
 1

Department of Computer Science
George Mason University

Technical Report Series

4400 University Drive MS#4A5

Fairfax, VA 22030-4444 USA

http://cs.gmu.edu/

703-993-1530

A Modular Approach to Model-Based

Testing of Concurrent Programs

Richard Carver

rcarver@cs.gmu.edu
Yu Lei

ylei@cse.uta.edu

Technical Report GMU-CS-TR-2013-5

Abstract

This paper presents a modular approach to testing

concurrent programs that are modeled using labeled

transition systems. Correctness is defined in terms of

an implementation relation that is expected to hold

between a model of the system and its implementation.

The novelty of our approach is that the correctness of

a concurrent software system is determined by testing

the individual threads separately, without testing the

system as a whole. We define a modular

implementation relation on individual threads and

show that modular relations can be tested separately in

order to verify a (non-modular) implementation

relation for the complete system. Empirical results

indicate that our approach can significantly reduce the

number of test sequences that are generated and

executed during model-based testing.

1. INTRODUCTION

A concurrent program contains two or more

threads that communicate and synchronize with each

other to perform some task. One general approach to

testing a concurrent program is to execute the program

with carefully selected test sequences. Model-based

testing uses abstract models for test selection. That is,

an abstract model is used to specify the intended

program behavior, and test-sequences selected from

the model are used to test a concrete implementation.

Abstract models for concurrent programs are

often expressed as, or can be translated into, a labeled

transition system (LTS). An LTS models program

behavior as a type of state machine. Each state in an

LTS is an abstraction of a state in the program.

Transitions are labeled with the program events

performed during state transitions. Our objective is to

use model-based testing to determine whether a

desired implementation relation exists between an

abstract LTS model M and a concrete implementation

CP. An example of such a relation is that the

sequences of events allowed by M are also allowed by

CP. When the implementation relation holds, we say

that M is implemented by CP.

Black-box techniques have been developed for

selecting test sequences from LTS models. However,

concurrent threads execute non-deterministically

during black-box testing. This makes it difficult to

conclusively determine whether a selected test

sequence is or is not allowed by the implementation.

Gray-box testing techniques also generate test

sequences from LTS models, but they require special

testing tools that control inter-thread synchronization

and force the implementation to deterministically

execute selected test sequences [1-3]. Most black- and

gray-box, model-based testing techniques use an

interleaving concurrency model. This creates an

explosion in the number of modeled states, which

prevents a complete state space from being built, and

an explosion in the number of modeled sequences,

which makes it impractical to execute the

implementation with all the test sequences.

In this paper, we present a modular approach to

model-based testing for concurrent programs that use

message passing for communication and

synchronization. We assume the existence of an

abstract model M containing two or more LTSs, and a

concrete implementation CP with two or more

concurrent threads. Our approach constructs a thread

 2

interaction model for each thread in the

implementation. A thread interaction model is an

annotated labeled transition system (ALTS) that

captures the intended interactions between a single

thread P and the other threads in M. A thread

interaction model for P is typically much smaller than

global model M, and can be constructed in an

incremental manner. The thread interaction models are

then traversed to derive abstract, modular test

sequences for each thread. The annotations in the

ALTSs are used to translate the abstract test sequences

into concrete sequences that can be used to test P. The

salient contributions of this paper are:

 A modular implementation relation: We define a

new type of implementation relation, called a

modular implementation relation, between a

single implementation thread of implementation

CP and the corresponding LTS(s) in model M.

We show how to verify a global implementation

relation between M and CP by verifying modular

implementation relations between individual

implementation threads and their LTS model(s).

 A modular testing technique: Modular

implementation relations are verified by

generating test sequences from M and testing each

implementation thread in CP separately. The

number of tests generated for an individual thread

is typically small, so the total number of tests

generated for modular testing may be significantly

less than the number of tests generated by non-

modular techniques. Also, since only one

implementation thread executes during modular

testing, modular testing does not require control

over inter-thread synchronization and it never

produces inconclusive test results.

 An implementation of modular testing: Modular-

testing has been implemented using the Modern

Multithreading class library [4]. The library

contains thread and synchronization classes that

provide testing and debugging services for

multithreaded programs.

Our test generation technique makes one important

assumption, which is that the sole source of non-

deterministic behavior in the model and the

implementation is the order in which LTSs/threads

synchronize and communicate. Other sources of non-

deterministic behavior, such as uninitialized variables

in the implementation, are assumed to be absent. This

assumption is discussed in detail in Section 2.

To illustrate our contributions, consider an LTS

model and Java implementation of a well-known

distributed mutual exclusion (DME) algorithm [5]. An

interleaving model for DME contains more than 3.5

trillion sequences. A partial order model that we

generated for DME contains 4,032 (non-modular)

sequences. The stateless, modular testing technique

presented in this paper produces only 315 modular test

sequences for DME.

Model-based testing requires a model to be

written at a suitable level of abstraction. One approach

is for the model to express the behavior that a user is

expected to observe. This requires a distinction to be

made between observable and unobservable events in

the implementation. The model is expressed using

observable events only. Model-based testing is used to

verify that the implementation and model have the

same observable sequences of events. For example, for

the DME implementation described above, a high-

level model of what DME does can be written using

enteri and exiti events for each of the three processes.

This very abstract model admits only a handful of

sequences. The DME implementation, however, can

execute over 1.4 billion sequences – hundreds of

millions of sequences for each abstract sequence

generated from the model. It is not possible to obtain

conclusive test results for the DME implementation

with test sequences that abstract away all of the

information about how the DME implementation

achieves mutual exclusion.

Our approach is to develop an LTS model that

includes the observable events of the implementation,

i.e., events that represent interactions with the

environment, and events internal to the

implementation. These models can be verified against

very abstract models, which are typically expressed

using observable events only, and then used to test the

implementation. This does not require the model and

the implementation to be written at the same level of

abstraction. The labels for the events in the LTS and

the events executed by the implementation are simple

strings that abstract the meaning and structure of

program events. We add event annotations to the LTS

model to supply the event details that are needed for

test execution. The models can be written in

specification languages that are problem oriented, not

implementation oriented, and in specification styles

[6] that express solutions using implementation-

independent structures. These specification languages

need not provide all the details that are provided by

programming languages, the latter being concerned

with things like efficient execution and opportune

code reuse through inheritance.

The remainder of this paper is organized as

follows. In Section 2, we show how the intended

behavior of a concurrent program is modeled during

modular testing. Section 3 defines a modular

implementation relation and describes how modular

testing can be used to verify this relation. Section 4

presents a technique for generating modular test

sequences. Section 5 reports the results of an empirical

study on modular testing. Related work is described in

 3

Section 6, including a comparison between two other

modular testing techniques and our technique. Section

7 provides concluding remarks and our plans for

future work.

2. LTS MODELS

The modular testing technique presented in this paper

is for concurrent programs that use message passing

for communication and synchronization. The intended

execution behavior of a message-passing program is

modeled using an extended LTS model called an

annotated LTS [7]. The LTS and annotated LTS

models are described below.

