
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Epochs: Trace-Driven Analytical Modeling of Job ExecutionTimes

Daniel A. Menasće
menasce@gmu.edu

Shouvik Bardhan
sbardhan@masonlive.gmu.edu

Technical Report GMU-CS-TR-2014-01

Abstract

Queuing theory has extensively studied the problem of esti-
mating job execution times in steady state conditions both in
the case of single queues and queuing networks. This paper
discusses the use of closed Queuing Network (QN) models
during finite time intervals to estimate the execution time of
jobs submitted to a computer system. More specifically, the
paper presents theEpochsalgorithm that allows job traces
and randomly generated job inter-arrival times to be used as
input to analytic models of computer systems. In other words,
the paper combines methods used in discrete event simulation
for the characterization of job arrivals with efficient analytic
methods to model contention for resources in a computer sys-
tem. The Epochs algorithm was validated against experimen-
tal results using jobs derived from a micro-benchmark and
real jobs. The validation shows that the absolute relative er-
ror between measurements and execution time predictions ob-
tained with the Epochs algorithm is below 10% in most cases
and is at most 15%.

1 Introduction

This paper discusses the use of closed Queuing Network (QN)
models during finite intervals to estimate the execution time
of jobs submitted to a computer system. Queuing theory has
extensively studied the problem of estimating job execution
times in steady state conditions both in the case of single
queues or queuing networks (see e.g., [2, 8, 10, 13]). Early
results on queuing theory were derived assuming certain
stochastic assumptions (e.g., steady-state equilibrium,Pois-
son arrivals, exponentially distributed service times). Some
of these results were later generalized to more general distri-
butions [2], but still the steady-state equilibrium assumption
was required in these cases.

However, the results obtained under stochastic assump-
tions proved to be quite robust even when these assumptions
were violated. Buzen explained why in his formulation of op-
erational analysis of computer system performance [3]. Op-
erational analysis establishes mathematical relationships be-
tween variables that can be measured during a finite time

interval. If the relationships are always true they are called
operational laws and if they require some assumptions they
are called operational theorems. The validity of the assump-
tions in operational theorems can also be assessed by taking
measurements during the same finite interval during which
the relationships are established. Examples of operational
assumptions are: (1) Flow Balance (i.e., the number of ar-
rivals is equal to the number of departures during a given
time interval, (2) Homogeneous Arrivals (i.e., the arrivalrate
does not depend on the queue size, (3) Homogeneous Service
Times (i.e., the mean time between completions does not de-
pend on the queue size), and (4) One-Step Behavior (i.e., a
queue length can only vary by increments of± 1) [3]. Note
that steady-state implies flow balance but the converse is not
true [4].

Buzen and Denning have derived in [4, 5] the operational
counterpart of the Mean Value Analysis (MVA) [13] equa-
tions for solving closed QN models. They showed that the
MVA equations are valid for finite time intervals if flow bal-
ance, one-step behavior, and homogeneous service times are
met. As will be seen later in this paper, this is a key aspect on
which we rely on.

The steady state treatment of queuing systems considers
open or closed systems. In the case of open queuing systems,
the job arrival process is characterized by an inter-arrival time
distribution and in the case of closed systems, the workload
is characterized by a job population vector that indicates the
steady state number of concurrent jobs of each class. Con-
tention for resources among jobs leads to waiting times that
are used to determine the steady state execution time of jobs
(either average and in some cases higher moments or distribu-
tions).

This paper considers a different kind of problem, the under-
standing of which is better illustrated with the help of Fig.1.
The figure shows a computer system (top right) and a model
of that system (bottom right), which represents the processors,
I/O devices and their respective queues. The system model
can be solved using simulation techniques [14] or analytic
models such as analytic queuing networks [2, 10, 13].

The left-hand side of Fig. 1 shows three typical methods
for characterizing the arrival process of jobs to a computer

1

Job

Trace

Arrival Process Characterization

(a)

Job Trace

(b)

Random

Number

Generation

According to

Distribution

(c)

Analytic

Expression

System Model

System

Figure 1: Methods for characterizing arrival processes in modeling.

system. Method (a) consists of a job trace that can be either
replayed against the real system in order to derive actual mea-
surements or used as input in trace-driven simulation stud-
ies. Method (b) consists of generating job inter-arrival times
(and their features) as random numbers that follow a desired
probability density function. This is a typical method usedin
discrete event simulation. Finally, method (c) considers the
mathematical expression that characterizes job inter-arrival
time distributions. This method is used in deriving solutions
for analytical models of computer systems.

This paper shows how to combine methods (a) and (b), typ-
ically used in simulation studies, with analytic system models.
The advantages of this approach are:

• The system model can be solved through efficient an-
alytic methods (e.g., Mean Value Analysis) instead of
more complex and time-consuming simulations.

• The analytic models can be employed in situations for
which they were not designed for (e.g., using a job trace
as input). Note that the conventional approach for deal-
ing with job traces as input to analytic models requires
processing the trace in order to fit a known distribution
for the job inter-arrival times. A difficulty may arise if
this distribution does not meet the assumptions required
by the analytic model.

