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Abstract

Advancements in robotic navigation, object search and
exploration rest to a large extent on robust, efficient and
more advanced semantic understanding of the surround-
ing environment. Since the choice of most relevant se-
mantic information depends on the task, it is desirable
to develop approaches which can be adopted for differ-
ent tasks at hand and which separate the aspects re-
lated to surroundings from object entities. In the pro-
posed work we present an efficient approach for detect-
ing generic objects in urban environments from videos
acquired by a moving vehicle by means of semantic seg-
mentation. Compared to traditional approaches for se-
mantic labeling, we strive to detect variety of objects,
while avoiding the need for large amounts of training
data required for recognizing individual object categories
and visual variability within and across the categories.
In the proposed approach we exploit the features pro-
viding evidence about widely available non-object cate-
gories (such as sky, road, buildings) and use informative
features which are indicative of the presence of object
boundaries to gather the evidence about objects. We
formulate the object/non-object semantic segmentation
problem in the Conditional Random Field Framework,
where the structure of the graph is induced by the min-
imum spanning tree computed over 3D reconstruction,
yielding an efficient algorithm for an exact inference. We
carry out extensive experiments on videos of urban en-
vironments acquired by a moving vehicle and compare
our approach to existing alternatives.

1 Introduction

In recent years the research trends in robotic mapping,
navigation and localization focused on developing meth-

ods for better understanding of the surrounding environ-
ment in order to facilitate more reliable life long navi-
gation as well as endowing the models with additional
semantic information. Towards this end numerous se-
mantic mapping approaches have been proposed. They
vary in the number and types of semantic classes they
consider, sensing modality, features and inference algo-
rithms. The final semantic labels are associated either
with regions of an image or partition of 3D point clouds.

While the state of the art of the semantic parsing ap-
proaches in outdoors settings achieve relatively high av-
erage accuracy of 85-90% on some datasets [20], it is
largely due to the fact that majority of 2D or 3D regions
belong to non-object semantic categories often referred
to as background or ”stuff’”. These categories such as
buildings, roads, sky often exhibit lower intra class vari-
ability, have strong location priors and ample of training
data available. With more detailed scrutiny, the existing
approaches consider either very small number of object
categories (e.g. cars, trees), exhibit poorer performance
on existing object categories (such as cars, pedestrians,
bicyclist, traffic signs) [13] or used specialized object de-
tectors to increase the performance [I0]. Difficulty of de-
tection of generic objects in street scene is partly due to
the large number of possible categories exhibiting larger
intra class variability. While in computer vision the se-
mantic labeling is often the final goal, in the robotics set-
ting the choice of the relevant semantic information de-
pends on the task and skills of the robot. Hence in order
to develop reusable and scalable systems, it is desirable
to develop approaches which can be adopted for different
tasks at hand and which separate the aspects related to
non-objects and object entities, instead of committing to
a fixed set of object labels and associated detectors.

In the proposed work instead of constraining the num-
ber of possible object classes, we consider objects as sin-



gle generic class and propose to segment them regard-
less of their category. This is a very challenging prob-
lem given the high intra-class and inter-class variabil-
ity between objects. To address this issue we propose
to exploit 3D information and depth ordering cues as
the evidence about presence and absence of generic ob-
jects. The additional goal of our approach is to propose
a computational framework which is efficient, works in
an on-line setting and can be easily extended to han-
dle additional semantic information. The motivation for
our choices is aligned with the need to design increas-
ingly complex robotic systems which can operate over
long-periods of time and gather additional information
about the environment.

Contribution The main contribution of the proposed
work is the development of novel representation, fea-
tures and associated efficient inference algorithm for the
problem of semantic labeling of outdoors urban environ-
ments into object and non-object categories. Similarly to
the existing approaches we formulate the semantic label-
ing problem in Conditional Random Field (CRF) frame-
work, where the dependencies between random variables
are represented by a graph, induced by different par-
titions of an image or a 3D map. The distinguishing
features of our approach are: a) the use of a tree graph
structure in the CRF setting which is induced by the 3D
reconstruction; b) the use of simple and efficient features
and geometric cues, providing evidence about disconti-
nuities and depth ordering; ¢) an explicit model of tem-
poral coherency enabling on-line inference; d) an exact
and efficient inference amenable for real-time implemen-
tation; e) a flexible model structure easily adoptable to
a single or multi-frame settings, without a need for extra
training.