2.1 Labeled Transition Systems

LTS models contain nodes representing the state

of a program and labeled edges representing

transitions from state to state. LTSs can be composed

in parallel and they can be synchronized by

performing matching send and receive events, where e

represents a synchronous receive event that matches

synchronous send event e’. Synchronizations

involving matching events are considered to be hidden

from external observers and are represented by a

special (pronounced “tau”) event. We assume that

LTSs are composed using the laws in CCS (Calculus

of Communicating Systems) [8] and an interleaving

concurrency model.

Formally, an LTS is a 4-tuple <Q,E,R,q0>, where

Q is a non-empty finite set of states, E is a set of

transition labels, R Q E Q is the transition relation,

and q0 is a state in Q denoting the initial state. For

message-passing programs, the labels in E encode

send and receive events. An LTS may contain one or

more termination states, which are states without

outgoing transitions. The events in an LTS are called

internal events. All other events are called external

events. A transition labeled with an internal (external)

event is referred to as an internal (external) transition.

2.2 Adding Annotations

The send and receive events in an LTS model are

encoded by simple transition labels. Formats that have

been developed for representing test sequences for

implementations encode send and receive events with

more complex event descriptors, such as the ID of the

sending or receiving thread, the operation performed,

and the destination or source port of the operation [9],

[2], [10]. (A port p is a communication channel

through which messages are sent using p.send() and

received using p.receive(). Only one thread can

receive messages from a given port.) Event descriptors

are not included in LTS models, but they are needed to

transform an abstract sequence of the model into a

concrete sequence of the implementation, and to

generate modular test sequences.

Koppol et al. [7] extended the LTS model and the

algebraic laws used in CCS to allow implementation

event descriptors to be encoded in an LTS. Their

extended LTS model is called an annotated labeled

transition system (ALTS). We use the ALTS model in

this paper.

A formal definition of the ALTS model is given

in [7]. Informally, an ALTS is an LTS in which each

transition is annotated with information about the

associated synchronization event in the

implementation. A transition annotation has the form

(Li,Lj,port,op,label), where Li is the sender and Lj the

receiver for an operation op performed on port and

labeled label. For synchronous message passing, op is

either synch_send or synch_receive, or a

synchronization between a synch_send and a

synch_receive, denoted as a synchronous-

synchronization. For asynchronous message passing,

op is either asynch_send or asynch_receive. We use

Eannotated to denote the set of transition annotations in

an ALTS. A technique for generating the annotations

in an ALTS is described below.

The values for Li and Lj in an annotation are

handled differently for synchronous and asynchronous

message passing. For synchronous message passing,

the sending and receiving LTSs are modeled as having

a direct synchronous interaction with each other, so

the values for Li and Lj refer to the IDs of the LTSs

modeling the sender and receiver threads, respectively.

Since LTS models use synchronous message passing

semantics, asynchronous message passing must be

simulated using synchronous communication. This is

done by having the sending and receiving LTSs

interact with an LTS that models a communication

medium between the sender and receiver. Note,

however, that the values of Li and Lj refer to the IDs of

the LTSs modeling the sender and receiver threads,

respectively, not the medium involved in the

communication. Medium objects are modeling

artifacts that do not exist in the implementation.

We assume that each send or receive event in the

implementation is expected to appear in the ALTS

model of the implementation. The ALTS model may,

however, contain extra events that are not actually

implemented. These events, e.g., can be used for

specifying and verifying correctness properties of the

model. We also assume that these extra events are

removed from test sequences generated from the

model before the sequences are used to test the

implementation.

ALTs are composed using the laws in CCS, with

extra rules about forming annotations for

 4

synchronizations. For example, consider a

composition of ALTS B1 and ALTS B2, denoted by (B1

| B2) \ {msg_in}. A synchronization between B1 and B2

on receive event msg_in

(B1,B2,in,synch_receive,msg_in) and send event

msg_in’(B1,B2,in,synch_send,msg_in) results in a

event with annotation (B1,B2,in,synchronous-

synchronization,msg_in). The annotation for the

event denotes that B1 was the sender and B2 the

receiver for a synchronous synchronization labeled

msg_in that occurred on port in. The annotation for the

 event carries the annotation information from the

events that were synchronized to create it.

The sole source of non-deterministic behavior in

an LTS of the model, or a thread in the

implementation, is assumed to be the non-

deterministic order in which sent messages can be

received. Other possible sources of non-determinism

in the implementation, such as uninitialized variables,

or accessing memory after it has been de-allocated, are

assumed to be absent. Non-deterministic selections

between an input statement and an output statement

are not allowed. Likewise, non-deterministic

selections between two send statements, or between

two receive statements that access the same port, is

not allowed. These latter types of non-deterministic

selections could potentially be modeled as a state in an

ALTS that has two or more outgoing transitions that

have the same event label and annotation. However,

these types of selections are typically not allowed by

implementation-level message-passing constructs, and

we do not find such selections useful at the

implementation level.

We point out that some types of non-determinism

that are not useful at the implementation level may be

useful earlier in the modeling process, e.g., for

modeling design decisions that are to be made at some

later point in development. Making a design decision

amounts to a reduction of the non-determinism in the

specification model [11], [12]. We do not discourage

this type of design-level non-determinism. It can be

used in earlier stages of modeling as long as it is

reduced before the model is used to generate test

sequences, reflecting the fact that all of the design

decisions have been made.

The events in an ALTS model M may represent

message-passing between threads, or they may instead

represent I/O operations (e.g., reading from a

keyboard, or file) between the threads and their

environment. Model M thus identifies the inputs that

are used to verify the implementation relation between

M and CP, and also the expected outputs of CP when

CP is executed with the inputs in M. In the remainder

of this paper, we will refer to the I/O values specified

by M as the inputs and outputs of M, and the possible

inputs and expected outputs, respectively, of CP.

Likewise, if a sequence s of model M contains events

that represent input and output operations, then the

values specified in the input and output events of s are

referred to collectively as the inputs and outputs of s.

We assume that when sequence s is used to test CP,

the inputs of s are translated into the required input

format for CP.

Annotations must be generated in order to create

an ALTS model instead of an LTS model. Chen and

Carver [13] showed how annotations can be generated

for models written in the Lotos specification language

[14]. Annotations are automatically computed when

the Lotos model is compiled into an LTS. The

annotations appear as part of the LTS transition labels.

This is analogous to the way event descriptors are

generated when an implementation is executed. We

used this approach in the empirical study in Section 5

to create ALTS models from Lotos models. Refer to

Chen and Carver [13] for details about this approach.

3. MODULAR TESTING

Modular test generation begins with an abstract model

M comprised of a set of ALTSs {L1, L2, …, Lm}, and a

concrete implementation CP of M with concurrent

threads {P1, P2, …, Pn}. We assume that a mapping

exists between the ALTSs in M and the threads in CP,

but we allow some flexibility in this mapping. In some

cases, two or more ALTSs in M may be composed to

create a single ALTS that is mapped to a thread in CP.