The main contribution of this paper is an algorithm, which
we call theEpochsalgorithm, that estimates the execution
times of jobs in a job stream. These jobs are executed by a
computer system and contend for its resources. The algorithm
was validated against experimental results using both jobsde-
rived from a micro-benchmark and well-known benchmarks.
The validation shows that the absolute relative error between
measurements and predictions by the Epochs algorithm is be-

low 10% most of the time and is at most 15%. These errors
are considered to be acceptable for execution time prediction.

The rest of this paper is organized as follows. Section 2
describes the notation and formalizes the problem description.
Section 3 presents the Epochs algorithm. The next section
discusses validation results with a micro-benchmark and with
three UNIX benchmark programs. Section 6 discusses some
related work. Finally, section 7 presents some concluding
remarks.

2 Notation and Problem Description

Consider a known stream S =
{(J1, t1), · · · , (Jn, tn), · · · , (JN, tN)} of jobs Jn that ar-
rive at timestn, (n = 1, · · · , N). Let t1 ≤ t2 ≤ · · · tN

without loss of generality. Each jobJn is characterized
by a vector~Dn = (D1,n, · · · , DK,n) of service demands
at resources1, · · · , K. The service demands of a given
type of job are not deterministic but are average values
obtained during multiple executions of each type of job.
The differences in service demands for each job type in the
stream may be attributed to differences in the execution path
due to differences in the input data and/or due to a variability
in the conditions in which measurements were taken.

The number of jobs in the stream is finite and the job ar-
rival instants are assumed to be known as we first present
the Epochs algorithm. We then relax this latter assumption.
There are no steady state considerations. However, similarly
to the steady state analysis, there is contention for the useof
resources and this contention has to be considered in order to
compute the execution times of the jobs in the stream.

The problem described here could be addressed by using
trace-driven discrete simulation in whichS is the input trace.

2

In this approach, arriving jobs join queues, receive service
at the various simulated system resources, and leave after re-
ceiving all the required service at the system resources. The
service demands at each resource are drawn from some dis-
tribution at each job arrival. The approach presented in this
paper replaces the stochastic simulation of job behavior atthe
computer system by analytic models. However, job arrivals is
still “trace-driven” or obtained through random number gen-
eration.

Figure 2 illustrates the concepts presented here. We divide
time into time intervals of finite duration calledepochs. The
first epoch starts by definition att1, the time at which the first
job(s) arrive. The end of an epoch is characterized by one of
two events: (1) the arrival of a new job or jobs (if more than
one job arrives at the same time) or (2) the completion of a
job. The last epoch ends when the last job in execution ends.
Therefore, each epoch has a constant workload mix, i.e., a set
of jobs running concurrently.

E1 E2 E3 E4 E5 E6 E7

Job 1

Job 2

Job 3

Job 4

t1 t2 t3 t4 ej(J1) ej(J2) ej(J3) ej(J4)

Figure 2: Concept of Epochs.

Let us denote the subsequent epochs as
E1, · · · , Ei, · · · , EM and let e(Ei) be the end time of
epochEi (i = 1, · · · , M) such thate(E1) < e(E2) < · · · <
e(EM). Let e(E0) be defined ast1. The end time of epochi is
the start time of epochi + 1 for i = 1, · · · , M− 1. The time
it takes to execute all jobs in the streamS is e(EM)− e(E0).

With respect to Fig. 2, jobs 1-4, arrive at timest1, t2, t3, and
t4, respectively, and end at timesej(J1), ej(J2), ej(J3), and
ej(J4), respectively. There are seven epochs:E1, · · · , E7.

LetWi = {J i
i1

, J i
i2

, · · · , J i
ji
} be the workload mix during

epochEi. The jobs inWi compete for the use of theK
resources. Therefore, during each epoch, the jobs in that
epoch’s workload mix spend some time using the system re-
sources (i.e., spending some of their service demands at these
resources) and waiting to use these resources. The fraction
of its service demand that a job is able to use during a given
epoch is a function of the contention it finds from the other
jobs in that workload mix.

The workload mixes at the various epochs of Fig. 2 are:
W1 = {J1};W2 = {J1, J2};W3 = {J1, J2, J3};W4 =
{J1, J2, J3, J4};W5 = {J2, J3, J4};W6 = {J3, J4}; and
W7 = {J4}. Thus, the concurrency levels at the various
epochs of Fig. 2 are 1, 2, 3, 4, 3, 2, and 1, respectively.

The problem we want to solve is: Given a stream of jobs

S and their corresponding service demands, find the execu-
tion time of each job inS. The execution time of a jobJn is
the difference between its end timeej(Jn) and its start time
sj(Jn). Note that bothej(Jn) andsj(Jn) must coincide with
an epoch transition time because a new epoch starts when
a job arrives or completes. Clearly, the execution time of a
job depends on how much service at each device the job can
accomplish within each epoch. The accomplished service de-
mand within an epoch depends on the contention at various
resources caused by the jobs that are part of the workload mix
of that epoch.

Some additional notation is in order:

• d(Ei): duration of epochi.

• se(Jn): index of start epoch of jobJn. For example,
se(J2) = 2 in Fig.2. Note thatsj(Jn) = e(Ese(Jn)−1).

• ee(Jn): index of end epoch of jobJn. For example,
se(J2) = 5 in Fig.2. Note thatej(Jn) = e(Eee(Jn)).

• et(Jn): execution time of jobJn. et(Jn) = ej(Jn) −
sj(Jn).