The semantic output of our method produces detec-
tions and associated confidences about the presence
of isolated generic objects and semantic labels of non-
object categories. The output can be used effectively for
priming specific object detectors and as a starting point
of additional reasoning about various attributes (e.g.
static/dynamic, movable, undergoing seasonal change
etc).

In the next section, we provide an overview of the re-
lated work. In Section [Bl we describe the details of our
approach. Section [f] describes the experiments on street
scene sequences and compares our approach with the
state of the art methods. Finally, in Section [f] and [6] we
present discussion and conclusions of the presented work
and discuss possible future directions.

2 Related Work

The presented work on semantic segmentation of im-
ages and 3D point clouds into object and non-object

categories is motivated by several previous approaches
developed both in Computer Vision and Robotics com-
munities. The approaches developed in the context of
robotics applications rely mostly on 3D measurements
from laser range finder or dense depth reconstruction and
have been also explored in the context of analysis of ur-
ban scenes acquired by a moving vehicle. In these meth-
ods the graph structure is typically induced by a parti-
tioning of 3D point clouds. Douillard et al. [6] consider
2D semantic mapping over street laser/image data pro-
viding computationally intensive solution on a graph in-
duced by Delaunay triangulation. Posner et al. [14] also
consider urban scenes and use both laser and image mea-
surements and provide efficient solution considering only
two object classes, foliage and vehicles. Dense stereo re-
construction was used on CamVid urban sequences by
Zhang et al. [21] further improving the performance, but
considering seven specific object classes. In indoors set-
tings several methods have been developed exploiting the
RGB-D data. Koppula et al. [9] highlighted the need for
efficiency of the final inference and used up to 17 object
classes, but were able to exploit stronger appearance and
contextual cues due to the scale and different nature of
the environment.

In computer vision community the problem of simulta-
neous segmentation and categorization of image regions
was typically considered in a single view setting. The ex-
isting approaches differ in the number of semantic labels
considered, the datasets used for evaluation, underlying
representations and features used to formulate the final
inference problem. Tighe and Lazebnik [17], and Eigen
and Fergus [7] treated the representations of both object
and no-object categories in the same manner and used
both the SIFT Flow dataset with 33 semantic labels and
Label Me with 253 labels to evaluate the performance
of their approaches. The typical average global perfor-
mance on all classes is about 80%, with 90% of pixels
belonging to commonly occurring background categories,
such as road, sky, building. The performance on object
categories is notably lower and depends on the number
of training examples in the dataset. The improvement in
the performance on object categories has been shown by
Ladicky et al. [I0], who used video and additional fea-
tures obtained from confidence maps of specific object
detectors. The experiments were performed on urban
datasets, with 6 considered object categories.

In addition to single view settings and the use of
image appearance cues, several approaches used either
3D information computed from multiple frames using
Structure-from-Motion techniques [I3], 20] or explicitly
modeled temporal relationships between the frames in
the inference problem [I5] 20]. These strategies further
improved the labeling performance [20], while still con-
sidering a small number of object categories, with ob-
jects being trees, cars, persons and recycle bins. In our
work, instead of pursuing the object detection in a fully
supervised setting, we would like to exploit both appear-



ance and geometric properties of objects and how they
appear in the environment. Alexe et al. [2] propose an
approach for generic object detection motivated by a no-
tion of saliency; objects are salient regions surrounded
by background and delimited from it by strong contour
edges. This approach only exploits the appearance cues,
is applicable to a single view setting and more suitable in
the context of image based retrieval applications, where
images of scenes are well composed, containing little clut-
ter. Closer to our work is the approach of Ayvaci and
Soatto [3], which explicitly reasons about evidence of
occlusions boundaries extracted from optical flow and
relative depth ordering cues.

