
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

A Test Automation Language for Behavioral Models

Nan Li
nli1@gmu.edu

Jeff Offutt
offutt@gmu.edu

Technical Report GMU-CS-TR-2013-7

Abstract
Model-based testers design tests in terms of models, such as
paths in graphs. Abstract tests cannot be run directly because
they use names and events that exist in the model, but not the
implementation. Testers usually solve this mapping problem
by hand. Model elements often appear in many abstract tests,
so testers write the same redundant code many times. This is
time-consuming, labor-intensive, and error-prone.

This paper presents a language to automate the creation of
mappings from abstract tests to concrete tests. Three issues are
addressed: (1) creating mappings and generating test values,
(2) transforming graphs and using coverage criteria to generate
test paths, and (3) solving constraints and generating concrete
test.

The paper also presents results from an empirical compari-
son of testers using the mapping language with manual map-
ping on 17 open source and example programs. We found that
the automated test generation method took a fraction of the
time the manual method took, and the manual tests contained
numerous errors in which concrete tests did not match their
abstract tests.

1 Introduction
In model-based testing (MBT), a model is a partial abstract
description of a program that usually reflects functional as-
pects of the system. For example, a finite state machine (FSM)
represents the behavior of a system. This research focuses
on dynamic models such as the Unified Modeling Language
(UML) behavioral diagrams. Tests expressed in terms of a
model are called abstract tests. An abstract test is defined
using elements and objects from the model, thus cannot be
executed on an implementation. For example, if the model is
a finite state machine, an abstract test might be a path through
that machine. Concrete tests are expressed in terms of the
implementation of the model, and are ready to be run automat-
ically. Thus, a JUnit test is concrete. Model-based abstract
tests must be transformed to concrete tests since abstract tests
cannot be applied directly to the actual program. The mapping
problem refers to the problem of converting abstract tests to

concrete tests [1, 2].
Testers currently map abstract tests to concrete tests by hand.

If an abstract test consists of several events, or changes in the
state of the model, testers have to write the code for each event
by hand. If one basic event is used multiple times in different
abstract tests, testers write redundant code each time the same
event is used. This process is time-consuming, labor-intensive,
and error-prone. For example, to write a concrete test for
the abstract test event authentication for an account, testers
may have to set up the test environment, including making a
database connection and creating an account, and then write
test sequences and an oracle. If this event is used multiple
times in abstract tests, testers have to repeat the same process
for all concrete tests.

Figure 1: A Generic Model-based Testing Process

Figure 1 shows a general process to derive tests from models.
Testers choose a coverage criterion to generate test require-
ments based on a model. Then abstract tests are generated to
satisfy the test requirements. Additional information, includ-
ing abstract test values and data mappings, is needed to convert
abstract tests to concrete tests. Expected results (the oracles)
that are usually specified in models are used to compare with
actual results.

The steps in bold rectangles are being addressed in this
research to automate the mapping problem. The mapping
problem results in testers writing redundant code, which leads
to errors and lost time. Thus, a major goal of this research is
to develop techniques to avoid this redundancy. Our approach
is that for each basic identifiable element in a model, if we
write the executable code once, the code can be inserted auto-
matically the next time the same element appears in another
abstract test. An identifiable element in a model can be used
multiple times in abstract tests and can be mapped to one or
more lines of code in concrete tests, for example, a transition
in an FSM.

Our previous paper [3] proposed using a test automation
language to solve the mapping problem. This paper follows
that research with a language and detailed solution to the
mapping problem.

This paper presents a test automation language, the Struc-
tured Test Automation Language (STAL), to automate the
generation of concrete tests from abstract tests. Testers use
STAL to create mappings from each basic identifiable element
of the model to test code. Once the mappings are generated,
testers do not need to write concrete tests line by line for each
abstract test. Instead, a test automation framework, the Struc-
tured Test Automation Language framEwork (STALE) [4],
generates concrete tests automatically from the abstract tests.
STALE can improve the efficiency of generating concrete tests
from abstract tests and reduce the number of errors.

STALE is built based on the Eclipse Modeling Frame-
work (EMF) [5], which can read EMF-based UML diagrams.
STALE supports UML state machine diagrams, and work on
supporting other diagrams is ongoing.

Below is a summary of our MBT solution from a perspec-
tive of a taxonomy of model-based testing [6]. UML state
machine diagrams used in our approach are input-output mod-
els because constraints in UML state machine diagrams are
used as test oracles to verify the correctness of behaviors. Non-
deterministic UML state machine diagrams are considered and
the diagrams do not involve timing issues. UML state machine
diagrams use transition-based notations. Structural model cov-
erage criteria such as edge, edge-pair, and prime path coverage
[7] are used to generate tests. The tester supplies a collection
of possible values and constraint solving is used to choose val-
ues to execute each test path. Initial values are chosen for each
transition, then constraints (for example, state invariants) are
evaluated. If the constraints are not satisfied, then other values
are chosen. If a constraint cannot be satisfied with the values
supplied, the tester is informed and given the opportunity to
modify the model, the program, or the mapping by adding
additional values.

This paper addresses three key issues for STALE: (1) cre-
ating mappings and generating test values, (2) graph transfor-
mation and test path generation using coverage criteria, and
(3) solving constraints and concrete test generation.

This paper presents the Structured Test Automation Lan-
guage (STAL), which is the foundation for the Structured Test
Automation Language framEwork (STALE). STAL is defined
and illustrated through a running example. Most companies

currently solve the mapping problem by hand, so we present a
comparison of the use of STAL with the manual approach by
having programmers and testers apply both on 17 UML state
machine diagrams. The results show that the automatic test
generation uses only 29.6 percent of the time for the manual
test generation. Additionally, the manual approach resulted
in 48 errors in 240 tests in which the executable code did not
match the abstract tests.

The paper is organized as follows. Section 2 gives a moti-
vating example to illustrate the mapping problem and why test
automation is needed. Section 3 introduces background and
related work about model-based testing. Section 4 presents
the key issues that had to be addressed when building STALE.
Section 5 presents the tool, experimental design, subjects, pro-
cedure, results, analysis and threats to validity. The paper is
summarized in section 6, and section 7 describes future work.

