviors are 

indistinguishable when their  events are invisible. 

The process that we use in Section 4.1 to generate 

thread interaction model TIMLi includes a reduction 

based on observational equivalence. LTS Li’s behavior 

in TIMLi is indistinguishable from its behavior in M 

when events in M that do not directly involve Li are 

unobservable. Another equivalence relation that we 

use is called weak-trace equivalence. Informally, two 

LTSs are weak-trace equivalent if they can perform 

the same sequences of external events, starting from 

their initial states. In Section 4.1, we use a reduction 

based on weak-trace equivalence to remove  events 

and redundant transition sequences from thread 

interaction models before we generate test sequences 

from the models. This ensures that no duplicate test 

sequences are generated and no  events appear in the 

test sequences. Formal definitions of the observational 

and weak-trace equivalence relations, and reduction 

algorithms for these relations, can be found in [18] and 

references therein. 

4.1 Using Reachability Analysis to 

Generate Thread Interaction Models 

For each ALTS Li in model M, we use equivalence-

based reductions to build a thread interaction model 

TIMLi that models Li’s interactions with the other 

ALTSs in M. The steps for building TIMLi are as 

follows: 

Step 1: Based on ALTS Li, classify the transitions 

in model M as observable or hidden. 

For asynchronous message passing, the observable 

transitions are the send and receive transitions 

executed by Li. For synchronous message passing, the 

observable transitions are the transitions that involve a 

synchronization in which Li is the sender or the 

receiver. Other transitions are considered to be hidden. 

Thus, the observable transitions in M all involve 

interactions with Li.  

Step 2: Minimize M modulo observational 

equivalence creating ALTS model MLi, which 

captures Li’s behavior in M. 

Step 3: Minimize MLi modulo weak-trace 

equivalence creating reduced ALTS TIMLi. 

When a minimization is performed in Step 2 or 3 the 

minimization is based on the annotations in the 

ALTSs. Recall that synchronizations between Li and 

the other threads in M are labeled as  events. If 

minimization were to be based on transition labels, 

instead of annotations,  events could be removed 

during minimization, which would allow information 

about the original synchronizations to be lost. Since 

minimization is based instead on annotations, all the  

events will have the same label “ ” but different 

annotations. This allows  events to be treated as 

different (observable) events during minimization. 

Thus, the annotation information about the events and 

the ALTSs that synchronize with Li is retained in 

TIMLi. This ensures that TIMLi models all of Li’s 

interactions with other threads, and that TIMLi 

contains the implementation information (in the form 

of annotations) that is necessary for generating 

concrete test sequences for implementation thread Pi.   

The reduced thread interaction model TIMLi 

produced in Step 3 represents the feasible sequences 
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of interactions between Li and the rest of the system. 

TIMLi may be non-deterministic due to concurrent 

interactions between Li  and the other components.  

Based on the definition of weak-trace equivalence, 

TIMLi contains no hidden transitions and no redundant 

sequences of observable transitions. Algorithms for 

Step 2 run in time O(n
3
), where n is the number of 

states in the model. Algorithms for Step 3 have worst 

case running times that are exponential in the number 

of states, but the model minimized in Step 3 is a model 

of a single thread, which is typically much smaller 

than a global model. Thus, Step 2 should dominate the 

execution time. 

4.2 Generating Test Sequences from 

Thread Interaction Models 

Test sequences are derived by traversing TIMLi and 

generating all the feasible sequences. For a cyclic 

model such as TIMLi = a.TIMLi, an exhaustive test 

suite would have infinitely many test sequences,  each 

test sequence a,  a.a,  a.a.a, …, having a finite but 

arbitrarily long number of events. A similar type of 

problem occurs when generating (white-box) tests 

from implementations that have loops (while-loops, 

for-loops, etc) [19]. (Note that an implementation that 

has a loop does not necessarily have a cycle in its state 

space.)  One approach for dealing with a cyclic model 

M is to select a finite subset of M’s test sequences, and 

ensure that cycles are iterated a finite number of times. 

Another approach is redesign M as a model M’ that is 

incomplete but that has an acyclic state space, and 

generate an exhaustive test suite from M’. In this case, 

the feasible sequences of acyclic model M’ form a 

subset of the feasible sequences of the cyclic model 

M. In both approaches, a finite set of (finite-length) 

test sequences is generated. However, the test 

sequences may fail to detect some errors.  