3 Our proposal

We consider a special case of semantic labeling of urban
environments with a single generic object class and few
non-object categories. We will consider object to be: ”.
a (compact or simply-connected) subset of the domain
of an image that back-projects onto a layout of surfaces
that is partially surrounded by the medium” as defined
by Ayvaci and Soatto [3]. We start from an image and
its associated 3D point cloud and formulate the labeling
in the framework of Conditional Random Fields with a
tree graph structure encoding the pairwise relationships.
This selection is based on desirable properties of CRFs,
as explained below, and the coherency and efficiency is
provided by the tree graph structure.

3.1 Framework:
Fields

Conditional Random

Conditional random fields are probabilistic undirected
graphical models first developed by Lafferty et al. [I1]
for labelling sequence data. CRFs are a case of Markov
Random Fields, and thus satisfy the Markov properties,
where there is no need to model the distribution over the
observations [§].

Instead of relying on Bayes’ rule to estimate the distri-
bution over hidden states x from observations z, CRFs
directly model p(x|z), the conditional distribution over
the hidden variables given observations. Due to this
structure, CRFs can handle arbitrary dependencies be-
tween the observations. This makes them substantially
flexible when using complex and overlapped attributes.
These in our case are different observations extracted
from the overlapped regions.

The nodes in a CRF are denoted x = (x1,Xg, +* ,Xp),
and the observations are denoted z. In our frame-
work the hidden states correspond to the m pos-
sible classes, the generic object class and the non-
object classes: building, ground and sky, ie. x; =
{object, building, ground, sky}.

A CRF factorizes the conditional distribution into a
product of potentials. We consider only the potentials for

(a) Dense graph on Im-
age.

(b) MST over 3D.

Figure 1: Graph Structures. On the left the most com-
mon graph structure used in the computer vision com-
munity. On the right the graph structure selected by us,
a minimum spanning tree over 3D.

nodes ¢(x,z) (data-term) and edges ¥ (x,z) (pairwise-
term). This choice is commonly referred as pairwise
CRFs. The potentials are functions that map variable
configurations to non-negative numbers capturing the
agreement among the involved variables: the larger a
potential value, the more likely the configuration. Using
the data and pairwise potentials, the conditional distri-
bution over hidden states is written as:

p(x|z) = H (i, 2

where Z(z) is the normalizing partition function, and
(N, E) are the set of nodes and edges on the graph. The
computation of this function can be exponential in the
size of x. Hence, exact inference is possible for a limited
class of CRF models only, e.g. in tree-structured graphs.

Potentials are described by log-linear combinations of
feature functions, f and g, i.e., the conditional distribu-
tion in Eq. [T can be rewritten as:

2) [ ¢tix2) (1)

i,jEE

p(x|z) = Z eXp w1 Z f(xi,2) + wa Z g(xi ;.2
iEN i,jEE

(2)
where w is a weight vector, which represents the impor-
tance of each term for correctly identifying the hidden
states. Weights are learned from labelled training data.
With this formulation we can obtain either the
marginal distribution over the class of each variable x;
by solving Eq. [2] or the most likely classification of all
the hidden variables x. The latter can be formulated as
the mazimum a posteriori (MAP) problem, seeking the

assignment of x for which p(x|z) is maximal.

3.2 Minimum Spanning Tree over 3D
distances

Instead of computing the graph at the pixel level, we
over segment the image into superpixels which are more



Default Observation Dim Comments
LABcolor 3
RGB 3
Vert. px loc. 1
llds | 1 Depth
hi 1 Height
mean|d; —djen| | 1 | ifd; < ”TIHZjEN(dj)
0 std||d; — djen|| 1| ifdi <y e (ds)
-1 mean(RepErr) 1
-1 std(RepErr) 1
0 |1 —mean(||i;@in|])| 1 [Neighbouring Planarity
0 dist_to_plane 1 Superpixel Planarity
0 77| 1 [Superpixel Orientation

Table 1: Local observations

suitable to capture geometric properties of a region. An
usual choice when using superpixels is a dense graph
structure, see Fig. a), which connects unrelated
classes, e.g. the top superpixel belonging to a newspa-
per box has at least 3 edges to the building for the dense
graph. We define the graph structure for the CRF as
a minimum spanning tree over the euclidean distances
between 3D superpixel’s centroids in a scene. By defi-
nition, the minimum spanning tree connects points that
are close in the measurement space, highlighting intrin-
sic localities in the scene, see Fig. [T{b). Given that our
graph structure is a tree we use the belief propagation
algorithm [8] to infer the probability class of each node.