• Di
k,n: portion of service demand at resourcek for job Jn

accomplished during epochEi. Then,

Dk,n =
ee(Jn)

∑
i=se(Jn)

Di
k,n (1)

• Ri
k,n: residual service demand at resourcek for job Jn at

the beginning of epochEi

3 The Epochs Algorithm

We now explain how we estimateej(Jn) using theEpochs
algorithm described in this section. The process consists of
estimatingDi

k,n for every jobJn in the workloadWi for epoch
Ei. This value can be obtained by solving a multi-class closed
QN model for epochEi. The parameters for this model are as
follows:

• Ri: number of classes for the model in epochEi. Ri =|
Wi |. Each class corresponds to exactly one job inWi.

• ~Ni = (N1, · · · , NRi
): population vector for the QN

model for epochEi. By definition, this vector is equal
to (1, · · · , 1) because each class corresponds to exactly
one job inWi.

• ~Ri
n: vector of residual service demands for jobJn at the

beginning of epochi. This vector can be computed as
the difference between the original vector of service de-
mands for that job and what the job has already accom-
plished in terms of its service demands from its starting
epoch until the epoch preceding epochEi.

~Ri
n = ~Dn −

i−1

∑
v=1

(Dv
1,n, · · · , Dv

K,n) (2)

3

• Ri: matrix of residual service demands for the model at
epochi. Each column corresponds to a job inWi and
each row corresponds to each of theK resources. The
values in columnn that correspond to jobJn come from
the vector~Ri

n.

• M(Ri, ~Ni, Ri): closed QN model with parametersRi,
~Ni and Ri. The solution to this model returns the ex-
ecution timesTi,r of classr (r = 1, · · · , Ri) (i.e., the
execution time of the job corresponding to classr).

The execution timesej(Jn) − sj(Jn) for all jobs inS are
computed through Algorithm 1, the Epochs algorithm. The
inputs to the algorithm are the job stream,S, and the vector
of service demands~Dn for each jobJn. Lines 5-6 initialize
the epoch counti, the workload mix for epochE1, the value of
the variable LastArrival to the earliest job arriving time (i.e.,
t1), and the residual service demand values as equal to the
service demands for all jobs in epoch 1.

Then, the algorithm loops (lines 7-50) while the set of jobs
in the workload for epochi is not empty. Line 13 invokes
an AMVA solver (see e.g., [10]) during epochi, a finite time
interval, to compute the execution times of the jobs present
at the beginning of that epoch. As indicated above, the MVA
equations are valid for finite intervals if flow balance, one-
step behavior, and homogenous service times are satisfied.
According to Buzen and Denning, many real systems satisfy
service homogeneity assumptions [4]. One step-behavior is
satisfied by our definition of an epoch, which starts when ei-
ther a new job arrives or a job leaves. Flow balance is also
satisfied by definition because the workload mix is constant
during any epoch, which implies that no jobs arrive or leave
during an epoch.

In line 15, the algorithm computes the minimum execution
time (MinEnd) of the jobs executing in the current epoch and,
in line 16, the NextArr function is used to return the next job
arrival time (NextArrival) by inspecting the job streamS after
instant LastArrival.

The algorithm then determines if the current epoch ends
due to a job completion (line 19) or due to a job arrival (line
33) by comparing the values of MinEnd and LastArrival. In
the former case, the end time of the job(s) completing at the
end of the epoch is computed (line 24) and the accomplished
demand for all jobs in the workload mix during the current
epoch is computed in line 26 as:

Di
k,n = Ri

k,n .
e(Ei)− e(Ei−1)

Ti,n
∀ k = 1, · · · , K ∀Jn ∈ Wi

(3)
Equation (3) says that the fraction of service demand accrued
by a job during an epoch is proportional to the proportion of
the total execution time of that job with respect to the epoch
duration.

The workload for the next epoch is computed by removing
the job(s) that completed from the workload of the current
epoch (line 31). In the latter case, the end time of the current
epoch is set to the arrival time of next job(s) to arrive in the

job stream (line 34). As before, the accomplished demand
for all jobs in the workload mix during the current epoch is
computed (line 38) as in line 26 and the workload for the
next epoch is computed by adding to the current workload
the arriving job(s) (line 43). Lines 45-49 take care of the case
in which there is an idle period in the job stream.

Algorithm 1 Epochs Algorithm: Compute Execution Times
for a Job Stream

Inputs: S = {(J1, t1), · · · , (Jn, tn), · · · , (JN , tN)} and
~Dn = (D1,n, · · · , DK,n) ∀ Jn

Output: et(Jn) ∀Jn ∈ S
/* Initialization */

5: i← 1;Wi = {Jn | (Jn, t1) ∈ S}; LastArrival← t1

R1
k,n ← Dk,n ∀ k = 1, · · · , K ∀Jn ∈ Wi

whileWi 6= ∅ do
/* Build matrix of service demands for epochi */
~Di

n ← ~Dn −∑
i−1
v=1(Dv

1,n, · · · , Dv
K,n) ∀ Jn ∈ Wi

10: Di ← BuildDemands(~Di
n ∀ Jn ∈ Wi)

/* Solve the closed QN model for epochi */
Ri ←| Wi |

(Ti,1, · · · , Ti,Ri
)← M(Ri, ~Ni, Di)