If the TIMLi generated by the process in Section 

4.1 is acyclic, then it can be traversed using a simple 

depth-first search (DFS) algorithm. Whenever a 

termination state of TIMLi is reached, the DFS backs 

up, and one or more test sequences are collected from 

the search stack. The collected test sequences include 

one complete sequence of TIMLi, i.e., a sequence 

beginning at the start state of TIMLi and ending in a 

termination state, and all of the non-null proper 

prefixes of this complete sequence. For example, if the 

search stack contains (from the bottom of the stack to 

the top) a b c when the search backs up, then the 

complete sequence a.b.c is generated along with prefix 

sequences a.b and a. Thus, the DFS will generate all 

the possible traces of TIMLi. 

If TIMLi is cyclic, then some test selection method 

must be used when TIMLi is traversed to select a 

subset of the feasible test sequences of TIMLi. Test 

selection may be based on, e.g., guidance from the 

person doing the testing [20-22], or coverage criteria 

[19]. 

Modular sequences are generated for each ALTS 

Li in M using the following procedure:  

Procedure Generate_Sequences(Li): 

For each ALTS Li in model M: 

(G1) Apply Steps 1 through 3 in Section 4.1 to 

create thread interaction model TIMLi 

(G2)  Traverse TIMLi as described above to 

generate test sequences for Li. 

 

Whether procedure Generate_Sequences(Li) generates 

Constrained-Sequences(Li) depends on whether TIMLi 

is acyclic. 

Theorem 3: If TIMLi is acyclic, then procedure 

Generate_Sequences(Li) generates Constrained-

Sequences(Li) for each ALTS Li, 1  i  n, in 

model M.  

Proof: In procedure Generate_Sequences(Li), 

minimization modulo weak-trace equivalence in 

step (G1) is based on the annotations of the 

external transitions instead of the transition labels. 

This prevents any (non-redundant) sequences of 

Li’s transitions from being lost during the 

minimization. By definition of weak-trace 

equivalence, the traces of TIMLi generated by the 

DFS procedure in step (G2) are precisely 

Constrained-Sequences(Li).  

We point out that an obvious optimization of the DFS 

search procedure is to avoid the generation of any 

sequence that is a prefix of a sequence that has already 

been generated. For example, if test sequence a.b.c is 

generated, it is not necessary to generate prefix 

sequences a.b and a. The reason being that if sequence 

a.b.c is feasible for the implementation thread, then 

sequences a.b and a must also be feasible. This 

optimization is easily performed during DFS by 

generating only complete sequences at backup points. 

If TIMLi is cyclic, then procedure 

Generate_Sequences(Li) must use some test selection 

method to select a subset of the feasible sequences of 

TIMLi. Thus, Generate_Sequences(Li) will not 

generate Constrained-Sequences(Li) or even all of the 

complete sequences of Li. In this case, modular testing 

cannot be used to verify relation M F CP; however, 

the generated sequences will be sound, i.e., only 

incorrect implementations will fail the tests [23].  

5. EMPIRICAL STUDY 

We conducted an empirical study in which modular 

test sequences were generated from thread interaction 

models. Abstract models and Java implementations 

were built for: 
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DP: a deadlock-free solution to the dining 

philosophers problem with philosophers sharing forks 

and each philosopher eating once [4]. In this solution, 

all philosophers but one pick up their left fork first, 

while the one “odd philosopher” picks up its right fork 

first. 

DME-3: a solution to the distributed mutual exclusion 

problem with three processes and three threads per 

process [5]. Processes communicate using 

asynchronous message passing. A process that 

requires exclusive access to a shared resource must 

send requests to all the other processes and wait for all 

the other processes to reply. Requests are time 

stamped with logical clock values so that a winner can 

be chosen when more than one process makes a 

request. Each process uses the resource one time. 

TDME: a token-based solution to the distributed 

mutual exclusion problem [24] with 3 user processes 

and 1 controller process. A Process that wishes to have 

exclusive access to a shared resource must obtain a 

special token from the controller process. Each 

process uses the shared resource one time. 

All the models and implementations were acyclic. 

Note that while DME and TDME solve the same 

problem, they have significantly different 

synchronization behavior. Thread interaction models 

were generated by following the step-by-step 

procedure in Section 4.1 using the CADP toolset [25-

26] and the ALTS reduction tool in [7]. We developed 

our own programs for generating and counting 

modular and non-modular test sequences from the 

ALTS models.  