3.3 Method

Our approach starts by taking an image and its associ-
ated 3D reconstruction. Followed by a superpixel over-
segmentation. Each one of the superpixels with at least
three 3D points will be a node in the graphical model.
The centroid of the 3D point cloud inside of the super-
pixel is used to compute the minimum spanning tree,
defining the edges for the graphical model. The next
step is to compute the data and the pairwise features.

3.4 Feature description

With the graph structure defined for our CRF model,
we have to define feature functions f(x,z) and g(x, z) in
Eq. 2] We compute the feature for the data-term as:

f(xi, z) = —log Pi(x;|z) (3)

where the local prior P;(x;|z) is the output of a Log-
itboost classification from a set of observations z. The
weak classifiers used in the boosting are weighted regres-
sion trees [I8]. The observations z are computed from
every superpixel i as following:

e The mean of the Lab-color space.

e The mean of the RGB-color space.

e The vertical pixel coordinate for the superpixel cen-
troid.

e The depth (d;) and height (h;) for the superpixel’s
centroid [

e The mean and standard deviation of the reprojec-
tion errors for the 3D point cloudE|

e The mean and standard deviation of the absolute
difference between the depth d; and the neighbour-
hood’s depths: ||d; — djen||. These are only com-
puted if d; < m >_jen(d;), with this condition we
encode the in front of property.

e The superpixel planarity computed as the mean of
the distance of all 3D points to a fitted plane by
RANSAC.

e The neighbourhood planarity computed as one mi-
nus the mean of the dot product between the normal
to the plane against to the neighbourhood normalsﬂ

e The superpixel orientation, taken as the projection
of the superpixel’s normal on the horizontal planeﬁ

The superpixel neighbourhood N refers to all the su-
perpixels in contact with superpixel 7 in the image. In
Table [[l we also show the default values and the dimen-
sionality of these observations.

The pairwise feature is computed for every edge in the
graph as:

1—exp(—|lci — ¢jlla) —
g(xi,x;,2) = o (=l = jll2)
exp (—|lei —¢jll2)  —

li=1;
T
I #1;
where ||¢; — ¢j||2 is the L2-Norm of the difference be-
tween the mean colors of two superpixels in the LAB-
color space and [ is the class label.

3.5 Multi-view Capability

To enable inference across multiple frames we use the
relative transformation between the involved frames ob-
tained using visual odometry. We transform all the 3D
point clouds to a common reference and compute the
minimum spanning tree over them. The data term fea-
tures are computed in every single frame in the same
way than before. Inference is run on each frame, while
the graph connections are induced by the aligned 3D
structure.

ISimilar to the distance to the vehicle trajectory and height
used in [4].

2Similar to the backprojection residual used by Brostow et al.
.

3These two features were taken from the proposal of Zhang
et al. [21].

4Similar to Xiao and Quan [20].



4 Experiments

For our experiments we use a set of images from the
Google’s Street View. We have available a total of
320 manually labelled non-sequential images as ground
truth. We take 224 (70%) of them for Logitboost and
parameter learning, and the remaining 96 images for
testing and quantitative comparison against the state
of art methods in single view semantic segmentation.
Another qualitative evaluation over a video sequence is
performed on a different part of the dataset, without a
ground truth.

We consider the non-object semantic classes (building,
ground and sky) and a generic object class, resulting in
four class problem. The input images are cropped and
rescaled to 320x320 in resolution. Originally, the manual
labeling contained the classes: building, vehicle, ground,
tree, sky and void. In order to use the labeling for our
learning stage we have merged the classes vehicle, tree
and void under the same object class. Although the
original void class contains a large number of pixels at
the boundaries and illumination artifacts, we decide to
include it into the object class because also it contains
people, poles, trash bins and more important objects.