/* Determine end of epochi */

15: MinEnd← min
Ri
r=1 Ti,r /* minimum execution time */

NextArrival← NextArr (LastArrival,S) /* next job arrival time */
LastArrival← NextArrival
if NextArrival > MinEnd then

/* epochi ends due to job completion */
20: e(Ei)← e(Ei−1)+ MinEnd

/* Find set of completing jobs */
EndingJobs← {Jn | Jn ∈ Wi ∧ Ti,n = MinEnd}
/* Compute end time of ending jobs */
et(Jn)← e(Ei)− tn ∀Jn ∈ EndingJobs

25: /* Compute accomplished demand for all jobs inWi */
Di

k,n ← Ri
k,n × [e(Ei)− e(Ei−1)]/Ti,n

∀ k = 1, · · · , K ∀Jn ∈ Wi

/* Update residual service demands */
Ri+1

k,n ← Ri
k,n −Di

k,n ∀ k = 1, · · · , K ∀Jn ∈ Wi

30: /* Adjust workload mix for next epoch */
Wi+1 ←Wi− EndingJobs

else
/* Epoch i ends due to new jobs arrivals */
e(Ei)← NextArrival

35: /* Find set of next jobs to arrive */
ArrivingJobs← {Jn | (Jn, tn) ∈ S ∧ tn = NextArrival}
/* Compute accomplished demand for all jobs inWi */
Di

k,n ← Ri
k,n × [e(Ei)− e(Ei−1)]/Ti,n

∀ k = 1, · · · , K ∀Jn ∈ Wi

40: /* Update residual service demands */
Ri+1

k,n ← Ri
k,n −Di

k,n ∀ k = 1, · · · , K ∀Jn ∈ Wi

/* Adjust workload mix for next epoch */
Wi+1 ←Wi

⋃
ArrivingJobs

end if
45: i← i + 1 /* increment epoch count */

if (Wi = ∅) ∧ (NextArrival ≤ tN) then
/* there is an inactive period before the next epoch */
Wi ← {Jn | (Jn, NextArrival) ∈ S}

end if
50: end while

Table 1 illustrates the execution of the algorithm on a sim-
ple example wit two jobsJ1 and J2 and three epochs. JobJ1

has starting service demands at the CPU and disk equal to 2
sec and 4 sec, respectively. The starting service demands at
the CPU and disk for jobJ2 are 3 sec and 5 sec, respectively.
Row 2 of the table indicates the event that triggers the startof
an epoch. Row 3 indicates the workload mix at each epoch.

4

Row 4 indicates the duration of each epoch. Row 5 shows the
end time of each epoch. Rows 6 and 7 and 11 and 12 show
the residual service demands at the CPU and disk for jobsJ1

andJ2, respectively, at the start of each epoch. Rows 6 and 12
illustrate the execution times of jobsJ1 and J2, respectively,
as if no other event were to start a new epoch and these jobs
would continuously execute as indicated by the workload mix
for that epoch. Lines 9 and 10 and 14 and 15 indicate the ac-
complished service demands for jobsJ1 and J2, respectively
at each epoch.

EpochE1 ends due to the arrival of jobJ2 at time equal
to 3 sec. Epoch 2 now starts and jobsJ1 and J2 execute si-
multaneously during a period of time. During epochE1, job
J1 was able to accomplish half of its service demands at the
CPU and disk. The residual service demands for that job at
the beginning of epochE2 are 1 sec and 2 sec, respectively.
The solution of the AMVA model for epochE2 indicates that
the execution times for jobsJ1 and J2 are 4.69 sec and 12.44
sec, respectively. Because no other job arrives, epochE2 ends
when jobJ1 ends at time 3 + 4.69 = 7.69 sec. The duration
of epochE2 is then 4.69 sec. The residual service demands at
the CPU and disk for jobJ2 are 1.87 sec and 3.11 sec respec-
tively at the start of epochE3. During that epoch, jobJ2 runs
by itself and takes 4.98 sec to complete. Thus, the execution
time of job J2 is 4.69 + 4.98 = 9.67 sec.

The Epochs algorithm was described as requiring that the
entire job streamS be known in advance, as is the case of
a trace in a trace-driven simulation. Minor modifications
in the algorithm allow the job arrival process to be deter-
mined through stochastic generation of job types and job
inter-arrival times from a given distribution as would be done
in a typical discrete event simulation. The modifications are
as follows:

• Remove the requirement that the job streamS be known
as input, but continue to require that the job types be
known and randomly generated and that their service de-
mands be known.

• Replace line 16 of the Epochs algorithm by NextArrival
← NextArr (LastArrival, IntArrivalTimeDistrib) where
the function NextArr determines the next arrival instant
by generating a job inter-arrival time from a given distri-
bution IntArrivalTimeDistrib and adding the generated
value to LastArrival.

4 Experimental Validation

As a first validation of the Epochs algorithm, we built a micro-
benchmark program in C to provide us control and flexibil-
ity in designing jobs with varying characteristics (see pseudo-
code in Algorithm 2). The program alternates between writ-
ing to a file and performing CPU operations (in this case, com-
puting π using the Monte Carlo method). The main loop is
repeated RepeatCount times and within each loop 50% of the
time I/O is done and the other 50% a CPU-Intensive compu-
tation takes place.