2 A Motivating Example
A simple example is shown in figures 2, 3, and 4 to clarify
the mapping problem. The program simulates the behavior
of a vending machine for chocolate. Some assumptions are
made to simplify the program: only chocolates are available
for sale; the price for all chocolates is 90 cents; only dimes,
quarters, and dollars are accepted; and the vending machine
can contain an infinite number of chocolates. Figure 2 shows
the class specifications.

public class vendingMachine
{

private int credit; // Current credit in the machine.
private LinkedList stock; // Used to store all chocolates.

// Constructor: vending machine starts empty.
public vendingMachine() {}

// A coin is given to the vendingMachine.
// Must be a dime, quarter or dollar.
public void coin (int coin) {}

// User asks for a chocolate. Returns change
// and sets the parameter StringBuffer variable Choc.
public int getChoc (StringBuffer choc) {}

// Add one new piece of chocolate to the machine.
public void addChoc (String choc) {}

// Get the current credit value.
public int getCredit () {}

// Get all chocolates in stock.
public LinkedList getStock () {}

}

Figure 2: Class of vendingMachine

Figure 3 shows a simplified finite state machine (FSM) for
vendingMachine. It has nine transitions, four states, and three
events, AddChoc, Coin, and GetChoc. State 1 is the initial

2

Figure 3: Simplified FSM for Vending Machine

state, where the credit is 0 and the number of chocolates is 0.
If a customer adds coins, the FSM transitions to state 2, where
the credit is greater than 0 but the number of chocolates is still
0. If a service person adds chocolates, the FSM transitions
to state 4, where the credit is greater than 0 and the number
of chocolates is greater than 0. State 4 returns to itself if
coins or chocolates are added to the vending machine, and
state 4 can transition to state 1 or 3 if chocolates are taken
from the machine. Similarly, when adding chocolates, state 1
can transition to state 3, where the credit is 0 and the number
of the chocolates is greater than 0; state 3 returns to itself
when adding chocolates; and state 3 transitions to state 4 when
customers insert coins.

Testers may generate tests from the FSM by applying cover-
age criteria. If a tester uses the prime path coverage criterion
[7], nine test paths are generated to cover 14 prime paths by a
graph coverage web application [8]:

1. [1, 3, 4, 1, 2, 4]
2. [1, 2, 4, 1, 2, 4]
3. [1, 2, 4, 3, 4]
4. [1, 2, 4, 1, 3, 4]
5. [1, 3, 4, 1, 3, 4]
6. [1, 3, 4, 3, 4]
7. [1, 2, 2, 4]
8. [1, 3, 3, 4]
9. [1, 2, 4, 4]

Since each transition has only one event, we use the event
names to represent the transitions. The transitions for path
1 are AddChoc, Coin, GetChoc, Coin, and AddChoc, which
defines an abstract test. The tester can translate this abstract
test to the JUnit concrete test in figure 4.

In figure 4, the code in testFirstTestPath() is written to map
the abstract test [AddChoc, Coin, GetChoc, Coin, AddChoc].
To be specific, AddChoc maps to line 1; Coin maps to line

public class vendingMachineTest
{

private vendingMachine vm;
@Before
public void setUp() throws Exception {

vm= new vendingMachine();
}
@After
public void tearDown() throws Exception {

vm= null;
}
@Test
public void testFirstTestPath() {
1: vm.addChoc (“MM”);
2: assertEquals (1, vm.getStock().size());
3: vm.coin (100);
4: assertEquals (95, vm.getCredit());
5: StringBuffer choc = new StringBuffer().append (“MM”);
6: vm.getChoc (choc);
7: assertEquals (0, vm.getStock().size());
8: vm.coin (10);
9: vm.coin (25);
10: vm.coin (25);
11: vm.coin (25);
12: vm.coin (25);
13: vm.addChoc (“MM”);
14: vm.addChoc (“MM”);
15: assertEquals (100, vm.getCredit());
16: assertEquals (2, vm.getStock().size());
}

}

Figure 4: A JUnit test for class vendingMachine

3; GetChoc maps to lines 5-6; the second Coin maps to lines
8-12; and the second AddChoc maps to lines 13-14. (The
tool includes comments in the JUnit tests to document which
abstract test is implemented, but these are omitted in this
example to save space.)

For the second test path [1, 2, 4, 1, 2, 4], the transitions are
Coin, AddChoc, GetChoc, Coin, and AddChoc. The concrete
test code that corresponds to Coin and AddChoc should be
very similar to the code from lines 8-14 in testFirstTestPath()
above, and the concrete test code that corresponds to GetChoc
may be the same as the code from lines 5-6. In total, the nine
abstract tests have 15 AddChocs, 16 Coins, and 6 getChocs.
Each transition corresponds to at least one method call. So for
transitions AddChoc, Coin, and GetChoc, the same or similar
code will be written 15 times, 16 times, and 6 times. If the
mappings from transitions to concrete code are automated,
testers can avoid writing redundant code.

3 Background and Related Work
We view model-based testing as considering three major issues:
(1) how to build test models, (2) how to use test criteria and
algorithms to generate abstract tests from models, and (3) how
to transform abstract tests to concrete tests. The second and
third issues largely depend on what models are chosen.

3

Model abstractions need to be specified because they deter-
mine what artifacts will be used to generate tests. Prenninger
and Pretschner [9] said that a system can be abstracted for six
purposes: (1) getting enriched knowledge of the system and
its environment, (2) obtaining the specification of the system,
(3) accessing parts of a system, (4) communicating between
developers, (5) generating code, and (6) testing systems.

While creating test models, testers can either write model
programs in a specific language or draw visualization dia-
grams. Model programs use specification languages such as
Spec# or programming languages such as Java or C# to de-
scribe model behaviors. ModelJUnit [10], Spec Explorer [11],
NModel [12], and Conformiq [13] use Java, Spec#, C#, and
Conformiq Modeling Language (QML) [13] to write model
programs that can be converted to finite state machines or
extended finite state machines. So model programs are created
only for the purpose (6) above. Model programs cannot reuse
diagrams from the design phase directly.

Many testers prefer to use visual diagrams such as finite
state machines, extended finite state machines, and UML be-
havioral diagrams directly as test models. They can reuse
and adapt design models or build new test models [14]. Re-
searchers have come up with different ways to transform mod-
els created for (1) and (2) to test models for (6) [15, 16, 17,
18, 19, 20, 21, 22]. Many [15, 16, 17, 18, 20, 21, 22] use
UML models to generate tests. This paper applies the same
approach.

