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Abstract

Large enterprises use clusters of computers with varying com-
puting power to process workloads that are heterogeneous in
terms of the type of jobs and the nature of their arrival pro-
cesses. The scheduling of jobs from a workload has a signif-
icant impact on their execution times. This report presentsa
trace-driven analytic model (TDAM) method that can be used
to assess the impact of different schedulers on job execution
times. The TDAM approach uses an implementation of the
scheduler to schedule jobs that are fed into analytic models
of the computers in the cluster. These analytic models use
closed queuing network methods to estimate congestion at the
various nodes of the cluster. The report demonstrates the use-
fulness of the TDAM method by showing how four different
types of schedulers affect the execution times of jobs derived
from well-known benchmarks. The report also demonstrates
how the method can be applied to heterogeneous computer
clusters such as the ones used to run MapReduce jobs.

1 Introduction

Many enterprises today run applications on a cluster of het-
erogeneous machines. Apache Hadoop [24] and associated
software stacks (e.g., HBASE, Accumulo, Flume and many
others [28, 29, 30]) are examples of such software platforms
and products. Large Internet software organizations like Ama-
zon, Yahoo and Facebook run thousands of Hadoop jobs on
a routine basis on clusters comprising of thousands of server
nodes. These jobs have varied completion time requirements
since some are ad hoc and quick query jobs, some are medium
size data mining jobs, and some are very large (in terms of
resource requirements and completion times) analytical pro-
cessing jobs.

Hadoop developers have developed several different sched-
ulers over the years to schedule MapReduce jobs on Hadoop
platforms to suit their particular organizational needs. These
schedulers need extensive testing and verification for correct-
ness. Most job schedulers in the Hadoop ecosystem have

complex XML configuration files to set up queues and quo-
tas. But, more importantly, testing and validation is needed to
check if the schedulers are appropriate for the intended work-
load mix.

The efficacy of a job scheduler can be assessed in many
different ways: (1)Experimentation:Select a representative
mix of real jobs, setup a real cluster, run the jobs using a
given scheduler and measure the job’s completion time. This
method is very onerous mainly because obtaining a suitable
free cluster for experimentation is often very difficult. (2) Sim-
ulation: Simulate a representative mix of real jobs running
through a simulated scheduler and using simulated servers.
This method is complex because not only the scheduler but
the processing and I/O resources of the servers have to be sim-
ulated in software. (3)Analytic modeling:Develop analytic
models of the scheduler, servers and their queues using the
proper arrival distributions. This is not trivial because model-
ing the behavior of even moderately complex scheduling dis-
ciplines and their interaction with the server models for het-
erogeneous workloads may not be mathematically tractable.

This report presents a novel method to assess schedulers
for server clusters. This method, called TDAM (Trace Driven
Analytic Model), relies on the implementation of the sched-
uler under evaluation and on analytic closed queuing network
(QN) models to assess resource contention at the servers. The
implemented scheduler takes as input a synthetic trace of jobs
of various types and schedules them to the “servers,” which
are modeled by the server QN models. By using an implemen-
tation of the scheduler on a simulated or synthetic job trace
we avoid the complexity of modeling the behavior of schedul-
ing policies. The analytic QN models capture the conges-
tion of CPU and I/O resources at the various servers. These
QN models are solved using the Epochs algorithm (see [14]),
which uses Mean Value Analysis (MVA) [15, 17] for finite
time intervals, called epochs, using an operational analysis
formulation [5]. We applied the TDAM method to assess four
cluster scheduling policies under different workload types.

The rest of this report is organized as follows. Section 2
discusses the need for assessing different job schedulers.Sec-
tion 3 describes the building blocks of the TDAM method.
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The following section presents and discusses the results ofus-
ing TDAM on different types of workloads and scheduling
policies. Section 5 discusses related work and lastly section 6
presents some concluding remarks and future work.

2 The Need for Robust Job Scheduler
Assessment

Most known schedulers, including those created for schedul-
ing Hadoop MapReduce jobs, do not provide maximum com-
pletion time guarantees. A big challenge in today’s Hadoop
and similar platform clusters is to manage the allocation of
resources to different jobs so that a service level objective
(SLO) can be advertised and met. This requires (1) a quick,
efficient, and realistic way to assess the schedulers beforethey
go into production; and (2) an efficient method to estimate re-
source congestion at the servers.

Our solution to this challenge is the TDAM method, which
allows any type of job scheduler to be evaluated on any job
trace. It is conceivable that even for a single enterprise, de-
pending on the time of day and workload mix, one scheduling
scheme outperforms another. Dynamically choosing sched-
ulers based on the workload mix and overall resource utiliza-
tion (which requires collecting and analyzing data from every
node and other cluster characteristics like network bandwidth
and topology) is the subject of self-configuring autonomic job
scheduling [16]. We do not discuss autonomic aspects of dy-
namic scheduling in any detail here.