Algorithm 2 Micro-benchmark Pseudo Code
Input: RepeatCount
/* Open a temp file in direct and truncate mode */
f← OpenTempFile();
for i = 0 to RepeatCountdo

5: /* Compute random number between 0 and 1 */
r← GenerateRandomNumber(0,1);
if r > .5 then

/* write block of size 2048 bytes five times */
performDiskIO;

10: else
/* CPU activity */
r ← GenerateRandomNumber (0, Repeat-
Count/100)
for all i = 1 to r do

Calculateπ using Monte Carlo with iteration
count equal to RepeatCount

15: end for
end if

end for
CloseFile (f);
printTimingInfo;

The micro benchmark was parameterized to generate four
different types of jobs. Each job was run in isolation 100
times and average CPU and I/O service demands were com-
puted.We used two hardware configurations to run the exper-
iments with the benchmark:

1. Virtual Machine: A RHEL 2.6+ kernel based CentOS
VM running on one core of a i7-3740QM processor run-
ning at 2.7GHz. This VM has 4GB of memory.

2. Physical Machine: A machine running CentOS Linux
2.6+ kernel. This machine has a 32-core Xeon(R) CPU
E5-2665 running at 2.4 GHz and is organized as 2
NUMA nodes with a total of 132 GB memory. Only
one of the 32 cores was used to run the benchmark.

The service demands obtained by running the four types of
jobs at the VM and physical machine environments are shown
in Tables 2 and 3, respectively.

Table 2: Service Demands for Jobs on the Virtual Machine
Job Id→ Job1 Job2 Job3 Job4

CPU 53.4 18.7 6.3 26.96
Disk 6.6 4.5 3.4 5.14
RepeatCount 10000 7000 5000 8000

Table 3: Service Demands for Jobs on the Physical Machine
Job Id→ Job1 Job2 Job3 Job4

CPU 60.38 28.5 4.87 11.05
Disk 9.02 8.3 3.24 5.45
RepeatCount 9000 7000 4000 5000

5

Table 1: Example of the operation of the Epochs Algorithm

Epoch 1 Epoch 2 Epoch 3

Start Event Arr J1 Arr J2 End J1
Wi J1 J1, J2 J2
d(Ei) 3 4.69 4.98
e(Ei) 3 3+ 4.69 = 7.69 7.69 + 4.98 = 12.67

Ri
cpu,1 2 2− 1 = 1 -

Ri
disk,1 4 4− 2 = 2 -

Ti,1 6 4.69 -
Di

cpu,1 2× 3/6 = 1 1× 4.69/4.69 = 1 -

Di
disk,1 4× 3/6 = 2 2× 4.69/4.69 = 2 -

Ri
cpu,2 - 3 3 - 1.13 = 1.87

Ri
disk,2 - 5 5 - 1.89 = 3.11

Ti,2 - 12.44 4.98
Di

cpu,2 - 3× 4.69/12.44 = 1.13 1.87× 4.98/4.98 = 1.87

Di
disk,2 - 5× 4.69/12.44 = 1.89 3.11× 4.98/4.98 = 3.11

The measured execution times reported in the tables that
follow represent averages over 10 runs for the virtual machine
configuration and over 15 runs for the physical machine one.
The tables also report 95% confidence intervals for these av-
erages.

We ran two scenarios on the physical machine configura-
tion using our micro-benchmark and the four jobs derived
from it. The epoch data for the first scenario, which has seven
epochs, is shown in Table 4. The table also shows the start
time and end time of each epoch, their duration, the event
that triggered the start of the epoch, and the workload mix
in each epoch. The arrival times of jobsJ1-J4 were predeter-
mined. The other values in the table were determined through
measurements obtained by the execution of the four jobs. The
values of Table 4 represent a single run of Scenario 1 for il-
lustration purposes.

Table 5 shows the average measured execution times for
the four jobs for scenario 1 on the physical machine and their
corresponding 95% confidence intervals. Column 3 shows
the predicted execution times computed with the Epochs algo-
rithm. The last column of the table shows the percent relative
error, whose absolute value varies between 1.7% and 8.4%.

Table 5: Execution times for the physical machine - Micro-
benchmark - Scenario 1

Job Num Measured Predicted % Relative
Execution Execution
Time Time Error

Job 1 116.9± 2.3 112.6 3.7
Job 2 69.1± 0.8 68.4 1.0
Job 3 24.9± 0.07 27.0 -8.4
Job 4 17.2± 0.8 17.5 -1.7

The epoch data for the second scenario on the physical ma-
chine is shown in Table 6. One of the differences between this

scenario and the previous is that two instances of each of the
four job types were used. The second instance is indicated in
the table with a “-2” suffix (e.g.,J1-2). This execution leads
to 16 epochs and a larger concurrency level than the previ-
ous scenario. For example, there are eight concurrent jobs in
execution in epoch 8.

Similarly to Table 5, Table 7 shows experimental and pre-
dicted execution times for each of the jobs. As it can be seen,
most of the absolute values of the percent relative error are
below 3.4%. Only one value has an error of 15%.