In other cases, some ALTSs in M may not be mapped

to any thread in CP. For example, M may contain an

ALTS that models the behavior of an unreliable

communication medium for which there is no

equivalent thread in CP. Ultimately, we require each

of the n threads in CP to be mapped to the ALTS(s) in

M that the thread implements. To simplify our

presentation, we assume that the number n of threads

equals the number m of ALTSs and that thread Pi of

CP is mapped to ALTS Li of M. We also assume that

the alphabets of event labels for Pi and Li are intended

to be the same. Our objective is to determine whether

a specified implementation relation exists between M

and CP by generating test sequences from M and using

these sequences to test the threads in CP.

3.1 Implementation Relation M F CP

The correctness of an implementation CP can be

defined in terms of an implementation relation that is

required to hold between CP and the ALTS model M

= <Q,E,R,q0> of CP. The set of all possible sequences

that can be written using the labels in set Eannotated of

model M is denoted by Eannotated*.

Definition 1: A sequence s in Eannotated* is feasible

for model M if s is a sequence of events along

 5

some path through M, starting at the start state of

M; otherwise, s is infeasible for M.

Definition 2: A sequence s in Eannotated* is feasible

for implementation CP if an execution of CP can

exercise sequence s.

A non-modular implementation relation that is often

used for test generation is denoted by M F CP.

Definition 3: M F CP def for any sequence s in

Eannotated*: s is feasible for M s is feasible for

CP.

Relation M F CP requires each feasible sequence s of

model M to be feasible for implementation CP.

However, CP may have feasible sequences that are not

feasible for M. This relation indicates perhaps that M

is incomplete and thus is extended by CP, i.e., CP adds

behavior that is not in M, but all the behaviors of M

are still allowed by CP [11].

3.2 A Modular Implementation Relation

for F

The implementation relation in Definition 3 is for the

full model M and its implementation CP. In this

section, we define an implementation relation for an

individual thread Pi in CP and the ALTS Li =

<Qi,Ei,Ri,qi> in M to which Pi is mapped.

Definition 4: A local sequence with respect to

ALTS Li is a sequence sLi Eannotated* such that all

of the send and receive events in sLi have Li as the

sender or receiver, respectively.

A sequence that is local with respect to ALTS Li may

or may not be allowed by Li.

Definition 5: Let sLi be a sequence that is local

with respect to Li. Local sequence sLi is feasible

for Li if sLi is a sequence of events along some

path through Li, starting at the start state of Li;

otherwise, sLi is infeasible for Li.

A feasible local sequence of Li may not actually be

allowed to occur when the constraints imposed on Li

by Li’s environment in M are considered. For

example, Li may allow two messages to be received in

either order; while Li’s environment may require the

first message sent to Li to be received before the

second message can be sent to Li.

Definition 6: For feasible sequence s of M, the

projection of s onto Li is the (feasible) local

sequence sLi that is obtained by removing from s

all of the send events for which Li is not the

sender and all of the receive events for which Li is

not the receiver.

 If e is an asynch_send (asynch_receive) event

in s that is executed by Li, then e is an

asynch_send (asynch_receive) event in sLi.

 If e is a synchronous-synchronization event

in s, then e is a synch_send (synch_receive)

event in sLi if Li executed the synch_send

(synch_receive) event synchronized at e.

Definition 7: A feasible local sequence sLi of Li is

constrained with respect to model M if sLi is the

projection onto Li of some feasible sequence of

M. The set of constrained sequences of Li with

respect to model M is denoted Constrained-

Sequences(Li,M), or just Constrained-

Sequences(Li) when M is understood.

Definition 7 shows that Constrained-Sequences(Li) is

not determined by analyzing Li and ignoring the other

ALTSs in M. To the contrary, a sequence in

Constrained-Sequences(Li) must be a projection of

some feasible sequence of M. Thus, Constrained-

Sequences(Li) captures the constraints imposed on Li

by the other ALTSs.

When a feasible sequence s of M is projected to

obtain a constrained local sequence sLi of Li, the

annotations on the events in s are retained by the

events in sLi. These annotations specify the

interactions that occur between Li and its environment

when the events in sLi are exercised. If Li exercises a

receive (send) event then the environment exercises a

matching send (receive) event. An environment that

interacts as specified by the annotations in sLi is

referred to as a conforming environment of sLi.

Definition 8: A feasible local sequence sLi in

Constrained-Sequences(Li,M) is feasible for

implementation thread Pi if Pi can exercise

sequence sLi when Pi is executed with a

conforming environment of sLi.

A procedure for checking the feasibility of a

constrained local test sequence for an implementation

thread is given in Section 3.3.

Theorem 1: Let s be a feasible sequence of M and

sLi be the projection of s onto ALTS Li, 1 i n.

Then constrained local sequence sLi is feasible for

thread Pi, 1 i n, iff sequence s is feasible for

CP.

Proof: See Appendix 1.

Based on Theorem 1, we can test each thread

separately with the constrained local sequences of its

corresponding ALTS instead of testing all the threads

together with all of the feasible sequences of M.

Building on this, we define a modular implementation

relation for an ALTS Li and the thread Pi to which it is

mapped.. This relation mirrors the relation in

Definition 3:

Definition 9: Li F Pi def for any sequence sLi in

Constrained-Sequences(Li): sLi is feasible for Pi.

Modular implementation relation Li F Pi is used in the

following theorem, which is the basis for modular

testing:

Theorem 2: Li F Pi, 1 i n, iff M F CP.

 6

Proof: The if-part is obvious – Theorem 1 says

that if a feasible sequence s of M is feasible for

CP, then the constrained local sequences obtained

by projecting s onto Li, 1 i n, are feasible for the

individual threads of CP. It follows directly from

this that if all the feasible sequences of M are

feasible for CP, then all of the constrained local

sequences of Li, 1 i n, are also feasible for the

individual threads of CP.

For the only-if part, assume relation Li F Pi,

1 i n, holds but relation M F CP does not. Then

there is an event e that is one of the (possibly

many) events that can be the first event in some

feasible sequence s of M that is not feasible for

CP. (An event e is one of the first infeasible

events in s if no event in s that happened before

[15] e is infeasible. The possible first events are

executed concurrently.) Assume that e is executed

by ALTS Lj and let sLj be the projection of s onto

Lj. Sequence sLj is a local sequence of Lj that is

not feasible for Pi due to e, but we are assuming Lj

F Pj, which is a contradiction.

According to Theorem 2, the implementation relations

between the individual threads in CP and the ALTSs

in M can be verified separately in order to verify the

implementation relation between M and CP. Testing

each ALTS-Thread pair separately is more efficient in

cases where the local sequences of an ALTS Li are

repeated many times, perhaps even an exponential

number of times, in the feasible sequences of M.

We point out that our approach is modular in the

sense that it tests an individual thread Pi separately;

however, as we will see, our approach derives the

constrained local sequences for testing Pi from a

reduced version of M, not just Li. Thus, our approach

is not modular in the stronger sense that it tests an

individual thread Pi with test sequences that are

generated from ALTS Li and only ALTS Li. Note that

Li may allow local sequences that are not projections

of any of the feasible sequences of M. Using these

local sequences to test Pi may cause spurious test

failures — if these local sequences are not feasible for

Pi, it does not imply that M F CP is violated.

Likewise, if these local sequences are infeasible for Pi,

but they cause runtime assertions in Pi to fail during

test execution, it does not imply that Pi has faults.