Models only specify key aspects of software’s behavior, so
cannot provide enough information for generating tests. When
deriving test cases from UML behavioral models, additional
information needs to be specified, such as test values and test
oracles. One common solution is to use other UML models
(for example, use case diagrams and class diagrams) to provide
the missing information.

Briand and Labiche [17] developed the TOTEM system,
which uses many artifacts: use case diagrams, use case de-
scriptions, sequence or collaboration diagrams for each use
case, class diagrams, and a data dictionary specifying the de-
tails of classes. Nebut et al. [18] applied a use case driven
approach. This approach extracts additional information from
use case models and requires a behavioral model (sequence,
state machine, or activity diagram) to specify the sequence
ordering of the use cases. Moreover, use cases must have
contracts (pre- and post-conditions) to help infer the partial or-
dering of functionalities. Furthermore, the behavioral models
have to be consistent with the use cases. That is, the parame-
ters in use cases have to be the same as those in the behavioral
models. This use case driven approach was validated on one
embedded system.

The UML Testing Profile (UTP) [23] reuses some concepts
of the UML but adds components for testing such as test
context, test case, test component, and verdicts. When creating
concrete tests, information in abstract tests have to match
attributes of other diagrams such as class and object diagrams.

When creating tests from UML state machine diagrams,
existing approaches use additional diagrams and structures to
provide abstract test values and transform them to concrete test

values. The abstract test values have to be consistent with those
defined in diagrams such as class diagrams or object diagrams.
Thus, abstract tests not only have test sequences, but also lots
of abstract test values, which complicates the transformation
from abstract to concrete tests. Creating many formalized
diagrams for testing may not be difficult for companies and
organizations that can reuse models from the design phase and
have lots of experts in model-based testing. However, it is very
expensive for organizations that do not have such resources.

This paper presents the test automation language STAL
to generate tests from UML behavior models, specifically
UML state machine diagrams. Programmers and testers use
STAL to provide missing information by creating mappings
from identifiable elements of the model to concrete test code.
Previous papers included few empirical studies in comparing
concrete MBT solutions with manual approaches. This paper
includes an empirical comparison of transforming abstract
tests to concrete tests by using STAL with the manual method.

STALE can read diagrams from the Eclipse Modeling
Framework (EMF). EMF is a modeling framework based
on the Eclipse platform. The core of EMF provides tools and
APIs to view and edit the models that are described in the
XML Metadata Interchange (XMI) framework [24]. EMF also
supports other EMF-based applications. Different kinds of
coverage criteria such as structural modeling, data flow, ran-
dom, and stochastic coverage have been used to generate tests
[6]. Our tool uses the node, edge, edge-pair and prime path
coverage criteria [7].

We started by trying to use the existing model-to-test trans-
formation language Meta-Object Facility Model To Text Trans-
formation Language (MOFM2T) [25]. Unfortunately, this
language has several characteristics that made it impossible to
use for our research.

MOFM2T [25] is part of OMG’s Model-driven architecture
(MDA) [26] and was designed to transform models to code
for general use. Acceleo [27] is the only Eclipse Foundation
project that implements MOFM2T. It reads EMF-based mod-
els and transforms them into programs in several languages.

Adapting MOFM2T and Acceleo to define mappings from
abstract to concrete tests posed two problems. First, STALE
cannot reuse much of the syntax of MOFM2T. For example,
the for loop structure used in MOFM2T goes through each
component of the same type (e.g. states) in a model and trans-
lates them to similar code. However, the for loop cannot be
used for the mappings because each identifiable element in a
model is mapped to different test code.

Second, testers cannot write test code to create mappings
with MOFM2T. Ideally, testers first choose an identifiable
element, write down its name, write the code for it, then
create the mapping. However, MOFM2T and Acceleo cannot
recognize the element names. Testers would need to write
code to look for the identifiable element from the top level to
the bottom level of the model structure.

4

3.1 Background in Graph Coverage Criteria

STALE is generic enough to be used with any test design
strategy, whether criteria-based or human-based. This paper
describes STAL and uses examples based on graph coverage
criteria. UML state machine diagrams are transformed into
generic graphs, and then graph coverage criteria are used.

The following definitions are taken from Ammann and Of-
futt [7]. A graph G defined formally as

• a set N of nodes, where N 6= ∅

• a set N0 of initial nodes, where N0 ⊆ N and N0 6= ∅

• a set N f of final nodes, where N f ⊆ N and N f 6= ∅

• a set E of edges, where E is a subset of N × N

A graph must have at least one initial and one final node,
but allows more. For graphs, coverage criteria define the set
of test requirements in terms of properties of test paths in a
graph G. Test requirements are satisfied by visiting specific
nodes or edges or by touring specific paths or subpaths.

A path is a sequence [n1, n2, ..., nM] of nodes, where each
pair of adjacent nodes, (ni, ni+1), 1 ≤ i < M, is in the set
E of edges. The length of a path is defined as the number of
nodes it contains. A subpath of a path p is a subsequence of
p (including p itself). A test path represents the execution of
a test case on a graph. Test paths must start at an initial node
and end at a final node. A test path p tours a subpath q if q
is a subpath of p. Edge coverage requires that each edge is
covered by test paths. That is, each transition on a UML state
machine diagram should be toured.

4 The Test Automation Language
STAL

This section presents our language for automating the genera-
tion of concrete tests from abstract tests. The vending machine
example is used to illustrate how testers use STAL to create
mappings. This vending machine example differs slightly
from the example in section 2 by allowing only 10 chocolates.
Figure 5 is a UML state machine diagram for this vending
machine example created with the EMF-based tool Papyrus
[28]. Figure 5 has one initial state, one final state, nine nor-
mal states, and 26 transitions. It also includes six constraints
that are used as state invariants for states 1-91. Some states
have internal transitions. For example, state 2 has an internal
transition on coin.

Three key issues have been addressed in this research: (1)
creating mappings and generating test values, (2) graph trans-
formation and test path generation using coverage criteria, and
(3) solving constraints and concrete test generation. How to
include test oracles, and which part of the program state to
evaluate, will be addressed in the future.

1Constraints can be specified to be guards or state invariants.