Table 7: Execution times for the physical machine - Micro-
benchmark - Scenario 2

Job Measured Predicted % Relative
Number Exec. Time Exec. Time Error

Job 1 207.2± 2.24 204.4 1.4
Job 1-2 198.7± 1.03 195.7 1.5
Job 2 142.2± 2.60 137.4 3.4
Job 2-2 142.0± 2.37 138.3 2.6
Job 3 24.9± 0.44 25.5 -2.4
Job 3-2 43.3± 0.75 36.8 15
Job 4 71.4± 0.43 71.6 -0.3
Job 4-2 68.8± 0.39 70.8 -2.9

Table 8 shows epoch data for a virtual machine scenario
with jobs from the micro-benchmark. There are seven epochs
in this scenario. The measured execution times and execu-
tion times predicted by the Epochs algorithm for the data in
Table 8 are shown in Table 9. As the table indicates, the
absolute relative error varies from 4 to 11.6%.

We then validated the Epochs algorithm using jobs from
real Unix benchmarks. In particular, we selected three jobs
from the benchmark: Nbench [18], Bonnie++ [16], and
Dbench [17]. Nbench is a synthetic computing benchmark
program intended to measure a computer’s CPU, FPU, and

6

Table 4: Epoch data for the physical machine - Micro-benchmark - Scenario1
Epoch Start End Duration Start Workload
No. Time Time Event Mix

1 0 5 5 Arr J1 J1
2 5 10 5 Arr J2 J1,J2
3 10 15 5 Arr J3 J1,J2,J3
4 15 32.5 17.5 End J3 J1,J2
5 32.5 77.3 44.8 End J2, Arr J4 J1,J4
6 77.3 104.3 27.0 End J4 J1
7 104.3 118.0 13.7 End J1 J1

Table 6: Epoch data for the physical machine - Micro-benchmark - Scenario 2
Epoch Start End Duration Start Workload
No. Time Time Event Mix

1 0 5 5 Arr J1 J1
2 5 10 5 Arr J2 J1, J2
3 10 15 5 Arr J3 J1, J2, J3
4 15 20 5 Arr J4 J1, J2, J3, J4
5 20 25 5 Arr J1 J1, J2, J3, J4, J1-2
6 25 30 5 Arr J2 J1, J2, J3, J4, J1-2, J2-2
7 30 35 5 Arr J3 J1, J2, J3, J4, J1-2, J2-2, J3-2
8 35 40 5 Arr J4 J1, J2, J3, J4, J1-2, J2-2, J3-2, J4-2
9 40 40.5 .5 End J3 J1, J2, J4, J1-2, J2-2, J3-2, J4-2
10 40.5 71.8 31.3 End J3-2 J1, J2, J4, J1-2, J2-2, J4-2
11 71.8 91.6 19.8 End J4 J1, J2, J1-2, J2-2, J4-2, J2-2, J4-2
12 91.6 110.8 19.2 End J4-2 J1, J2, J1-2, J2-2
13 110.8 147.3 36.5 End J2 J1, J1-2, J2-2
14 147.3 168.2 20.9 End J2-2 J1, J1-2
15 168.2 209.3 41.1 End J1 J1-2
16 209.3 220.6 11.3 End J1-2 J1-2

Table 8: Epoch data for the virtual machine environment - Micro-benchmark Scenario
Epoch Start End Duration Start Workload
No. Time Time Event Mix

1 0 5 5 Arr J1 J1
2 5 10 5 Arr J2 J1,J2
3 10 15 5 Arr J3 J1,J2,J3
4 15 36.9 21.9 End J3 J1,J2
5 36.9 57.2 20.3 End J2,Arr J4 J1,J4
6 57.2 114.8 57.6 End J4 J1
7 114.8 115.5 0.7 End J1 J1

7

Table 9: Execution times for the virtual machine environment
- Micro-benchmark Scenario

Job Measured Predicted % Relative
Number Execution Execution Error

Time Time Error

Job 1 114.8± 0.6 110.2 4.0
Job 2 61.8± 0.88 57.6 6.6
Job 3 50.6± 0.52 47.3 6.5
Job 4 24.8± 1.02 21.9 11.6

Table 10: Service Demands for UNIX benchmark jobs on the
Virtual Machine Environment

Job Names→ Nbench Bonnie++ Dbench
(J1) (J2) (J3)

CPU 25.0 8.2 5.5
Disk 0.0 9.8 4.5

memory system speeds, and includes various types of sorts,
bit manipulation, compression and encryption algorithms,LU
decomposition, floating-point emulation, neural network,and
a task allocation algorithm. Bonnie++ is a benchmark suite
aimed at performing a number of simple tests of hard drive
and file system performance. Dbench is a tool to generate I/O
workloads to either a filesystem or to a networked CIFS or
NFS server.

We ran each of these three benchmark programs in isola-
tion a large number of times and computed the average ser-
vice demands at the CPU and disk on the virtual machine
configuration. The results are shown in Table 10, which also
indicates that these three jobs will be referred heretoforeas
J1, J2, and J3.

Table 11 shows epoch data for an experiment using the
three UNIX benchmark jobs described above. There are 12
epochs in this scenario and two instances of jobs J1, J2, and
J3 arriving at difference time instants. During epoch 6, both
instances of the three jobs are running concurrently.

Table 12 shows the average execution times and their 95%
confidence intervals as well as the job execution times pre-
dicted by the Epochs algorithm. As it can be seen, the abso-
lute relative error varied from 2.7% to 11.3%.