In this experiment we need to obtain the 3D recon-
struction. We first compute the visual odometry using
three consecutive omnidirectional images and computing
the optical flow [5] we recover a 3D point cloud. The pose
of the vehicle is obtained using RANSAC-based epipo-
lar geometry estimation formulated on their 3D rays, i.e.
p'T"Ep = 0, yielding the essential matrix E [12]. Scale
of the translation is estimated by a linear closed form
1-point algorithm on corresponding 3D points triangu-
lated by direct linear algorithm from the previous image
pair and the actual one. The estimate in this way offers
poses accurate enough even without bundle adjustment
unless the baseline is too small as also observed by Tardif
et al. [I6]. We do not use any additional optimization
technique to improve the 3D reconstruction. It contains
inaccuracies and errors common to standard methods.

After computing the 3D information for the train-
ing set of images, the next step is to train the Logit-
boost classifier. We implemented a multi-class version of
the binary Logitboost classifier released by Tosato et al.
[18]El The observation are computed for every superpixel
obtained by SLIC implementation from the VLFeat li-
brary of Vedaldi and Fulkerson [I9]. Superpixels with no
more than three reconstructed 3D points are discarded
from the graph structure. For labeling purposes we as-
sign the class sky to them.

The minimum weight spanning tree (MST) is com-
puted from 3D centroids of all the superpixels. Now,
using the MST graph, the output of the Logitboost clas-
sifier in Eq. 3] and the pairwise potential, Eq. [, we learn
the parameters for the CRF setting. For the learning,

5Av. from https://sites.google.com/site/diegotosato/
academic-activities/code

true positive rate

0.2} 1

0 0.2 0.4 0.6 0.8 1
false positive rate

Figure 2: ROC curve for the generic object class.

inference and decoding with CRFs we use the Matlab
code for undirected graphical models (UGM) of Mark
Schmidt [

Unless otherwise specified, the quantities and figures
in the next sections are computed only over the testing
set of images. The inference results give us the distribu-
tion and the assignments over superpixels, we transfer
those to every pixel in the superpixel to compute the
pixel-wise accuracy of semantic labeling.

4.1 Generic Object Mapping

To determine the probability of objects in a scene, as de-
fined in Section 3| we compute the marginal distribution
p in Eq. 2] of each superpixel belonging to one of the four
defined classes. We infer the marginals for every node in
the graph using the belief propagation method. In Fig.
we can see a example of the probability map obtained by
our system in a single view setting. We can compute the
ROC curve for the generic object detection parametrized
by the acceptance threshold th over the probability to be
object. The conditions to label a node i as object are ei-
ther if p;(object) > th or p;(object) = max(p;), we vary
th from 0 to 0.5. In Fig. [2l we show the ROC curve.

In Fig. [ we show the probability map for an exper-
iment on 100 consecutive frames, where our method is
able to detect the generic object class despite of its high
variability.

4.2 MAP Assignment

To obtain the most likely label assignment for the super-
pixels we solve the MAP problem. This problem does
not require any threshold selection and all the parame-
ters are computed /learned from the data. Table [2[shows
the confusion matrices normalized by rows (recall on the
diagonal) and by columns (precision on the diagonal).
Our approach is able to reach simultaneously high re-
call and precision for the non-object classes while obtain

6 Available from http://www.di.ens.fr/~mschmidt/Software/
UGM.html
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Building Ground Object  Sky

Figure 3: Original image and ground truth labeling on the left. In the middle the probability map for the generic
object class, and on the right the probability map for the three remaining classes. Note the common errors in the
ground truth, fourth row, where objects are labeled as ground.

a recall of 41% at 67% precision for the generic object
class. Which means a Fy 5 of 0.57, compared for exam-
ple with a Fjy 5 of 0.52 and 0.61 for foliage and vehicle
classes reported by Posner et al. [14] with a labeling sys-
tem using spatio-temporal context and spending 4s per
frame.