Element
Need map-
pings

Entry Point, Exit Point, and Do Activity
of a State, Transition, Constraint

Do not need
mappings

State Machine, Region, Initial Pseu-
doState, Final State, Fork, Join, Junction,
Choice, Simple State, Composite State,
Submachine State

Not used in
test models

Shallow History PseudoState, Deep His-
tory PseudoState

Table 1: Which elements need mappings?

4.1 Creating Mappings and Generating Test
Values

This subsection describes how to create mappings from iden-
tifiable elements to executable Java code. Some elements of
UML state machine diagrams need test code to map them,
some do not need mappings, and others should not be used in
test models. Table 1 summarizes which elements of a UML
state machine diagram should be mapped.

STAL defines two kinds of mappings: element mappings
and object mappings. Element mappings directly connect an
identifiable element in a UML state machine diagram to test
code. For instance, a transition coin may be mapped to the
test code “vm.coin (c);”. However, objects and parameters
used in this element mapping, such as vm (an object of class
VendingMachine) and c (an int parameter of method coin (int)),
also need to be initialized in object mappings, which will be
marked as required mappings of this element mapping.

An element mapping is formally defined as:

Mapping mappingName TypeOfElement nameOfElement
Requires objectMappingName ...
[StateInvariants nameOfState ...] [Guards nameOfTransition ...]
{testCode}

Mapping, TypeOfElement, Requires, StateInvariants,
Guards are keywords. The mapping name must be unique.
TypeOfElement may vary depending on the actual type of
one concrete element such as a transition or constraint. If a
mapping uses an object defined in another mapping, the names
of additional mappings have to be included in the Requires
field. The notation “...” means that more than one mapping
may be required. If an element is a constraint, the mapping
needs to point out the type of constraint (state invariant, guard,
etc.) and elements (e.g. states or transitions) in which the con-
straint is held. StateInvariants and Guards fields are optional
and marked by “[]” since they are used only for constraints. A
constraint may be used as a state invariant in states and guards
at the same time. Test code is required for any mapping and
written in curly brackets.

An object mapping is formally defined as:

Mapping mappingName Class nameOfClass
Object nameOfObject Requires objectMappingName ...
{testCode}

5

Figure 5: A UML state machine diagram for the class vendingMachine

Attributes Element Object
Mapping Mapping

Element Name X
Element Type X
Mapping Name X X
Test Code X X
Required Mappings X X
State Invariants & Guards X
Object Name X
Class Name X

Table 2: Attributes of element and object mappings

An object mapping asks for the class type and name of the
object. The initialization of an object may also need other
objects. So an object mapping may require extra object map-
ping as well. Table 2 indicates which attributes can be used in
element and object mappings.

For the state machine of the vending machine program in fig-
ure 5, we need to create mappings for four transitions: initial-
ize, addChocs, getChocs, and coin; and define six constraint
mappings. The first mapping is for the transition initialize:

Mapping vMachineInit Transition initialize
{ vendingMachine vm = new vendingMachine(); }

vMachineInit is the mapping name. The keyword Transi-
tion specifies that the mapping vMachineInit is created for a
state transition.

Next is a mapping for the transition getChocs. The method
getChoc (StringBuffer) is used to get chocolates from the vend-
ing machine. The StringBuffer object represents a chocolate.

Mapping getChocolate Transition getChocs
{
StringBuffer sb = new StringBuffer (“MM”);
vm.addChoc (sb);
}

The mapping getChocolate gets only one chocolate from
the vending machine. More chocolates can be taken from
the vending machine if the method getChoc (StringBuffer) is
called multiple times. Two objects vm and sb in the test code
need to be initialized. Because the transition initialize appears
in every test path, the object vm is initialized before any other
test code, thus, it does not need an object mapping to initialize
itself again. A StringBuffer variable sb is initialized directly in
the test code of this mapping. Alternatively, the initialization
of sb can be defined in an object mapping and reused in other
mappings. The next example shows another mapping that gets
two chocolates. It requires an object mapping.

Mapping getTwoChocolates Transition getChocs
Requires stringBufferInit

{
vm.getChoc (sb);
vm.getChoc (sb);
}

The object mapping for stringBufferInit is shown below:

Mapping stringBufferInit Class StringBuffer Object sb
{ StringBuffer sb = new StringBuffer (“MM”); }

Please note that the initialization of an object should be
either embedded in the test code of an element mapping or de-
fined as an object mapping separately but not both. Otherwise
the object will be defined twice.

Testers can provide multiple test values for primitive types
and values will be chosen arbitrarily. For instance, test code
“vm.coin (10);” can be mapped to the transition coin, and
inserts a dime to the vending machine. Instead of assigning

6

a concrete int value 10, we can use the test code “vm.coin
(c);” to map the transition coin and provide test values for the
parameter c in an object mapping. An object mapping can be
written below:

Mapping cForCoin Class int Object c
{ 10, 25, 100 }

The vending machine only accepts dimes (10), quarters
(25), and dollars (100). One of the three int values will be se-
lected arbitrarily for the parameter c. Testers can also provide
predicates such as {c > 0, c ≤ 100}, separating conditions
by commas. A constraint solver used in STALE will return a
value that satisfies all constraints. The constraint solver has
a limited language. It accepts numeric variables (int, float,
and double), arithmetic operators, and regular expressions for
Strings. It does not accept disjuncts or function calls.

A mapping that specifies a constraint to be a state invariant
is shown below.

Mapping constraintForCredit Constraint constraint1
StateInvariants State3, State6, State9
{ vm.getCredit() ≥ 90; }

4.2 Graph Transformation and Test Path Gen-
eration

Each UML state machine diagram is transformed to a generic
graph with initial nodes and final nodes. For a UML state
machine diagram, an initial state is mapped to an initial node
in the graph, a final state to a final node, and other states
to unique nodes. Each transition becomes an edge and an
internal transition from one state to itself becomes a self-loop
on the corresponding node. Elements including composite
state, choice, fork, junction, and join need special treatment.

Each sub-state of a composite state becomes a unique node
and the composite state itself will not be transformed to a node.
If a composite state has an initial state, an edge will be created
for an incoming transition to the initial state of the composite
state. If a composite state has n regular sub-states but no initial
states, n edges will be created for an incoming transition, one
for each node. Likewise, if a composite state has a final state,
an edge will be created for an outgoing transition from the
final state of the composite state. If a composite state has n
sub-states but no final states, n edges will be created for an
outgoing transition.