Table 12: Execution times for Unix Benchmark Jobs in the
Virtual Machine Environment

Job Measured Predicted % Relative
Number Exec. Time Exec. Time Error

Job 1 67.6± 1.08 69.4 -2.7
Job 1-2 67.8± 1.24 64.6 4.7
Job 2 51.3± 2.04 45.5 11.3
Job 2-2 53.0± 1.43 47.3 10.75
Job 3 27.8± 0.83 29.9 -7.5
Job 3-2 30.3± 1.2 32.2 -6.2

5 Applications of the Epochs Algo-
rithm to Scheduling

One of the applications of the Epochs algorithm is on the per-
formance evaluation of server clusters that receive a stream of
jobs that are scheduled according to some scheduling policy.
Figure 3 shows several servers each receiving a sub-stream of
the global job stream. The stream of jobs received by each
server is determined by a scheduler.

Modeling the scheduler using analytic models is very diffi-
cult in general. There is a vast body of literature on analytic
modeling of schedulers for single queues or for server clus-
ters in which servers are modeled as single queues. See [7]
for a good survey on the topic. However, one can either sim-
ulate the scheduler or implement the scheduler in a way that
generates the local sub-streams for each server. Then, the
Epochs algorithm can be applied to each server as was done
in [1]. For example, Fig. 4 shows the makespan (i.e., the time
to complete all the jobs in a job stream) for 10 different job
streams randomly generated from jobs chosen from Nbench,
Bonnie++, and Dbench, for an average arrival rate of 0.167
jobs/sec.

The four scheduling policies used in Fig. 4 are:

• Round Robin (RR): The scheduler chooses the servers
in the cluster in a round robin fashion. This scheduling
scheme is oblivious to the utilization of any server re-
source (either CPU or disk).

• Least Response Time (LRT): This scheduling algorithm
finds the machine on which the incoming job is predicted
to have the least response time. Since the scheduler has
the exact states of all the jobs running on all the servers,
it can estimate the response time of an incoming job if it
were added to any node in the cluster.

• Least Maximum Utilization First (LMUF): The server
with the minimum utilization for the resource with the

Scheduler

Global

Job

Stream

Local

Job

Stream

Local

Job

Stream

Local

Job

Stream

Local

Job

Stream

Figure 3: Use of the Epochs Algorithm for Assessing Sched-
ulers in Server Clusters.

8

Table 11: Epoch data for Unix Benchmark Jobs in the Virtual Machine Environment
Epoch Start End Duration Start Workload
No. Time Time Event Mix

1 0 5 5 Arr J1 J1
2 5 10 5 Arr J2 J1, J2
3 10 15 5 Arr J3 J1, J2, J3
4 15 20 5 Arr J1-2 J1, J2, J3, J1-2
5 20 25 5 Arr J2-2 J1, J2, J3, J1-2, J2-2
6 25 39.97 14.97 Arr J3-2 J1, J2, J3, J1-2, J2-2, J3-2
7 39.97 50.47 10.5 End J3 J1, J2, J1-2, J2-2, J3-2
8 50.47 57.23 6.76 End J2 J1, J1-2, J2-2, J3-2
9 57.23 67.33 10.1 End J3-2 J1, J1-2, J2-2
10 67.33 69.38 2.05 End J2-2 J1, J1-2
11 69.38 79.59 10.21 End J1 J1-2
12 79.59 79.59 0 End J1-2 None

 1000

 1050

 1100

 1150

 1200

 1250

 1300

1 2 3 4 5 6 7 8 9 10

M
a
k
e
s
p
a
n
 (

s
e
c
o
n
d
s
)

Job Stream Number

RR
LeastResp

LMUF
LMUFT

Figure 4: Makespan vs. jobs stream for various schedulers.

highest utilization is the one that receives an incoming
job. The utilization of the resources at each server is
calculated as a snapshot at the time the new job arrives
to be scheduled.

• Least Maximum Utilization First-Threshold (LMUF-T):
Similar to LMUF except that a job is not sent to a server
if the utilization for the resource with the highest utiliza-
tion exceeds a certain threshold. In that case, the job is
queued at the scheduler. When a job completes at any
machine, the scheduler attempts to send the queued job
again to one of the servers. The goal of LMUF-T is to
bound the contention at each node. However, jobs will
wait at the scheduler. It may be more advantageous to
wait a bit at the scheduler and then be assigned to a less
loaded machine.

Each of the four schedulers was implemented taking as in-
put a global job stream that arrives at a server cluster. Then, a
scheduler uses its scheduling policy to decide where the arriv-

ing jobs should be sent, generating the job streams for each
server.

6 Related Work

Combining different modeling techniques to evaluate the per-
formance of a computer system has been done by many be-
fore with the goal of obtaining the benefits of more than one
technique. For example, Mehdipour et al. have combined
simulation and analytic models for processor design [9]. Nor-
ton has introduced the Simalytic technique, which combines
simulation methods with analytic models [12]. Menascé has
shown how to combine Generalized Stochastic Petri Nets
(GSPN) and Queuing Networks (QN) to reduce the size of
the state space of GSPNs [11].