3.3 A Modular Testing Procedure for M F

CP

Modular testing is performed using the following

procedure:

Procedure Test F: For each mapped pair (Li, Pi), 1 i

 n:

(a) Generate Constrained-Sequences(Li) (see

Section 4.2).

(b) For each local test sequence sLi in

Constrained-Sequences(Li):

(b1) Test Pi with sequence sLi and assign a

test verdict, which is either pass or fail.

The assignment of verdicts is discussed

below.

(b2) If Pi fails with sLi, a failure has been

detected in CP and testing halts.

Note that the key step in the above procedure is

deriving Constrained-Sequences(Li) in step (a), which

is described in Section 4. In step (b1), thread Pi is

executed with a test driver. The driver behaves as a

conforming environment by supplying the send and

receive events that match the events executed by Pi in

local sequence sLi. That is, whenever sequence sLi calls

for Pi to execute a send (receive) event on port p, a

receive (send) event on port p is executed by the

driver. The implementation information that is needed

for mapping the abstract events in sLi to concrete

events of Pi is provided by the transition annotations in

Li, as described in Section 2. Note that the execution

of thread Pi interacting with a test driver will be

deterministic.

The test driver must supply message objects for

the send events that it executes. To assist in this

process, we can perform reachability testing on

implementation CP and capture the message objects

that are sent. During reachability testing, message

objects are stored in a map structure that maps a

message label to its associated message object. When

the test driver needs to send a message with a given

label, it uses the label to retrieve the appropriate

message object from the map. Note that it is not

necessary for reachability testing that is used in this

way to complete; reachability testing can stop when all

or most of the message objects have been seen, or

when a user-specified time limit is reached. If some

message labels are not observed before reachability

testing stops, then the user must supply the missing

objects, possibly by modifying captured objects.

The test verdict in (b1) is assigned as follows:

if (Pi executes an event that is not in the alphabet

Ei of Li or local sequence sLi is infeasible for Pi)

then the test fails else the test passes.

If procedure Test F is performed and all the tests in

Constrained-Sequences(Li) are passed for each

mapped pair (Li, Pi), 1 i n, then Li F Pi , and by

Theorem 1, M F CP. Note that when thread Pi is

tested with the local sequences in Constrained-

Sequences(Li), the tests are used to determine whether

Pi will interact as intended with the other threads in the

program. There is no circular reasoning used in this

approach — we do not assume that the other threads

 7

are correct when testing Pi (or that Pi is correct when

each of the other threads are tested). The other threads

may have faults that would prevent them from

correctly interacting with Pi. These faults will be

detected when the other threads are tested in turn with

their local test sequences.

The sum of the sizes of Constrained-

Sequences(Li) over all Li may be a small fraction of

the number of sequences of M. This is, however, not

necessarily the case. For example, if ALTS L models a

thread that interacts with all the other threads in the

system, then each feasible sequence of M might

correspond to a different local sequence of L and no

reduction will be achieved by generating Constrained-

Sequences(L). Such a result is reported in the case

study in Section 5.

4. Modular Test Generation Using

Thread Interaction Models

The objective of modular test generation is to generate

a set of constrained local test sequences, Constrained-

Sequences(Li), for each ALTS Li in model M. These

test sequences are used in step (b) of procedure Test F

in Section 3.3. In this section, we show how to build

an ALTS model called a thread interaction model

(TIM). The thread interaction model for Li, denoted

TIMLi, models Li’s interactions with the other ALTSs

in M. Constrained-Sequences(Li) is generated by

traversing TIMLi.

One approach to generating TIMLi is to use

reachability analysis to build a global ALTS Mg for

model M and then use an equivalence-based reduction

to derive a TIMLi that is smaller but equivalent with

regard to Li’s behavior in global ALTS Mg. A second

approach is to use incremental reachability analysis to

build TIMLi [16-17]. Incremental techniques also use

equivalence-based reductions, but they do so without

first generating Mg. As a result, incremental

techniques may be much more efficient. The TIMLi

produced by non-incremental and incremental

approaches is the same.

A number of equivalence relations have been

defined for LTSs [8]. Observational equivalence is

used to relate two LTSs whose behaviors are

indistinguishable when their events are invisible.

The process that we use in Section 4.1 to generate

thread interaction model TIMLi includes a reduction

based on observational equivalence. LTS Li’s behavior

in TIMLi is indistinguishable from its behavior in M

when events in M that do not directly involve Li are

unobservable. Another equivalence relation that we

use is called weak-trace equivalence. Informally, two

LTSs are weak-trace equivalent if they can perform

the same sequences of external events, starting from

their initial states. In Section 4.1, we use a reduction

based on weak-trace equivalence to remove events

and redundant transition sequences from thread

interaction models before we generate test sequences

from the models. This ensures that no duplicate test

sequences are generated and no events appear in the

test sequences. Formal definitions of the observational

and weak-trace equivalence relations, and reduction

algorithms for these relations, can be found in [18] and

references therein.

4.1 Using Reachability Analysis to

Generate Thread Interaction Models

For each ALTS Li in model M, we use equivalence-

based reductions to build a thread interaction model

TIMLi that models Li’s interactions with the other

ALTSs in M. The steps for building TIMLi are as

follows:

Step 1: Based on ALTS Li, classify the transitions

in model M as observable or hidden.

For asynchronous message passing, the observable

transitions are the send and receive transitions

executed by Li. For synchronous message passing, the

observable transitions are the transitions that involve a

synchronization in which Li is the sender or the

receiver. Other transitions are considered to be hidden.

Thus, the observable transitions in M all involve

interactions with Li.

Step 2: Minimize M modulo observational

equivalence creating ALTS model MLi, which

captures Li’s behavior in M.

Step 3: Minimize MLi modulo weak-trace

equivalence creating reduced ALTS TIMLi.

When a minimization is performed in Step 2 or 3 the

minimization is based on the annotations in the

ALTSs. Recall that synchronizations between Li and

the other threads in M are labeled as events. If

minimization were to be based on transition labels,

instead of annotations, events could be removed

during minimization, which would allow information

about the original synchronizations to be lost. Since

minimization is based instead on annotations, all the

events will have the same label “ ” but different

annotations. This allows events to be treated as

different (observable) events during minimization.

Thus, the annotation information about the events and

the ALTSs that synchronize with Li is retained in

TIMLi. This ensures that TIMLi models all of Li’s

interactions with other threads, and that TIMLi

contains the implementation information (in the form

of annotations) that is necessary for generating

concrete test sequences for implementation thread Pi.

The reduced thread interaction model TIMLi

produced in Step 3 represents the feasible sequences

 8

of interactions between Li and the rest of the system.

TIMLi may be non-deterministic due to concurrent

interactions between Li and the other components.

Based on the definition of weak-trace equivalence,

TIMLi contains no hidden transitions and no redundant

sequences of observable transitions. Algorithms for

Step 2 run in time O(n
3
), where n is the number of

states in the model. Algorithms for Step 3 have worst

case running times that are exponential in the number

of states, but the model minimized in Step 3 is a model

of a single thread, which is typically much smaller

than a global model. Thus, Step 2 should dominate the

execution time.