Our objective here is to study the effectiveness of 

modular tests for detecting violations of the 

implementation relations and to compare the number 

of test sequences generated by modular testing to the 

number of sequences generated by other approaches. 

The results show a range of results for reducing test 

set sizes, from a large reduction to no reduction. In 

this study, we leveraged several LTS reduction tools, 

and inherited their limitations, but we did not evaluate 

their scalability. That has been done by others [18], in 

many cases on real life, industrial systems. 

Table I (see last page) summarizes the results of 

test sequence generation. For each of the three models, 

Table I shows: 

(1) The number of states and transitions in the global 

ALTS (column 1). Global ALTSs were generated 

using standard interleaving semantics and then 

minimized modulo strong equivalence in order to 

remove redundant sequences. The resulting global 

ALTSs contained no internal events. 

(2) The number of non-modular test sequences 

(columns 2 and 3). Non-modular test sequences 

were generated using two different methods, 

which are described below. 

(3) The number of states and transitions in the largest 

thread interaction model (TIM) (column 4). 

(4) The total number of modular test sequences 

generated from the thread interaction models 

(column 5).  

Each Lotos specification model was compiled into 

its individual ALTS components. The longest time for 

this step occurred while translating the Lotos DME-3 

model into its 9 component ALTSs, which took a total 

of 7 minutes and 40 seconds on a 1.3GHx processor 

with 32 GB of RAM. 

Non-modular test sequences were generated using 

two different methods. The first method reports the 

number of unique, totally-ordered, non-modular 

sequences generated from the ALTS models (column 

2 of Table I). This is the number of sequences 

generated when concurrent events are modeled by 

enumerating their possible interleavings. We counted 

the totally-ordered sequences using the DFS procedure 

described in Section 4.1. For model DME-3, this 

procedure was unable to finish. Thus, we report our 

partial results as lower bounds on the number of 

sequences. 

The second method reports the number of non-

modular sequences generated by the reachability 

testing algorithm in [10] when it was applied to the 

DP, DME-3 and TDME models. This algorithm uses a 

true-concurrency model to generate the unique 

partially-ordered feasible sequences of the models 

(column 3 of Table I). The number of partially-ordered 

sequences is usually considerably smaller than the 

number of totally-ordered sequences, and should also 

be smaller than or competitive with the results 

achieved by partial order reduction [27-28] and true-

concurrency [29-31] techniques. The non-modular, 

partially-ordered sequences can be used to verify that 

relation M F CP holds. 

Modular test sequences were generated from 

thread interaction models using the optimized DFS 

procedure described in Section 4.2. Since every 

transition in a thread interaction model involves the 

thread under test, no two transitions in the same 

modular test sequence are concurrent. This guarantees 

that no two modular sequences differ only in the order 

of concurrent events, the same as for partially-ordered 

sequences. Generating modular tests from the thread 

interaction models and executing the tests against the 

implementations took only a few seconds. 

Table I shows that the number of modular test 

sequences was always significantly less than the 

number of totally-ordered sequences generated from 

the global models; and was significantly less than the 

number of partially-ordered sequences generated from 

three out of six of the global models. For TDME, DP, 

and DME-3, this is reflected in a comparison of the 

sizes of the global models and the thread interaction 
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models, the latter being significantly smaller. The time 

for generating thread interaction models took 24 to 30 

seconds. 

The number of modular test sequences generated 

for model DP-P with P philosophers and P forks is 

always 3P. By way of comparison, a complete DP 

model has 2
P
 – 2 unique partially-ordered sequences 

and considerably more totally-ordered sequences. 

When P = 6, there are 18 modular test sequences, 62 

partially-ordered non-modular sequences and over 200 

billion totally-ordered, non-modular sequences.  

For the TDME model, a total of 33 modular test 

sequences were generated for the four implementation 

units. The global TDME model has 30 partially-

ordered non-modular sequences and 67,894 totally-

ordered non-modular sequences.  Thus, the number of 

modular test sequences was lower than the number of 

totally-ordered non-modular sequences but slightly 

higher than the number of partially-ordered non-

modular sequences. In TDME, most of the interactions 

are between the user processes and the controller 

process, the result being that the number of modular 

sequences of the controller process is the same as the 

number of unique, partially-ordered, non-modular 

sequences in the model. Since each of the three user 

processes has a single modular test sequence, the total 

number of modular tests sequences is 3 more than the 

number of partially-ordered, non-modular sequences. 