An edge will be created for each outgoing transition of a
choice or fork. An edge will be created for each incoming
transition of a join or junction.

Once the transformation from a UML state machine dia-
gram to a generic graph is done, test paths can be generated
based on a graph coverage criterion. The algorithms from our
previous paper [29] are used to generate test paths.

4.3 Creating Mappings and Concrete Test
Generation

After mappings are created, the test automation tool will save
the mappings as XML. Figure 6 shows the saved mappings
vMachineInit, addChocolate, coinAnyCredit, and intCInit in
XML. Space does not allow all mappings to be shown.

〈 mappings 〉
〈 mapping 〉
〈 name 〉 vMachineInit 〈 /name 〉
〈 transition-name 〉 initialize 〈 /transition-name 〉
〈 code 〉

vendingMachine vm = new vendingMachine();
〈 /code 〉
〈 /mapping 〉
〈 mapping 〉
〈 name 〉 addChocolate 〈 /name 〉
〈 transition-name 〉 addChocs 〈 /transition-name 〉
〈 code 〉 vm.addChoc (“MM”); 〈 /code 〉
〈 /mapping 〉
〈 mapping 〉
〈 name 〉 coinAnyCredit 〈 /name 〉
〈 transition-name 〉 coin 〈 /transition-name 〉
〈 code 〉 vm.coin(c); 〈 /code 〉
〈 /mapping 〉
〈 /mappings 〉
〈 mapping 〉
〈 name 〉 intCInit 〈 /name 〉
〈 object-name 〉 c 〈 /object-name 〉
〈 class-name 〉 int 〈 /class-name 〉
〈 code 〉 10, 25, 100 〈 /code 〉
〈 /mapping 〉

Figure 6: Mappings

Seven test paths are generated to satisfy edge coverage using
the graph web application [8]. An example is [initial, state1,
state4, state7, state7, state9, state4, final], whose abstract test
is shown below:

initialize;
addChocs;
addChocs;
addChocs;
coin;
getChocs;

Testers can use the mapping addChocolate in figure 6 for
the transition addChocs since only one mapping is created for
the transition. If a transition has more than one mapping, the
tool has to choose which to use. If the destination state of a
transition has a constraint, the constraint has to be satisfied by
the selected mapping. If the constraint is not satisfied, another
mapping will be selected. If none of the mappings can satisfy
the constraint, the tester is informed. This usually results in a
correction to the model, the program, or the mappings.

An object or element mapping may require more than one
object mapping. STALE is able to analyze the dependency
relationship among all related object mappings. While gener-
ating concrete tests, the test code of object mappings that have

7

no dependency will be written first, followed by other object
mappings that use variables from prior mappings.

When executing the example test path above, the vending
machine will reach State9 with three chocolates in stock and
one coin. The next step in the abstract test is getChocs, which
should cause a transition to State4. However, State4 has a
constraint (Constraint5), which says that the vending machine
should only have one chocolate in stock. There is no way
to satisfy that constraint, so an error will be reported to the
tester. The error can be corrected in one of several ways.
The model can be changed by modifying the constraint to
be stockO f VendingMachine ≥ 1, adding a transition on
getChocs to State7, or by changing getChocs to allow more
than one chocolate to be dispensed. Finding errors in the
model when generating tests is a major benefit of this ap-
proach.

5 Experiment
The goal of this research is to decrease cost and errors made
during test automation by reducing the amount of repetitive,
mechanical work required to automate model-based tests. We
pose two research questions:

1. RQ1: Can STAL be used to create automated tests in a
practical setting?

2. RQ2: Can using STAL help testers reuse redundant test
code and reduce errors when converting abstract tests to
concrete tests as compared with doing the same procedure
by hand?

This section presents STALE, the experimental design, sub-
jects, procedure, results, threats to validity, and then an analy-
sis of the results.

5.1 Tool Implementation
STALE uses the Eclipse Modeling Framework (EMF) library
[5] to read EMF-based UML models. The tool transforms
the behavioral models to generic graphs, then uses the test
generation library on Ammann and Offutt’s book website [8]
to generate test paths. Testers develop the mappings in STAL,
which are saved in XML files. The tool uses the numeric
constraint solver Choco [30] and the String generator Xeger
[31] to generate test values. Finally, the tool generates concrete
tests by choosing test values that satisfy constraints, reporting
unsatisfied constraints to the tester.

5.2 Experimental Design
Test engineers automate tests to reduce the cost of running the
same test many times, to reduce the errors inherent in running
tests by hand, and to make it easier to modify the test suite
when the model, software, or test criterion changes. Evaluating
STAL for all of these scenarios would require extensive human
resources, so we evaluate the initial development of tests. The
scenario is, given a program and its model, testers generate

Automated (A) Manual (M)
1 Find the test code for each element

from a model. (A1)
The same as A1.
(M1)

2 Extract object declarations and initial-
izations from the element mappings.
Enter mappings into the test automa-
tion tool and provide enough map-
pings to satisfy constraints. (A2)

Write executable
tests to map test
paths. (M2)

3 Generate concrete tests and correct er-
rors. (A3)

Correct errors.
(M3)

Table 3: Steps in automated and manual test generation pro-
cesses

automated tests to satisfy a coverage criterion. Our testers
did this by hand and with STAL. Any benefits from using
STAL during initial development would also be present when
modifying the tests.

Nine testers designed tests for 17 programs. It can take
many hours to design and develop model-based tests by hand,
so each program was assigned to one tester. The tests were
designed to satisfy edge coverage [7], a widely used and rela-
tively simple test criterion. The testers developed two sets of
tests for each program, one by hand and the other using STAL.
There are two levels of automation in this study. The STALE
tool helps testers automate the creation of tests, which are
encoded in automated JUnit scripts. That is, we are automati-
cally creating automated tests. We try to clarify which one we
refer to in the following text.

An important decision was which process to use first, man-
ual or automated. Table 3 shows the steps for each.

Step 1 is the same both by hand and with STAL. The testers
need to understand the software, analyze its controllability and
observability, and decide how to implement events from the
model in a test. Step 2 is quite different for each process.