Now that we compute the MAP assignment we can
make some quantitative comparisons against state of the
art methods. The work of Xiao and Quan [20] was the
first evaluating a semantic segmentation over the Google
Street View dataset. They used a different and bigger set
of labelled images (3877 vs 224) for training and (320 vs
96) testing their system. They classified in seven classes:
building, ground, sky, person, vehicle, tree and recycle

bin. Despite these different experimental settings, we
still can compare some numbers. The global pixel accu-
racy just for the data-term reported by them was 81.2%
and ours is 86.46%; the model in single view (without
multi-view consistency) was 83.3% and ours is 87.56%.
Their system takes 25.7 seconds per frame on average to
perform the segmentation.

In Table[3]we show the pixel-wise recall accuracy along
with the average and global accuracy for our approach
(CRF-MST and Logitboost+SLIC). We also compare
our approach with other classifiers used to compute the
local prior (data term) in Eq. The classifiers used
were: k-nearest neighbours (k-NN) as used by Tighe and
Lazebnik [I7] and random decision forest (RDF). All the
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Figure 4: Results over a sequence of 100 frames. The 3D reconstruction (top) and the probability maps for the
classes generic objects (red scale), building (orange scale) and ground (gray scale). The MAP assignment is also
shown (bottom), where our system found cars, newspaper and trash bins, pedestrians, and trees as part of the object

class, shown in the darkest color (red for color versions).

Recall Building Ground Objects  Sky
Building 91.62 1.04 1.22  6.12
Ground 6.32 88.67 4.63 0.38
Objects 3775 1598 40.76 5.52
Sky 4.02 0.00 0.17 95.81

Precision |Building Ground Objects  Sky

Building 93.82 4.03 1794 5.86
Ground 1.44 87.47 15.13 0.00
Objects 4.30 7.90 66.66 6.40
Sky 0.45 0.00 0.27 87.74

Table 2: Confusion matrix for the pixel-wise accuracy,
in percentage. Recall and precision values appear on the
correspondent diagonals.

classifiers used the same set of observations. In general,
Logitboost classifier shows the best general performance
followed by RDF and k-NN.We also compare against the
full method proposed by Micusik and Koseck4 [13]. That
method uses appearance and geometric cues over water-
shed superpixel segmentation and takes into account the
co-occurrence of superpixels. We train and test their

=10] ()
= | 2| £ o | 3
E = S
Q| 5|28 | & | = |3
H
Cél LB+SLIC 91.62 | 88.67 | 40.76 |95.81|79.21 | 87.56
e
& K-NN4SLIC | 90.38 |92.5234.98 | 95.00 | 78.22 | 86.79
RDF+SLIC  |92.06| 89.84 | 36.99 | 95.40 | 78.57 |87.73

LB+SLIC (Eq.[3)| 91.64[84.67 | 35.04 | 94.92 | 76.57 | 86.46
Micusik. [L3] 75.70 | 90.20 |42.48 93.37 | 75.44 | 76.72

Table 3: Semantic segmentation for single view in pixel-
wise percentage recall accuracy.

method over the street view images of the current work.
Last row of Table [3] shows the results, we can observe
that our approach is competitive or better for all the
classes, with better average and global accuracy. Their
system takes 2.9 seconds per frame on average to perform
the segmentation.

A qualitative result of the MAP assignment with our
proposal on a trajectory of 100 frames is shown in Fig.
bottom.



‘Building‘Ground‘Objects‘ Sky ‘Average ‘Global

SingleView| 91.62 | 88.67 | 40.76 |95.81| 79.21 |87.56
2 frames 91.49 | 89.05 | 41.22 |95.52| 79.32 |87.54
3 frames 91.47 | 88.83 | 41.69 |95.42| 79.35 |87.53
4 frames 91.50 | 89.00 | 41.73 |95.73| 79.49 |87.60

Table 4: Semantic segmentation for multi-view in pixel-
wise percentage recall accuracy for our proposal, CRF-
MST with Logitboost and SLIC superpixels.
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Figure 5: Computational timing performance for the se-
quence of 100 frames, see Fig.