For the DME-3 model, a total of 315 modular test 

sequences were generated for the nine implementation 

units. The global DME-3 model has 4,032 partially-

ordered non-modular sequences and over 3.5 trillion 

totally-ordered, non-modular sequences. We measured 

the adequacy of the test-sequences generated for 

DME-3 by using mutation testing. Each mutant for 

DME-3 introduced a single change that was intended 

to simulate a programming error. For DME-3, we 

generated a batch of mutants, which were the mutants 

identified by the Java-based mutation tool Java [32]. 

Some of the mutants created were functionally 

equivalent to the original program. These mutants 

were identified and deleted, which left 190 mutants. 

We then applied modular testing to the nine threads in 

DME-3. A mutant was considered to be killed if a 

modular test sequence failed when it was executed 

against the thread that contained the mutant. Each of 

the 190 DME mutants was killed by the modular tests.  

Finally, we discuss the threats to the validity of 

our case study. The main threat to external validity is 

the degree to which the subject programs are 

representative of true practice. The three programs are 

small in terms of lines of code, but they represent 

complex, classical synchronization patterns and they 

illustrate well that the reduction in test sequences 

achieved by modular testing will vary from none at all 

to a significant amount. We plan to conduct 

experiments on more programs as an effort to reduce 

this threat.  The main threat to internal validity is the 

possibility that errors were made in counting the test 

sequences. The partially-ordered sequences were 

counted using the reachability testing tool in [10]. The 

totally-ordered sequences were counted using a depth-

first search algorithm, whose implementation was 

carefully tested.  

6. RELATED WORK  

In this section, we briefly review existing work on 

model-based testing of concurrent systems. We note 

first that test sequences can also be generated by 

analyzing an implementation’s structure [33-34] or its 

runtime behavior [27-28][35]. Model-based and 

implementation-based testing are complementary 

approaches — certain faults may be detectable when 

using an implementation-based approach but not when 

using a model-based approach, and vice versa. 

We also note that there has been work in the area 

of compositional model checking. The basic idea is to 

verify the behavior of each module in isolation and 

infer global correctness properties of the whole system 

from the results of verifying individual modules. This 

typically requires the user to manually provide an 

assumption about the interaction between the module 

being checked and the rest of the system. Our modular 

testing technique automatically builds a thread 

interaction model using equivalence-based reductions 

of the whole system. Also, our test generation 

technique does not perform any model-checking. 

Model checking is complementary to our work — the 

abstract model can be verified using model checking 

before the model is used to generate modular tests for 

testing the implementation. 

Most existing model-based testing techniques for 

concurrent systems use a finite state machine (FSM) 

model, such as an I/O automaton [36] or an I/O state 

machine [37], or they use an LTS model. These 

techniques have been developed mainly in the area of 

testing protocol implementations. Typically, the 

correctness of the implementation under test is defined 

in terms of a conformance relation between the 

implementation and its model. Conformance tests try 

to detect differences that are not allowed by the 

conformance relation.  

In general, conformance testing techniques are 

black-box techniques. Black-box techniques are 

effective for testing a single thread, but they encounter 

problems when they are applied to a set of concurrent 

threads. One problem is that a set of non-deterministic 

threads executes non-deterministically, which 

produces inconclusive test results. Another problem is 

that the composite FSM and LTS models are often 

based on an interleaving model of concurrency, which 
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creates the well-known state explosion problem in the 

size of the models, making test generation impractical.  

An alternative approach is to generate test sequences 

on-the-fly [23], so that the only part of the state space 

that is expanded is the part needed for the next test 

step. This approach, however, may still be impractical 

as the time needed to execute the implementation with 

the potentially huge number of interleaving sequences 

generated from the model may be prohibitive. 

Along a different line, several techniques [31-32] 

have been developed for generating non-modular test 

sequences from true-concurrency models. In such 

models, a non-modular test sequence is a partial order 

of transitions in which concurrent transitions are left 

unordered.  In contrast, our modular testing technique 

generates sequences for individual threads. As the case 

study shows, the total number of modular sequences 

may be significantly smaller than the total number of 

non-modular sequences, even when an interleaving-

free approach is used to generate non-modular 

sequences. 