For A2, the testers identify the declarations and initializa-
tions of objects used in the test code for the elements of the
model. Because an element may appear more than once in
a test path, the corresponding test code will appear multiple
times. Object declarations in the test code can result in dupli-
cated object declarations. To avoid errors from this duplication,
testers can either put all object declarations and necessary ini-
tializations in the mapping for the first transition if all test
paths share the same transition, or create object mappings to
be required mappings for elements. Testers then enter test
code in STALE, satisfying the model constraints. This is the
most time consuming part of the automated process.

In M2, the testers first look at the test paths, find matched
elements from the model, and write the corresponding test
code for the elements. This is the most time consuming part
of manual test generation. Switching among the test paths, the
model, and the test code is difficult, takes time, and can result
in errors where the test code does not match the test paths.

When testers generate tests manually, they learn how to
separate object declarations and how to create enough map-
pings to satisfy all constraints while writing the concrete tests.

8

If done first, A2 will become much easier and shorter, thus
introducing a bias in favor of the automated process. However,
if the automatic process is used first, the testers do not see
the complete tests, thus the knowledge gained during step A2
does not make M2 easier.

Testers may get compilation errors in the automated process
if they did not include all the classes or JAR files needed or if
the test code in the mappings contain syntax errors. Also, if
some constraints are not satisfied, the tester may need to add
additional mappings or values. Testers correct these errors in
step A3. If M3 is done before A2, the testers will be less likely
to make mistakes, so A3 will become easier, again introducing
a bias in favor of the automated process. However, doing
A3 before M2 does not affect errors in M3 because they are
arbitrary syntax errors.

Given these considerations, we concluded that the testers
needed to first generate tests using the automated method, then
manual. The guide that was given to the testers is online at
http://cs.gmu.edu/∼nli1/experiment/.

5.3 Experimental Subjects

Seven of the 17 programs used are open source projects: Cal-
culator2, Snake3, TicTacToe4, CrossLexic5, Jmines6, Chess7,
and DynamicParser8. Six are from textbooks: VendingMa-
chine [7], ATM [32], Tree [33], BlackJack [34], Triangle [35],
and Poly [36]. The other four were taken from the cover-
age web application for Ammann and Offutt’s book [8]. All
programs are in Java.

The first author drew UML state machine diagrams using
the Eclipse tool Papyrus [28], then the diagrams were trans-
formed into generic graphs by STALE. For a few of the more
complicated programs, parts of the programs’ functionalities
were omitted from the diagrams to ensure the testers could
complete the program in the alloted two hour time frame. Nine
testers (not including the authors) participated in the experi-
ment. They were part-time and full-time graduate students at
George Mason University, all of whom have taken Mason’s
graduate testing class.

5.4 Experimental Procedure

The testers were given the experimental guide and asked to
understand the process and gain a preliminary familiarity with
STALE. This took about two hours apiece. Next the testers
entered our lab and generated tests automatically with STALE,
then by hand, in a controlled environment. All subjects used
the same computer and the first author measured their times.
The automated steps were:

2http://jcalcadvance.sourceforge.net/
3http://sourceforge.net/projects/javasnakebattle/
4http://sourceforge.net/projects/tttnsd/
5http://crosslexic.sourceforge.net/
6http://jmines.sourceforge.net/
7http://twoplayerchess.sourceforge.net/
8http://dynamic-parser.sourceforge.net/

Questions
1 Are you working (enter “programmer,” “manager,”

“tester,” etc.)? If not, enter “student.”
2 If you have to generate tests from models, would you

consider using this automatic test generation / tool?
3 Please rate the ease of use of the test automation tool

on a scale of 1 to 5 (1 being impossible and 5 being
trivially easy).

4 Do you have any suggestions for improving this auto-
matic test generation / tool and other comments?

Table 4: The Questionnaire

1. Create a new project and add the model and program
under test.

2. Create the abstract to concrete mappings. Wall-clock
time was measured.

3. Create concrete tests using the tool to satisfy edge cover-
age. The tool measured the time for this step.

The manual steps were:

1. Write concrete tests by hand. The concrete tests have
to be written in the same order as the test paths to make
test comparison easy. The testers did not have to write
test oracles, but the constraints in the states had to be
satisfied.

2. Compile the tests and make sure that all tests pass. Wall-
clock time was measured.

After completing the experiment, each participant was given
an anonymous questionnaire, shown in table 4. Most of the par-
ticipants had taken a graduate course in user interface design
and development, so could be expected to be fairly knowledge-
able and critical with question 3.

5.5 Experimental Results
Table 5 gives the experimental data. The first four columns
give the subject names and statistics about the sizes of the
graphs and programs. The nodes and edges are from the
generic graph, not the original model, and the lines of code
were calculated by CLOC [37]. Note that the last four subjects
belong to one program and LOC is for the entire program.

The next three columns show the number of distinct map-
pings created from the models, the number of times the distinct
mappings appear in all the tests, and the ratio of the Mappings
column over the All Mappings column. For example, the vend-
ingMachine model needed 13 mappings and the seven tests
used a total of 132 mappings, 9.8% of which are distinct.

The next two columns present the number of seconds used to
create mappings and generate tests in the automated process,
followed by the time used by the manual process. Last is
the ratio of time for the automated process over the time for
the manual process. Thus, the automated process for class
vendingMachine took 34.5% of the time of the manual process.

9

Figure 7: Ratio of number of distinct mappings over number
of mappings in all tests

Our first research question asked if STAL could be used in
a practical situation. All nine subjects were able to use STAL
with only a short tutorial, so we conclude the answer to RQ1
is yes. Our second research question asked if testers could use
STAL to reuse redundant test code and reduce errors. Table 5
shows that the automated process ranged from 11.7% to 60.8%
of the time the manual process took, with an unweighted
average of 29.6%. The manually created tests have 48 errors
compared with 0 for the automatically created tests. Thus, we
conclude that the answer to RQ2 is also yes.

On the questionnaires, all subjects answered “Yes” to the
second question, and the average usability rating (third ques-
tion) was 4.4.

5.6 Experimental Analysis
Figure 7 compares the % Mapping (on the horizontal axis) and
% Time (on the vertical axis) for the 17 subject programs. We
analyze these data to look for a linear correlation relationship.