Finally, as described in Section we can obtain
the semantic mapping using multiple consecutive frames.
We explore the effect of number of consecutive frames
over the recall accuracy, see Table [ The number of
frames k 4+ 1 means taking the scenes from k frames un-
til the current frame. Please note we do not have the
ground truth labeling for all the frames in each sequence.
The parameter learning for CRF's is done in a single view
setting and evaluation is done only on the nodes (super-
pixels) with ground truth. We obtain a marginal im-
provement in the average and global accuracy increasing
the number of frames considered in the graph, the major
improvement was in the generic object class.

4.3 Timing

We compute the timing on the sequence of Fig. [} our
proposal is implemented in Matlab. The computational
cost is detailed in Fig. [5] excluding the superpixel over-
segmentation and 3D reconstruction. The on-line system
runs at 1 fps in a single-thread of a 3.4 GHz IntelCore i7-
2600 CPU M350 and 7.8GB of RAM. For the whole sys-
tem, the average and the maximum times are 488ms and
660ms, respectively. The average cost to obtain the SLIC
superpixels is 820ms, although a C++ implementation
would take half of that time as reported by [I]. Solving

the MAP problem has the same computational cost than
obtaining the marginals with the BP algorithm.

5 Discussion

Our method is agnostic to the 3D sensor or reconstruc-
tion method used and better accuracy of 3D reconstruc-
tion and superpixel segmentation can further improve
semantic labeling results. The presented method shows
to be robust to errors in the ground truth labeling, where
objects are frequently labeled as one of the background
classes, see e.g. Fig. ] fourth row.

The quantitative comparisons of the MAP problem so-
lution with the state of the art of semantic segmentation
on urban environments, show that our method improves
the performance while still attains the real-time execu-
tion. We have shown that our graph structure induced
by the MST over 3D does not sacrifice the labeling ac-
curacy, and keeps the intra-class components coherently
connected. Furthermore, by this selection we gain an
exact and efficient inference. The computational cost is
constant with respect to the length of the trajectory. The
computational complexity for the inference is O(nm?),
where n is the number of nodes in the graph, and m the
number of classes. In the multi-view setting the size of
the graph grows with the number of views used but not
with the vehicle trajectory. Given that we are interested
in the generic object class we can keep m small.

In Fig. [6] we show the result from our method and
from Xiao and Quan [20] who use four specific object
classes. We can see the disadvantage of multiple specific
objects approaches, where the model was not trained for
the newspaper box class or trash bin class the solution
confuses them with the recycle bin, or assigns an unre-
lated class (building/ground). We are able to provide a
high probability for these object occurrences (e.g. see
Fig. |3| second row), and obtain for most of them the
correct MAP labels.

We see our proposal as the first stage of a scalable
semantic understanding system for mobile robotic. The
subsequent stages can use our outcome to find objects
or areas of interest to specific tasks of the robot.

6 Conclusion

We have presented a computationally efficient approach
for semantic labeling of urban street view sequences
into object and non-object categories. The proposed
approach effectively uses 3D cues to generate evidence
about generic objects. Despite the fact that we do not
require object category specific training data, we can
achieve better or comparable average accuracy of seman-
tic labeling compared to the state of the art.

‘We have shown a basic implementation with real time
capabilities. We demonstrated that our method can
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Figure 6: The semantic segmentation when solving the
MAP problem with our method. The segmentation re-
sult from [20] for the same frame (right), who used full
uncropped images. Given the set of finite specific objects
used in [20] the new/strange objects are misclassified ei-
ther in the closest related known object (newspaper box
as recycle bin) or in a complete different classes (trash
bin as building or ground).

work in real scenarios with far from perfect 3D infor-
mation, illumination artifacts and high variability for all
the segmented classes.

Future work is focused on using the semantic seg-
mentation for isolating the stationary part from the de-
tachable, and possibly changing part of the environ-
ment. This will allow us to improve other tasks such
long-term place recognition or dynamic objects detec-
tion/estimation. The presented model can be further
extended in a hierarchical manner to incorporate addi-
tional information about specific objects of interest if
those become available.
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