4.2 Generating Test Sequences from

Thread Interaction Models

Test sequences are derived by traversing TIMLi and

generating all the feasible sequences. For a cyclic

model such as TIMLi = a.TIMLi, an exhaustive test

suite would have infinitely many test sequences, each

test sequence a, a.a, a.a.a, …, having a finite but

arbitrarily long number of events. A similar type of

problem occurs when generating (white-box) tests

from implementations that have loops (while-loops,

for-loops, etc) [19]. (Note that an implementation that

has a loop does not necessarily have a cycle in its state

space.) One approach for dealing with a cyclic model

M is to select a finite subset of M’s test sequences, and

ensure that cycles are iterated a finite number of times.

Another approach is redesign M as a model M’ that is

incomplete but that has an acyclic state space, and

generate an exhaustive test suite from M’. In this case,

the feasible sequences of acyclic model M’ form a

subset of the feasible sequences of the cyclic model

M. In both approaches, a finite set of (finite-length)

test sequences is generated. However, the test

sequences may fail to detect some errors.

If the TIMLi generated by the process in Section

4.1 is acyclic, then it can be traversed using a simple

depth-first search (DFS) algorithm. Whenever a

termination state of TIMLi is reached, the DFS backs

up, and one or more test sequences are collected from

the search stack. The collected test sequences include

one complete sequence of TIMLi, i.e., a sequence

beginning at the start state of TIMLi and ending in a

termination state, and all of the non-null proper

prefixes of this complete sequence. For example, if the

search stack contains (from the bottom of the stack to

the top) a b c when the search backs up, then the

complete sequence a.b.c is generated along with prefix

sequences a.b and a. Thus, the DFS will generate all

the possible traces of TIMLi.

If TIMLi is cyclic, then some test selection method

must be used when TIMLi is traversed to select a

subset of the feasible test sequences of TIMLi. Test

selection may be based on, e.g., guidance from the

person doing the testing [20-22], or coverage criteria

[19].

Modular sequences are generated for each ALTS

Li in M using the following procedure:

Procedure Generate_Sequences(Li):

For each ALTS Li in model M:

(G1) Apply Steps 1 through 3 in Section 4.1 to

create thread interaction model TIMLi

(G2) Traverse TIMLi as described above to

generate test sequences for Li.

Whether procedure Generate_Sequences(Li) generates

Constrained-Sequences(Li) depends on whether TIMLi

is acyclic.

Theorem 3: If TIMLi is acyclic, then procedure

Generate_Sequences(Li) generates Constrained-

Sequences(Li) for each ALTS Li, 1 i n, in

model M.

Proof: In procedure Generate_Sequences(Li),

minimization modulo weak-trace equivalence in

step (G1) is based on the annotations of the

external transitions instead of the transition labels.

This prevents any (non-redundant) sequences of

Li’s transitions from being lost during the

minimization. By definition of weak-trace

equivalence, the traces of TIMLi generated by the

DFS procedure in step (G2) are precisely

Constrained-Sequences(Li).

We point out that an obvious optimization of the DFS

search procedure is to avoid the generation of any

sequence that is a prefix of a sequence that has already

been generated. For example, if test sequence a.b.c is

generated, it is not necessary to generate prefix

sequences a.b and a. The reason being that if sequence

a.b.c is feasible for the implementation thread, then

sequences a.b and a must also be feasible. This

optimization is easily performed during DFS by

generating only complete sequences at backup points.

If TIMLi is cyclic, then procedure

Generate_Sequences(Li) must use some test selection

method to select a subset of the feasible sequences of

TIMLi. Thus, Generate_Sequences(Li) will not

generate Constrained-Sequences(Li) or even all of the

complete sequences of Li. In this case, modular testing

cannot be used to verify relation M F CP; however,

the generated sequences will be sound, i.e., only

incorrect implementations will fail the tests [23].

5. EMPIRICAL STUDY

We conducted an empirical study in which modular

test sequences were generated from thread interaction

models. Abstract models and Java implementations

were built for:

 9

DP: a deadlock-free solution to the dining

philosophers problem with philosophers sharing forks

and each philosopher eating once [4]. In this solution,

all philosophers but one pick up their left fork first,

while the one “odd philosopher” picks up its right fork

first.

DME-3: a solution to the distributed mutual exclusion

problem with three processes and three threads per

process [5]. Processes communicate using

asynchronous message passing. A process that

requires exclusive access to a shared resource must

send requests to all the other processes and wait for all

the other processes to reply. Requests are time

stamped with logical clock values so that a winner can

be chosen when more than one process makes a

request. Each process uses the resource one time.

TDME: a token-based solution to the distributed

mutual exclusion problem [24] with 3 user processes

and 1 controller process. A Process that wishes to have

exclusive access to a shared resource must obtain a

special token from the controller process. Each

process uses the shared resource one time.

All the models and implementations were acyclic.

Note that while DME and TDME solve the same

problem, they have significantly different

synchronization behavior. Thread interaction models

were generated by following the step-by-step

procedure in Section 4.1 using the CADP toolset [25-

26] and the ALTS reduction tool in [7]. We developed

our own programs for generating and counting

modular and non-modular test sequences from the

ALTS models.

Our objective here is to study the effectiveness of

modular tests for detecting violations of the

implementation relations and to compare the number

of test sequences generated by modular testing to the

number of sequences generated by other approaches.

The results show a range of results for reducing test

set sizes, from a large reduction to no reduction. In

this study, we leveraged several LTS reduction tools,

and inherited their limitations, but we did not evaluate

their scalability. That has been done by others [18], in

many cases on real life, industrial systems.

Table I (see last page) summarizes the results of

test sequence generation. For each of the three models,

Table I shows:

(1) The number of states and transitions in the global

ALTS (column 1). Global ALTSs were generated

using standard interleaving semantics and then

minimized modulo strong equivalence in order to

remove redundant sequences. The resulting global

ALTSs contained no internal events.

(2) The number of non-modular test sequences

(columns 2 and 3). Non-modular test sequences

were generated using two different methods,

which are described below.

(3) The number of states and transitions in the largest

thread interaction model (TIM) (column 4).

(4) The total number of modular test sequences

generated from the thread interaction models

(column 5).

Each Lotos specification model was compiled into

its individual ALTS components. The longest time for

this step occurred while translating the Lotos DME-3

model into its 9 component ALTSs, which took a total

of 7 minutes and 40 seconds on a 1.3GHx processor

with 32 GB of RAM.

Non-modular test sequences were generated using

two different methods. The first method reports the

number of unique, totally-ordered, non-modular

sequences generated from the ALTS models (column

2 of Table I). This is the number of sequences

generated when concurrent events are modeled by

enumerating their possible interleavings. We counted

the totally-ordered sequences using the DFS procedure

described in Section 4.1. For model DME-3, this

procedure was unable to finish. Thus, we report our

partial results as lower bounds on the number of

sequences.

The second method reports the number of non-

modular sequences generated by the reachability

testing algorithm in [10] when it was applied to the

DP, DME-3 and TDME models. This algorithm uses a

true-concurrency model to generate the unique

partially-ordered feasible sequences of the models

(column 3 of Table I). The number of partially-ordered

sequences is usually considerably smaller than the

number of totally-ordered sequences, and should also

be smaller than or competitive with the results

achieved by partial order reduction [27-28] and true-

concurrency [29-31] techniques. The non-modular,

partially-ordered sequences can be used to verify that

relation M F CP holds.