Several compositional conformance testing 

techniques have been developed. Van der Bijl et al. 

[38] showed how to perform compositional 

conformance testing based on the ioco conformance 

relation can be performed. They determined a 

sufficient condition under which the ioco conformance 

of the component implementations to their respective 

LTS specifications leads automatically, without any 

additional testing, to the ioco conformance of the 

system implementation to the system specification. 

Roughly speaking, the sufficient condition is that each 

component’s LTS model is input enabled. An LTS is 

input enabled if each state specifies a response for 

every possible modeled input.  It is also assumed that 

for each implementation component all inputs are 

enabled in all states. 

Gotzhein and Khendek [39] presented a 

compositional technique for testing protocol 

implementations that can be modeled as the concurrent 

composition of two input enabled, deterministic FSMs. 

Each of the two implementation components is tested 

separately using one of the traditional black box 

methods mentioned above. When the two components 

pass their local tests, test sequences are generated to 

test for composition faults in the code used to connect 

the input/output queues of the components. The test 

sequences for the connection code are generated 

without building the global FSM, and do not repeat the 

local test sequences already performed on the two 

components. The modular testing technique presented 

in this paper can be applied to models with more than 

two implementation components, and if the local tests 

are passed no separate integration tests are required. 

An important issue with modular testing is 

whether the model of an individual thread specifies the 

exact set of inputs that can be received in a particular 

state. The modular techniques in [38] and [39], as 

described above, require each individual thread model 

to be input enabled, so that each state specifies a 

response for every possible modeled input. One 

problem with this approach is that some inputs may be 

impossible in certain states, and it is not clear what 

response should be specified for an impossible input. 

Also, identifying impossible inputs manually is 

difficult when the possible inputs depend on complex 

interactions among multiple components. Another 

problem occurs when some inputs are available, i.e., 

messages have been sent, and their availability is not 

an error, but receiving and responding to these inputs 

is not allowed in a certain state. It is not clear how to 

specify in an input enabled model that certain 

available inputs are not allowed to be received or 

responded to. Our modular testing technique does not 

require LTS models to be input enabled, nor does it 

require implementation threads to have all inputs 

enabled in all states. The LTS model of an individual 

thread may contain states that allow inputs that are 

impossible in a global context, or that disallow some 

inputs that are available. Impossible inputs are not a 

problem in our framework, since the process used to 

create thread interaction models implicitly identifies 

impossible inputs and prevents them from being 

included in the modular test sequences that are 

generated. 

A work closely related to ours is [7], which 

presents a technique for generating test sequences 

from reduced ALTS models. A reduced state space for 

an ALTS model M is generated using incremental 

reachability analysis and a new ALTS reduction 

algorithm. The new reduction algorithm uses the 

transition annotations in the reduced ALTS to store 

information about the paths in the unreduced state 

space of M. When annotations are considered, each 

test sequence generated from a reduced ALTS 

corresponds to a complete path through the unreduced 

state space of the model. The generated test sequences 

can thus be used for non-modular deterministic 

testing. Also presented in [7] are several modular 

coverage criteria — test sequences generated from 

reduced ALTSs can guarantee a level of coverage for 

the global model without ever having to build the 

global model. Satisfying these modular coverage 

criteria, however, does not ensure the satisfaction of 

the implementation relations defined in Section 3 of 

this paper. 

7. CONCLUSION 

In this paper, we presented a modular approach to 

testing concurrent systems that are modeled as 

annotated labeled transition systems. The novelty of 
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our modular approach is that the correctness of a 

concurrent system is determined by testing the 

individual implementation threads separately, without 

testing the implementation as a whole. Correctness is 

defined in terms of a modular implementation relation 

that is expected to hold between the individual threads 

in an implementation CP and their corresponding 

ALTS(s) in model M. We defined a modular 

implementation relation and showed how to verify this 

relation using modular testing. If this modular relation 

is verified, then this also verifies that the (non-

modular) sequences allowed by the complete model M 

are allowed by CP. Empirical studies confirmed that 

modular testing may require significantly fewer test 

sequences than non-modular testing. 