Boddy and Smith [38] suggest using Pearson’s correlation
coefficient if the data have a normal distribution; otherwise,
we should use a non-parametric correlation test [39] such as
Spearman’s rank correlation coefficient. Qqplots (not shown
due to space) show that the % Mapping and % Time data devi-
ate from the straight line. Thus, we use Spearman’s correlation
coefficient.

The correlation coefficient (ρ) of Spearman’s correlation
test is 0.72. Cohen [40] suggests that a value of .5 or greater
can be considered to be a large correlation. The statistical
significance p-value is 0.0017, which is normally considered to
be highly significant. Therefore, we conclude that the savings
from using the automated process increases as the percentage
of distinct mappings in all mappings decreases.

5.7 Threats to Validity
As usual with most software engineering studies, there is no
way to show that the selected subjects are representative. This
is true both for the programs and the human testers. Another
threat to external validity is that the first author created the

UML models from the source code. An internal threat is that
the test automation tool’s implementation may be imperfect.

6 Conclusions

This paper has two results. The first is a general, practical
solution to the mapping problem for transforming abstract
model-based tests to concrete executable tests. This is done us-
ing a test automation language, STAL, as described in section
4. Testers use STAL to define mappings between elements in
the abstract tests to specific sequences of code that will be part
of the concrete executable tests. STAL is embedded in a test
framework, STALE, which accepts model-based abstract tests
and automatically creates fully executable concrete tests.

The test automation language can be used whenever ab-
stract tests include the same elements many times, resulting in
duplicate components of concrete tests. This paper explains
STAL in the context of using graph-based test criteria defined
on graphs that were derived from state machine diagrams, but
it can also be used with other models and other techniques for
designing model-based tests.

This paper also compares test generation using STAL with
manual test generation. The results, based on 17 programs,
show that automatic test generation uses 29.6% of the time for
manual test generation. The manual tests also contained 48
errors in which concrete tests do not map abstract tests.

7 Future Work

Another aspect of this research project is determining tradeoffs
among choices of test oracle. Generally speaking, automated
tests run a program or a program component, then compare
part of the program state with pre-determined values to see
if the test passed (the states match) or the test failed (the
states differ). Crucial questions are how much of the states
should be checked, and when should they be compared. Com-
paring the entire program state can be expensive, possibly
prohibitively so. On the other hand, comparing an insufficient
amount of the program state can lead to type II errors, where a
failure is not detected. Research into this question is ongoing.

Acknowledgment

We thank Dr. Paul Ammann for helping us to set up the
experiment and all the participants for generating tests.

References

[1] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Gener-
ating test data from state-based specifications,” Software
Testing, Verification, and Reliability, Wiley, vol. 13, no. 1,
pp. 25–53, March 2003.

10

Programs LOC Nodes Edges Map-
pings

All
Map-
pings

%
Map-
ping

Tests Automatic (Seconds) Manual
(Seconds)

%
Time

Mapping
Cre-
ation

Test
Genera-
tion

Test
Genera-
tion

VendingMachine 52 11 26 13 132 9.8 7 630 4 1,836 34.5
ATM 463 8 12 8 27 29.6 5 449 1 1,267 35.5

Calculator 2,919 17 76 12 182 6.6 14 477 15 3,794 13.0
Triangle 124 7 31 12 72 16.7 6 440 2 1,371 32.2

Snake 1,382 18 116 13 132 9.8 7 503 46 1053 52.1
TicTacToe 665 7 12 9 31 29.0 5 640 2 1,494 43.0

CrossLexic 654 13 51 17 305 5.6 26 609 123 2,539 28.8
JMines 9,486 18 75 10 202 5.0 26 445 62 2,625 19.3

Chess 2,048 9 17 7 36 19.4 6 510 6 904 57.1
BlackJack 403 13 20 12 36 33.3 8 300 4 500 60.8

Tree 234 14 24 11 83 13.3 6 685 2 1671 41.1
Poly 129 8 21 11 64 17.2 5 330 3 1537 21.7

DynamicParser 1,269 22 73 12 269 4.5 21 468 45 4010 12.8
GraphCoverage 14,155 20 67 17 253 6.7 19 521 14 4091 13.1

DFCoverage 14,155 15 56 16 147 10.9 19 401 7 2824 14.4
LogicCoverage 14,155 15 83 15 196 7.7 38 522 7 4512 11.7

MinMCCoverage 14,155 14 53 14 150 9.3 22 434 1 3642 11.9
Total 232 742 33,983 196 2,325 240 8,364 344 39,670

Average 13.8 29.6

Table 5: Time for automatic and manual test generation

[2] J. Offutt and A. Abdurazik, “Generating tests from UML
specifications,” in Proceedings of the Second IEEE Inter-
national Conference on the Unified Modeling Language
(UML99). Fort Collins, CO: Springer-Verlag Lecture
Notes in Computer Science Volume 1723, October 1999,
pp. 416–429.

[3] N. Li, “A smart structured test automation language
(SSTAL),” in The Ph.D. Symposium of 2012 IEEE Fifth
International Conference on Software Testing, Verifica-
tion and Validation (ICST),, ser. ICST ’12, Montreal,
Quebec, Canada, April 2012, pp. 471–474.

[4] ——, “The structured test automation language frame-
work,” Online, 2013, http://cs.gmu.edu/ nli1/stale/, last
access May 2013.

[5] E. Foundation, “Eclipse modeling framework,” Online,
2008, http://www.eclipse.org/modeling/emf/, last access
Sept 2012.

[6] Mark, Utting, A. Pretschner, and B. Legeard, “A tax-
onomy of model-based testing approaches,” Software
Testing, Verification and Reliability, vol. 22, no. 5, pp.
297–312, August 2012.

[7] P. Ammann and J. Offutt, Introduction to Software Test-
ing. Cambridge, UK: Cambridge University Press,
2008, iSBN 0-52188-038-1.

[8] P. Ammann, J. Offutt, W. Xu, and N. Li,
“Graph coverage web applications,” Online, 2008,
http://cs.gmu.edu:8080/offutt/coverage/GraphCoverage,
last access May 2013.

[9] W. Prenninger and A. Pretschner, “Abstractions for
model-based testing,” Electronic Notes in Theoretical
Computer Science, vol. 116, pp. 59–71, January 2005.