Modular test sequences were generated from

thread interaction models using the optimized DFS

procedure described in Section 4.2. Since every

transition in a thread interaction model involves the

thread under test, no two transitions in the same

modular test sequence are concurrent. This guarantees

that no two modular sequences differ only in the order

of concurrent events, the same as for partially-ordered

sequences. Generating modular tests from the thread

interaction models and executing the tests against the

implementations took only a few seconds.

Table I shows that the number of modular test

sequences was always significantly less than the

number of totally-ordered sequences generated from

the global models; and was significantly less than the

number of partially-ordered sequences generated from

three out of six of the global models. For TDME, DP,

and DME-3, this is reflected in a comparison of the

sizes of the global models and the thread interaction

 10

models, the latter being significantly smaller. The time

for generating thread interaction models took 24 to 30

seconds.

The number of modular test sequences generated

for model DP-P with P philosophers and P forks is

always 3P. By way of comparison, a complete DP

model has 2
P
 – 2 unique partially-ordered sequences

and considerably more totally-ordered sequences.

When P = 6, there are 18 modular test sequences, 62

partially-ordered non-modular sequences and over 200

billion totally-ordered, non-modular sequences.

For the TDME model, a total of 33 modular test

sequences were generated for the four implementation

units. The global TDME model has 30 partially-

ordered non-modular sequences and 67,894 totally-

ordered non-modular sequences. Thus, the number of

modular test sequences was lower than the number of

totally-ordered non-modular sequences but slightly

higher than the number of partially-ordered non-

modular sequences. In TDME, most of the interactions

are between the user processes and the controller

process, the result being that the number of modular

sequences of the controller process is the same as the

number of unique, partially-ordered, non-modular

sequences in the model. Since each of the three user

processes has a single modular test sequence, the total

number of modular tests sequences is 3 more than the

number of partially-ordered, non-modular sequences.

For the DME-3 model, a total of 315 modular test

sequences were generated for the nine implementation

units. The global DME-3 model has 4,032 partially-

ordered non-modular sequences and over 3.5 trillion

totally-ordered, non-modular sequences. We measured

the adequacy of the test-sequences generated for

DME-3 by using mutation testing. Each mutant for

DME-3 introduced a single change that was intended

to simulate a programming error. For DME-3, we

generated a batch of mutants, which were the mutants

identified by the Java-based mutation tool Java [32].

Some of the mutants created were functionally

equivalent to the original program. These mutants

were identified and deleted, which left 190 mutants.

We then applied modular testing to the nine threads in

DME-3. A mutant was considered to be killed if a

modular test sequence failed when it was executed

against the thread that contained the mutant. Each of

the 190 DME mutants was killed by the modular tests.

Finally, we discuss the threats to the validity of

our case study. The main threat to external validity is

the degree to which the subject programs are

representative of true practice. The three programs are

small in terms of lines of code, but they represent

complex, classical synchronization patterns and they

illustrate well that the reduction in test sequences

achieved by modular testing will vary from none at all

to a significant amount. We plan to conduct

experiments on more programs as an effort to reduce

this threat. The main threat to internal validity is the

possibility that errors were made in counting the test

sequences. The partially-ordered sequences were

counted using the reachability testing tool in [10]. The

totally-ordered sequences were counted using a depth-

first search algorithm, whose implementation was

carefully tested.

6. RELATED WORK

In this section, we briefly review existing work on

model-based testing of concurrent systems. We note

first that test sequences can also be generated by

analyzing an implementation’s structure [33-34] or its

runtime behavior [27-28][35]. Model-based and

implementation-based testing are complementary

approaches — certain faults may be detectable when

using an implementation-based approach but not when

using a model-based approach, and vice versa.

We also note that there has been work in the area

of compositional model checking. The basic idea is to

verify the behavior of each module in isolation and

infer global correctness properties of the whole system

from the results of verifying individual modules. This

typically requires the user to manually provide an

assumption about the interaction between the module

being checked and the rest of the system. Our modular

testing technique automatically builds a thread

interaction model using equivalence-based reductions

of the whole system. Also, our test generation

technique does not perform any model-checking.

Model checking is complementary to our work — the

abstract model can be verified using model checking

before the model is used to generate modular tests for

testing the implementation.

Most existing model-based testing techniques for

concurrent systems use a finite state machine (FSM)

model, such as an I/O automaton [36] or an I/O state

machine [37], or they use an LTS model. These

techniques have been developed mainly in the area of

testing protocol implementations. Typically, the

correctness of the implementation under test is defined

in terms of a conformance relation between the

implementation and its model. Conformance tests try

to detect differences that are not allowed by the

conformance relation.

In general, conformance testing techniques are

black-box techniques. Black-box techniques are

effective for testing a single thread, but they encounter

problems when they are applied to a set of concurrent

threads. One problem is that a set of non-deterministic

threads executes non-deterministically, which

produces inconclusive test results. Another problem is

that the composite FSM and LTS models are often

based on an interleaving model of concurrency, which

 11

creates the well-known state explosion problem in the

size of the models, making test generation impractical.

An alternative approach is to generate test sequences

on-the-fly [23], so that the only part of the state space

that is expanded is the part needed for the next test

step. This approach, however, may still be impractical

as the time needed to execute the implementation with

the potentially huge number of interleaving sequences

generated from the model may be prohibitive.

Along a different line, several techniques [31-32]

have been developed for generating non-modular test

sequences from true-concurrency models. In such

models, a non-modular test sequence is a partial order

of transitions in which concurrent transitions are left

unordered. In contrast, our modular testing technique

generates sequences for individual threads. As the case

study shows, the total number of modular sequences

may be significantly smaller than the total number of

non-modular sequences, even when an interleaving-

free approach is used to generate non-modular

sequences.

Several compositional conformance testing

techniques have been developed. Van der Bijl et al.

[38] showed how to perform compositional

conformance testing based on the ioco conformance

relation can be performed. They determined a

sufficient condition under which the ioco conformance

of the component implementations to their respective

LTS specifications leads automatically, without any

additional testing, to the ioco conformance of the

system implementation to the system specification.

Roughly speaking, the sufficient condition is that each

component’s LTS model is input enabled. An LTS is

input enabled if each state specifies a response for

every possible modeled input. It is also assumed that

for each implementation component all inputs are

enabled in all states.

Gotzhein and Khendek [39] presented a

compositional technique for testing protocol

implementations that can be modeled as the concurrent

composition of two input enabled, deterministic FSMs.

Each of the two implementation components is tested

separately using one of the traditional black box

methods mentioned above. When the two components

pass their local tests, test sequences are generated to

test for composition faults in the code used to connect

the input/output queues of the components. The test

sequences for the connection code are generated

without building the global FSM, and do not repeat the

local test sequences already performed on the two

components. The modular testing technique presented

in this paper can be applied to models with more than

two implementation components, and if the local tests

are passed no separate integration tests are required.