The idea of hybrid simulation/analytic models is not new.
In fact, an interesting taxonomy on the types of hybrid mod-
els is presented in [15]. In that paper the authors present
some examples of hybrid models. All examples except for
one are for single-queue systems. The exception is for a com-
puter system with admission control due to a limited multi-
programming degree. The authors in [15] suggest simulating
the computer system for different value of the degree of mul-
tiprogrammingn, and modeling the entire system as a load
dependent single queue in which the service rate is a function
of n.

The current paper differs from previous work in the sense
that it takes inputs that are typical in simulation modelingand
uses them as inputs for analytic QN models.

7 Concluding Remarks

The traditional approach for specifying the workload in ana-
lytic queuing network models uses the following methods for
specifying the workload: (a) average job arrival rates in the
case of open job classes and (b) job population in the case of
closed classes [2, 10, 13]. Besides these two types of work-
load intensity parameters, the service demands for each job

9

class have to be specified. This paper presented a novel tech-
nique for driving analytic queuing network models with job
traces, which specify job arrival instants within the traceand
the types of the arriving jobs. Service demands are associated
with job types.

The method presented here, called the Epochs algorithm, is
based on scanning a job trace and determining finite-duration
time intervals called epochs in which a certain workload mix
is active. The duration of each epoch is estimated using the
Mean Value Analysis equations in each epoch in order to de-
termine when the current epoch terminates due to the comple-
tion of a job. The basis of the approach used in the Epochs al-
gorithm lies in the fact that the MVA equations are valid for fi-
nite duration intervals if certain operational assumptions such
as flow balance, one-step behavior, and homogenous service
times are satisfied [4]. The advantage of the method presented
in this paper over traditional methods for specifying the work-
load in analytic models is that any distribution-independent
job trace can be used as input as long as the operational as-
sumptions are met. These assumptions are much more gen-
eral and easy to verify than the stochastic assumptions used
in traditional analytic models.

The job execution time predictions were validated experi-
mentally using a micro-benchmark developed by the authors
and with real programs from well-known Unix benchmarks.
The results indicated that the relative absolute error stays be-
low 10% in most cases and is at most 15% for the cases ex-
amined.

References

[1] S. Bardhan and D.A. Menascé,Trace-Driven Analytic
Modeling for Scheduler Assessment, Technical Report
GMU-CS-TR-2014-02, Computer Science Department,
George Mason University, March 2014, available at
http://cs.gmu.edu.

[2] F. Baskett, K.M. Chandy, R.R. Muntz, F. Palacios-
Gomez,Open, closed and mixed networks of queues with
different classes of customers, J. ACM 22 (2), 1975, pp.
248260.

[3] J.P. Buzen,Fundamental Operational Laws of Computer
System Performance, Acta Informatica, Vol. 7, No. 2,
1976, pp. 167-182.

[4] J.P. Buzen and P.J. Denning,Operational Treatment of
Queue Distributions and Mean-Value Analysis, Com-
puter Performance, IPC Press, Vol. 1, No. 1, June 1980,
pp. 6-15.

[5] J.P. Buzen and P.J. Denning,Measuring and Calculating
Queue Length Distributions, IEEE Computer, April 1980,
pp. 33-44.

[6] P.J. Denning and J.P. Buzen,The Operational Analysis of
Queuing Network Models, ACM Comp. Surveys, Vol. 10,
No. 3, September 1978, pp. 225-261.

[7] Harchol-Balter, Performance Modeling and Design of
Computer Systems: Queuing Theory in Action, Cam-
bridge University Press, 2013.

[8] L. Kleinrock, Queueing Systems. Volume 1: Theory,
John Wiley & Sons, 1975.

[9] F. Mehdipour, H. Noori, B. Javadi, H. Honda, K. Inoue,
K. Murakami, and J. Kazuaki,A combined analytical and
simulation-based model for performance evaluation of a
reconfigurable instruction set processor, Proc. 2009 Asia
and South Pacific Design Automation Conference, Jan-
uary 19-22, 2009.

[10] D.A. Menascé, V.A.F. Almeida, and L.W. Dowdy,Per-
formance by Design: Computer Capacity Planning by
Example, Prentice Hall, Upper Saddle River, 2004.

[11] D.A. Menascé,A Methodology for Combining GSPNs
and QNs, 2011 International Computer Measurement
Group Conference, Washington, D.C., December 5-9,
2011.

[12] T.R. Norton, The Simalytic Modeling Technique, in
Performance Engineering, State of the Art and Current
Trends, eds. Reiner Dumke, Claus Rautenstrauch, and
Andre Scholz, 2001, Lecture Notes in Computer Science,
Vol. 2047, 2001, Springer-Verlag Berlin/Heidelberg, pp.
222–238.

[13] M. Reiser and S. Lavenberg,Mean-Value Analysis of
Closed Multichain Queuing Networks, J. ACM 27 (2),
1980.

[14] F.L. Severance,System Modeling and Simulation: An
Introduction, John Wiley & Sons, Inc., 2001.

[15] J.G. Shanthikumar and R.G. Sargent,A Unifying View
of Hybrid Simulation/Analytic Models and Modeling, Op-
erations Research, Vol. 31, No. 6, 1983, INFORMS, pp.
1030–1052.

[16] http://www.coker.com.au/bonnie++/

[17] http://dbench.samba.org/

[18] http://www.tux.org/ mayer/linux/bmark.html

10