We plan to continue our work by developing a 

modular testing technique that can be used to verify 

relation M F CP and also relation CP F M. The 

objective is to use modular testing to check whether M 

and CP allow the same sequences.  
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Appendix: Proof of Theorem 1 
 

Theorem 1: Let s be a feasible sequence of M and sLi 

be the projection of s onto ALTS Li, 1  i  n. Then 

constrained local sequence sLi is feasible for thread Pi, 

1  i  n, iff sequence s is feasible for CP. 

Proof: Recall that when the feasibility of local 

sequence sLi for thread Pi is determined, 

synchronizations between Pi and the other threads in 

CP do not actually occur. Instead, a conforming test 

environment simulates Pi’s environment in M by 

supplying the send and receive events that match the 

events executed by Pi in local sequence sLi. Recall also 

that the local sequences of ALTS Li are not 

determined by analyzing Li and ignoring the other 

ALTSs in M. To the contrary, the local sequences of 

Li are projections of sequences that are definitely 

feasible for M. Thus, the projected local sequences of 

Li also capture the constraints that are imposed on Li’s 

behavior by the other ALTSs in M.  

The above discussion makes the if-part of 

Theorem 1 obvious – if the threads in CP are able to 

execute feasible sequence s of M, which includes all 

the events in all the local sequences of s and the 

synchronizations between threads as specified by the 

events of s, then thread Pi is also able to exercise the 

events in local sequence sLi when a conforming test 

environment supplies any matching synchronizations 

that are needed by these local events according to the 

synchronizations in s. 

For the only-if part, the question is whether the 

specific thread synchronizations in sequence s must be 

feasible if all the local sequences of s are feasible. 

Suppose e is one of the "first" infeasible events in 

sequence s. (An event e is one of the first infeasible 

events in s if no event in s that happened before e is 

infeasible. Intuitively, an event e1 happened before 

another event e2 if e1 could potentially affect e2 [15]). 

There are three cases in which e can be infeasible: 

Case 1: Event e is an asynchronous send event 

executed by thread P: Since e is a non-blocking send 

event, the only way for e to be infeasible is for thread 

P to be unable to execute e, but this contradicts the 

assumption that local sequence sP is feasible. 

Case 2: Event e is an asynchronous receive event 

executed by thread P, where C is the thread executing 

the asynchronous send e’ synchronized with e. In 

order for e to be infeasible, at least one of the 

following must be true: 

(a) P is unable to execute receive event e, but this 

contradicts the assumption that sP is feasible. 

(b) P can execute receive event e, and C can execute 

send event e’, but the send partner e’ for e cannot 

synchronize with e. But this contradicts the 

assumption that s is feasible for M, as e’ and e must be 

synchronizable (i.e., have matching ports and labels) 

in order for s to be feasible in M. 

Case 3: Event e is an synchronous-synchronization 

event, where C is the thread executing the 

synchronous send es for e and U is the thread 

executing the synchronous receive er for e. In order for 

e to be infeasible, at least one of the following must be 

true: 

(a) Thread C is unable to execute es because thread C 

cannot execute a send event. But this contradicts the 

assumption that local sequence sC is feasible. 

(b) Thread U is unable to execute er because thread U 

cannot execute a receive event. But this contradicts the 

assumption that local sequence sU is feasible. 

(c) Thread C can execute send event es and thread U 

can execute receive event er, but es and er cannot 

synchronize with each other.  But this contradicts the 

assumption that s is feasible for M, as es and er must 

be synchronizable (i.e., have matching ports and 

labels) in order for s to be feasible in M.        

http://www.ise.gmu.edu/~offutt/rsrch/abstracts/mujava.html
http://www.ise.gmu.edu/~offutt/rsrch/abstracts/mujava.html
http://ise.gmu.edu/~ofut/mujava/
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Global model 

(states/trans) 

#Totally-ordered 

seqs. 

#Partially-

ordered seqs. 

Largest TIM 

(states/trans.) 

#Modular 

seqs. 

TDME 192 / 348 67,894 30 68 / 90 33 

DP-3 76 / 126 238 6 8 / 8 9 

DP-4 322 / 712 94,526 14 8 / 8 12 

DP-5 1364 / 3770 108,549,484 30 8 / 8 15 

DP-6 5778 / 19164 217,113,360,382 62 8 / 8 18 

DME-3 367,733 / 

1,403,821 

> 3.5 trillion 4,032 71 / 117 315 

Table I. Results of modular test generation. 

  