An important issue with modular testing is

whether the model of an individual thread specifies the

exact set of inputs that can be received in a particular

state. The modular techniques in [38] and [39], as

described above, require each individual thread model

to be input enabled, so that each state specifies a

response for every possible modeled input. One

problem with this approach is that some inputs may be

impossible in certain states, and it is not clear what

response should be specified for an impossible input.

Also, identifying impossible inputs manually is

difficult when the possible inputs depend on complex

interactions among multiple components. Another

problem occurs when some inputs are available, i.e.,

messages have been sent, and their availability is not

an error, but receiving and responding to these inputs

is not allowed in a certain state. It is not clear how to

specify in an input enabled model that certain

available inputs are not allowed to be received or

responded to. Our modular testing technique does not

require LTS models to be input enabled, nor does it

require implementation threads to have all inputs

enabled in all states. The LTS model of an individual

thread may contain states that allow inputs that are

impossible in a global context, or that disallow some

inputs that are available. Impossible inputs are not a

problem in our framework, since the process used to

create thread interaction models implicitly identifies

impossible inputs and prevents them from being

included in the modular test sequences that are

generated.

A work closely related to ours is [7], which

presents a technique for generating test sequences

from reduced ALTS models. A reduced state space for

an ALTS model M is generated using incremental

reachability analysis and a new ALTS reduction

algorithm. The new reduction algorithm uses the

transition annotations in the reduced ALTS to store

information about the paths in the unreduced state

space of M. When annotations are considered, each

test sequence generated from a reduced ALTS

corresponds to a complete path through the unreduced

state space of the model. The generated test sequences

can thus be used for non-modular deterministic

testing. Also presented in [7] are several modular

coverage criteria — test sequences generated from

reduced ALTSs can guarantee a level of coverage for

the global model without ever having to build the

global model. Satisfying these modular coverage

criteria, however, does not ensure the satisfaction of

the implementation relations defined in Section 3 of

this paper.

7. CONCLUSION

In this paper, we presented a modular approach to

testing concurrent systems that are modeled as

annotated labeled transition systems. The novelty of

 12

our modular approach is that the correctness of a

concurrent system is determined by testing the

individual implementation threads separately, without

testing the implementation as a whole. Correctness is

defined in terms of a modular implementation relation

that is expected to hold between the individual threads

in an implementation CP and their corresponding

ALTS(s) in model M. We defined a modular

implementation relation and showed how to verify this

relation using modular testing. If this modular relation

is verified, then this also verifies that the (non-

modular) sequences allowed by the complete model M

are allowed by CP. Empirical studies confirmed that

modular testing may require significantly fewer test

sequences than non-modular testing.

We plan to continue our work by developing a

modular testing technique that can be used to verify

relation M F CP and also relation CP F M. The

objective is to use modular testing to check whether M

and CP allow the same sequences.

REFERENCES

1. Carver, R., Tai, K.C.,: Replay and testing for

concurrent programs. IEEE Software, 66-74 (1991)

2. Tai, K.C., Carver, R.H.: Testing of distributed
programs. Chapter 33 of Handbook of Parallel and

Dist. Computing, ed. by A. Zoyama, McGraw-Hill,

955-978 (1996)

3. Tai, K.C., Carver, R.H., Obaid, E.: Debugging
concurrent Ada programs by deterministic execution.

IEEE Trans. Software Engineering, 17(1):45-63 (1991)

4. Carver, R., Tai, K.C.: Modern Multithreading: Wiley.

http://www.cs.gmu.edu/~rcarver/
ModernMultithreading/ (2006)

5. Ricart, G., Agrawala, A.K.: An optimal algorithm for

mutual exclusion in computer networks. Comm. of the

ACM, 24, 1 (January), 9-17 (1981)

6. Vissers, C, Scollo, G., Van Sinderen, M.: Architecture

and specification style in formal descriptions of
distributed systems. (Invited) In: Proceedings Eighth

International Symposium on Protocol Specification,

Testing, and Verification, 189-204 (1988)
7. Koppol, P.V., Carver, R.H., Tai, K.C.: Incremental

Integration Testing of concurrent Programs. IEEE

Transactions on Software Engi. Vol. 28, No. 6 (2002)

8. Milner, R., Communication and Concurrency,

Prentice-Hall (1989)
9. Tai, K.C.: On testing concurrent programs. Proc.

COMPSAC 85, 310-317 (1985)

10. Lei, Y., Carver, R.H.: Reachability testing of

concurrent programs. IEEE Transactions on Software
Engineering, Volume 32, No. 6, 382-403 (2006)

11. Brinksma, E.: A Theory for the Derivation of Tests. in:

S. Aggarwal, K. Sabnani, eds., Protocol Specification,

Testing and Verification, VIII, 63-74. (1988)

12. Chung, I.S., Kim, B.M., Kim, H.S.: A new approach to

deterministic execution testing for concurrent

programs. IEICE Trans. Inf. Syst. Vol. E84-D, No.12,

1756-1766 (2001)
13. Chen, J., Carver, R.: Selecting and Mapping Test

Sequences from Formal Specifications of Concurrent

Programs. Proc. of the High-Assurance Systems Eng.

Workshop, 112-119 (1996)
14. Turner, K.J.: Using Formal Description Techniques:

An Introduction to Estelle, Lotos, and SDL. John

Wiley & Sons, Inc., New York, N.Y (1993)

15. Lamport, L.: Time, Clocks, and the Ordering of Events
in a Dist. System. Comm. ACM, 558-565 (1978)

16. Cheung, S.C., Kramer, J.: Enhancing Compositional

Reachability Analysis with Context Constraints. Proc.

1st ACM SIGSOFT Symp. on Foundations of Software
Eng., 115-125 (1993)

17. Cheung, S.C., Kramer, J.: Compositional Reachability

Analysis of Finite-State Distributed Systems with

User-Specified Constraints. Proc. 3nd ACM SIGSOFT.

Symp. on Foundations of Software Eng.,141-150

(1995)

18. Cleaveland, R., Parrow, J., Steffen, B.: The

Concurrency Workbench: A Semantics Tool for the
Verification of Concurrent Systems. ACM Tran.

Programming Languages and Systems, Vol. 15, no. 1,

36-72 (1993)

19. Ammann, P., Offutt, J.: Introduction to Software
Testing. Cambridge University Press (2008)

20. Information Technology, Open Systems

Interconnection, Conformance Testing Methodology

and Framework. International Standard IS-9646. ISO,
Geneve (1991)

21. Feijs, L.M.G., Goga, N., Mauw, S., Tretmans, J.: Test

Selection, Trace Distance and Heuristics. Proc. IFIP

14th Int. Conference on Testing Communicating
Systems - TestCom, 267-282 (2002)

22. Tretmans, J., Brinksma, E.: TorX: Automated Model-

Based Testing. Proc. First European Conference on

Model-Driven Software Engineering, 31-43 (2003)

23. Tretmans, J.: Testing Concurrent Systems: A formal

approach. Lecture Notes in Computer Science; Vol.