[10] M. Utting, G. Perrone, J. Winchester, S. Thomp-
son, R. Yang, and P. Douangsavanh, “The Mod-
elJUnit model-based testing tool,” Online, 2007,
http://www.cs.waikato.ac.nz/ marku/mbt/modeljunit/,
last access April 2013.

[11] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte,
and N. Tillmann, “Microsoft SpecExplorer,”
Online, 2002, http://research.microsoft.com/en-
us/projects/specexplorer/, last access April 2013.

[12] J. Jacky and M. Veanes, “NModel,” Online, 2006,
http://nmodel.codeplex.com/, last access April 2013.

[13] C. Inc., “CONFORMIQ Automated Test Design,” On-
line, 2011, http://www.conformiq.com/, last access April
2013.

[14] M. Utting and B. Legeard, Practical Model-Based Test-
ing: A Tools Approach. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2007.

11

[15] P. Fröhlich and J. Link, “Automated test case generation
from dynamic models,” in Proceedings of the 14th Euro-
pean Conference on Object-Oriented Programming, ser.
ECOOP ’00. London, UK: Springer-Verlag, 2000, pp.
472–492.

[16] J. Ryser and M. Glinz, “A scenario-based approach to
validating and testing software systems using statecharts,”
in Proceedings of the 12th International Conference on
Software and Systems Engineering and their Applica-
tions, ser. ICSSEA ’99, Paris, France, 1999.

[17] L. Briand and Y. Labiche, “A UML-based approach to
system testing,” in Proceedings of the 4th International
Conference on The Unified Modeling Language, Mod-
eling Languages, Concepts, and Tools, ser. UML ’99.
London, UK: Springer-Verlag, 2001, pp. 194–208.

[18] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jézéquel,
“Automatic test generation: a use case driven approach,”
IEEE Transaction on Software Engineering, vol. 32,
no. 3, pp. 140–155, March 2006.

[19] S. Liu and S. Nakajima, “A framework for automatic
functional testing based on formal specifications,” in Pro-
ceedings of the 6th International Workshop on Automa-
tion of Software Test, ser. AST ’11. Waikiki, Honolulu,
HI, USA: ACM, May 2011, pp. 107–108.

[20] A. Ulrich, E.-H. Alikacem, H. H. Hallal, and S. Boroday,
“From scenarios to test implementations via Promela,”
in Proceedings of the 22nd IFIP WG 6.1 international
conference on Testing software and systems, ser. ICTSS
’10. Natal, Brazil: Springer-Verlag, 2010, pp. 236–249.

[21] D. Lugato, C. Bigot, and Y. Valot, “Validation and auto-
matic test generation on UML models: The AGATHA
approach,” Electronic Notes in Theoretical Computer
Science, vol. 66, no. 2, pp. 33–49, 2002.

[22] Y. Kim, H. Hong, D. Bae, and S. Cha, “Test cases gen-
eration from UML state diagrams,” IEE Proceedings.
Software, vol. 146, no. 4, pp. 187–192, August 1999.

[23] P. Baker, Z. R. Dai, J. Grabowski, O. Haugen,
E. Samuelsson, I. Schieferdecker, and C. E. Williams,
“The UML 2.0 testing profile,” in Proceedings of the ’8th
Conference on Quality Engineering in Software Technol-
ogy 2004, ser. CONQUEST 2004. Nuremberg, Ger-
many: ASQF e.V., Erlangen, September 2004, pp. 181–
189.

[24] O. M. Group, “OMG MOF 2 XMI
mapping specification,” Online, 2011,
http://www.omg.org/spec/XMI/2.4.1/, last access
Sept 2012.

[25] ——, “MOF model to text transformation language,”
Online, 2008, http://www.omg.org/spec/MOFM2T/1.0/,
last access Sept 2012.

[26] ——, “OMG model driven architecture,” Online, 2003,
http://www.omg.org/mda/, last access Sept 2012.

[27] E. Foundation, “Acceleo - transforming models into
code,” Online, 2009, http://www.eclipse.org/acceleo/,
last access Sept 2012.

[28] ——, “Papyrus,” Online, 2008,
www.eclipse.org/papyrus/, last access Sept 2012.

[29] N. Li, F. Li, and J. Offutt, “Better algorithms to mini-
mize the cost of test paths,” in Proceedings of the 2012
IEEE Fifth International Conference on Software Testing,
Verification and Validation, ser. ICST ’12. Montreal,
Quebec, Canada: IEEE Computer Society, April 2012,
pp. 280–289.

[30] T. C. D. Team, “Choco constraint solver,” Online, 2004,
http://www.emn.fr/z-info/choco-solver/, last access May
2013.

[31] X. Team, “Xeger string generator,” Online, 2009,
https://code.google.com/p/xeger/, last access May 2013.

[32] H. Deitel and P. Deitel, Java: How to program, 6th ed.
Pearson Education, Inc., 2005.

[33] Anonymous, “Class of tree,” Online, 2008,
http://homepage.cs.uiowa.edu/∼sriram/21/fall08/code/tr
ee.java, last access May 2013.

[34] Lewis, Chase, and Coleman,
“Class of blackjack,” Online, 2004,
http://faculty.washington.edu/moishe/javademos/blackja
ck/, last access May 2013.

[35] M. Rusma, “Class of triangle,” Online, 2004,
http://www.cs.du.edu/∼snarayan/sada/teaching/COMP37
05/FilesFromCD/Exercises/Lab4 WhiteBox/Triangle.java,
last access May 2013.

[36] B. Liskov and J. Guttag, Program Development in Java:
Abstraction, Specification, and Object-Oriented Design,
1st ed. Addison-Wesley Professional, 2000.

[37] A. Danial, “CLOC,” Online, 2006,
http://cloc.sourceforge.net, last access Sept 2012.

[38] R. Boddy and G. Smith, Effective Experimentation: For
Scientists and Technologists. Wiley, 2010.

[39] J. Miles and M. Shevlin, Applying Regression and Cor-
relation: A Guide for Students and Researchers, Sage
Publications, 1st ed. SAGE Publications Ltd, 2000.

[40] J. Cohen, Statistical Power Analysis for the Behav-
ioral Sciences, 2nd ed. Hillsdale, New Jersey, USA:
Lawrence Erlbaum Associates, Inc., 1988.

12