1664, Proc. of the 10th International Conference on

Concurrency Theory, 46 – 65 (1999)
24. Suzuki, I., Kasami, T.: A distributed mutual exclusion

algorithm. ACM Transactions on Computer Systems,

3(4): 344-349 (1985)

25. Fernandez, J., Garavel, H., Kerbrat, A., Mateescu, R.,
Mounier, L., Sighireanu, M.: CADP: A Protocol

Validation and Verification Toolbox. Proc. 8th Conf.

on Computer-Aided Verification, 437-440 (1996)

26. Lang, F.: Compositional Verification using SVL
Scripts. LNCS, Vol. 2280/2002, 127-136 (2002)

27. Godefroid, P.: Model Checking for Programming

Languages using VeriSoft. Proc. 24th ACM Symp. on

Principles of Prog. Languages, 174-186 (1997)
28. Flanagan C., Godefroid, P.: Dynamic partial order

reduction for model checking software, Proc. 32nd

Symposium on Principles of Programming Languages
(POPL) (2005)

29. Jard, C.: Principles of Distributed Test Synthesis based

on True-concurrency Models Source. Proc. IFIP 14th

International Conf. on Testing Communicating
Systems XIV, 301-316 (2002)

http://cm.bell-labs.com/who/god/public_psfiles/popl97.ps
http://cm.bell-labs.com/who/god/public_psfiles/popl97.ps

 13

30. Ulrich, A., Chanson, S.: An approach to testing

distributed software systems. Proc. Fifteenth IFIP
WG6.1 Int. Symposium on Protocol Specification,

Testing and Verification XV, 121 – 136 (1995)

31. Ulrich, A., König, H.: Specification-based Testing of

Concurrent Systems. Formal Description Techniques
and Protocol Specification, Testing and Verification,

17. T. Mizuno, N. Shiratori, T. Higashino & A.

Togashi (Eds.) (1997)

32. Y.-S. Ma, J. Offutt and Y.-R. Kwon. Java: An
Automated Class Mutation System, Journal of Soft.

Testing, Verif. and Reliability, 15(2):97-133,
http://ise.gmu.edu/~ofut/mujava/ (2005)

33. Yang, R.D., Chung, C.G.: A Path Analysis Approach

to Concurrent Program Testing. Information and

Software Technology, 34(1):43-56 (1992)
34. Yang, C., Souter, A.L., Pollock, L.L.: All-du-path

Coverage for Parallel Programs. International

Symposium on Software Testing and Analysis, 153-

162 (1998)
35. Kim, M.C., Chanson, S.T., Kang, S.W., Shin, J.W.: An

approach for testing asynchronous communicating

systems. 9th Int’l Workshop on Testing of

Communicating Systems (1996)
36. Lynch N.A., Tuttle, M.R.: An introduction to

Input/Output Automata. CWI Quarterly, 2(3):219–246

(1989)

37. Phalippou, M.; Executable testers. In Omar Ra.q,

editor, Proceedings of the 6th International Workshop

on Protocol Test Systems (IWPTS 1993), volume C-19

of IFIP Transactions, 35–50 (1994)
38. Van Der Bijl, M., Rensink, A., Tretmans J.:

Compositional Testing with IOCO. FATES 2003,

LNCS 2931, 86-100 (2004)

39. Gotzhein, R., Khendek, F.: Compositional Testing of
Communication Systems. TestCom 2006, LNCS 3964,

227-244 (2006)

Appendix: Proof of Theorem 1

Theorem 1: Let s be a feasible sequence of M and sLi

be the projection of s onto ALTS Li, 1 i n. Then

constrained local sequence sLi is feasible for thread Pi,

1 i n, iff sequence s is feasible for CP.

Proof: Recall that when the feasibility of local

sequence sLi for thread Pi is determined,

synchronizations between Pi and the other threads in

CP do not actually occur. Instead, a conforming test

environment simulates Pi’s environment in M by

supplying the send and receive events that match the

events executed by Pi in local sequence sLi. Recall also

that the local sequences of ALTS Li are not

determined by analyzing Li and ignoring the other

ALTSs in M. To the contrary, the local sequences of

Li are projections of sequences that are definitely

feasible for M. Thus, the projected local sequences of

Li also capture the constraints that are imposed on Li’s

behavior by the other ALTSs in M.

The above discussion makes the if-part of

Theorem 1 obvious – if the threads in CP are able to

execute feasible sequence s of M, which includes all

the events in all the local sequences of s and the

synchronizations between threads as specified by the

events of s, then thread Pi is also able to exercise the

events in local sequence sLi when a conforming test

environment supplies any matching synchronizations

that are needed by these local events according to the

synchronizations in s.

For the only-if part, the question is whether the

specific thread synchronizations in sequence s must be

feasible if all the local sequences of s are feasible.

Suppose e is one of the "first" infeasible events in

sequence s. (An event e is one of the first infeasible

events in s if no event in s that happened before e is

infeasible. Intuitively, an event e1 happened before

another event e2 if e1 could potentially affect e2 [15]).

There are three cases in which e can be infeasible:

Case 1: Event e is an asynchronous send event

executed by thread P: Since e is a non-blocking send

event, the only way for e to be infeasible is for thread

P to be unable to execute e, but this contradicts the

assumption that local sequence sP is feasible.

Case 2: Event e is an asynchronous receive event

executed by thread P, where C is the thread executing

the asynchronous send e’ synchronized with e. In

order for e to be infeasible, at least one of the

following must be true:

(a) P is unable to execute receive event e, but this

contradicts the assumption that sP is feasible.

(b) P can execute receive event e, and C can execute

send event e’, but the send partner e’ for e cannot

synchronize with e. But this contradicts the

assumption that s is feasible for M, as e’ and e must be

synchronizable (i.e., have matching ports and labels)

in order for s to be feasible in M.

Case 3: Event e is an synchronous-synchronization

event, where C is the thread executing the

synchronous send es for e and U is the thread

executing the synchronous receive er for e. In order for

e to be infeasible, at least one of the following must be

true:

(a) Thread C is unable to execute es because thread C

cannot execute a send event. But this contradicts the

assumption that local sequence sC is feasible.

(b) Thread U is unable to execute er because thread U

cannot execute a receive event. But this contradicts the

assumption that local sequence sU is feasible.

(c) Thread C can execute send event es and thread U

can execute receive event er, but es and er cannot

synchronize with each other. But this contradicts the

assumption that s is feasible for M, as es and er must

be synchronizable (i.e., have matching ports and

labels) in order for s to be feasible in M.

http://www.ise.gmu.edu/~offutt/rsrch/abstracts/mujava.html
http://www.ise.gmu.edu/~offutt/rsrch/abstracts/mujava.html
http://ise.gmu.edu/~ofut/mujava/

 14

Global model

(states/trans)

#Totally-ordered

seqs.

#Partially-

ordered seqs.

Largest TIM

(states/trans.)

#Modular

seqs.

TDME 192 / 348 67,894 30 68 / 90 33

DP-3 76 / 126 238 6 8 / 8 9

DP-4 322 / 712 94,526 14 8 / 8 12

DP-5 1364 / 3770 108,549,484 30 8 / 8 15

DP-6 5778 / 19164 217,113,360,382 62 8 / 8 18

DME-3 367,733 /

1,403,821

> 3.5 trillion 4,032 71 / 117 315

Table I. Results of modular test generation.