One of the primary goals of our research is to show how
to apply the TDAM method to enterprises using the Hadoop
platform to run MapReduce jobs. Originally, Hadoop was
designed to run large batch jobs infrequently. The out-of-the-
box FIFO scheduler packaged with Hadoop was sufficient for
that purpose. There was really no need to worry about re-
source utilization to complete jobs in a timely manner. How-
ever, other schedulers were developed as the number of jobs
increased many fold and organizations started to use Hadoop
not only for batch analytics but also for small ad-hoc queries.
The Capacity Scheduler[31] was developed for more effi-
cient cluster sharing. TheFair Scheduler[32] was introduced
to maintain fairness between different cluster users.

A few more schedulers have been developed since
then [12]. These schedulers did not provide any method to
assess their effects on a job trace, but more importantly there
was no way to know how they would behave under moder-
ate or heavy workloads without actually running real jobs.
The next section describe the Job Scheduler Evaluator (JSE),
which is based on the TDAM method and affords efficient as-
sessment of job completion times under a variety of schedul-
ing disciplines.

3 A Job Scheduler Evaluator Based on
TDAM

Figure 1 shows a component-level diagram of the JSE. The
workload produced by theWorkload Generatoris a stream of
jobs with their types and the list of tasks that compose the
jobs. For example, MapReduce jobs are composed of map
tasks and reduce tasks. The workload trace is parsed by the
Job List Managerand by theTask List Managercomponents
of JSE.
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Figure 1: Components of the TDAM-based JSE

The Scheduler Evaluator Driveruses the Epochs algo-
rithm [14] and the scheduling policy provided as input to gen-
erate a stream of tasks to individual server views managed by
the Server View Manager. The Epochs algorithm estimates
the execution time of jobs in a job/task stream. Time is di-
vided into intervals of finite duration calledepochs. The first
epoch starts when the first job arrives and the end of an epoch
is characterized by either the arrival of a new job or the com-
pletion of a job. The Epochs algorithm predicts the start time
of the next epoch on any cluster node by being aware of the
residual times of each task as tasks arrive and leave the nodes.
The Residual Task Calculatorcomponent is at the heart of
the JSE and computes the residual service time of each task
in execution using the Epochs algorithm [14]. This algorithm
relies on the operational counterpart for finite time intervals
of the Mean Value Analysis (MVA) [17] equations for closed
QN models when flow balance, one-step behavior, and homo-
geneous service times are met [4, 5]. The Epochs algorithm
was validated experimentally using a micro-benchmark and
real jobs from a Unix benchmark [14].

The Analytic Performance Modelblock implements the
Approximate Mean Value Analysis (AMVA) algorithm [15].
In essence, the Epochs algorithm along with the AMVA cal-
culation engine allows us to predict the completion time of
individual tasks when a stream of jobs arrives to be executed
on a cluster node.

The idea behind JSE involves scheduling a stream of jobs
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that need to be executed virtually (since these jobs are not re-
ally executing on servers) and thus have to be scheduled to run
on different nodes of a cluster. As jobs arrive, theScheduler
Evaluator Driveruses the scheduling policy to decide which
cluster node should receive a task. So, each server in the clus-
ter sees a stream of arriving tasks (which is a sub-stream of
the original arriving stream). We then apply the Epochs algo-
rithm [14] to each individual server using its sub-stream.

The Scheduler Evaluator Driver, as implemented here,
does not have a callback mechanism from the task being “ex-
ecuted” on the server into the scheduler driver when the task
completes. This means that when a task finishes, it cannot let
the scheduler know that it is done. This was taken care of in
our implementation by having the scheduler be aware of the
next epoch information for each server, i.e., the time in the
future when a task will finish. Not having the servers have
their own thread of control simplifies the driver code.

4 Using the JSE

We used the following four non-preemptive scheduling poli-
cies to illustrate the used of the JSE.

• Round Robin (RR): Chooses the servers in the cluster in
a round robin fashion. This scheduling scheme is oblivi-
ous to the utilization of any server resource (either CPU
or disk).

• Least Response Time (LRT): Selects the server on which
the incoming job is predicted to have the least response
time. Since the scheduler has the exact states of all the
jobs running on all the servers, it can calculate the re-
sponse time of the incoming job if it were added to any
node in the cluster.

• Least Maximum Utilization First (LMUF): Selects the
server with the minimum utilization for the resource
with the highest utilization is the one that receives an
incoming job. The utilization of the resources at each
server is calculated as a snapshot at the time the new job
arrives to be scheduled.

• Least Maximum Utilization First-Threshold (LMUF-T):
Similar to LMUF except that a job is not sent to a server
if the utilization for the resource with the highest uti-
lization at that server exceeds a certain threshold. In
that case, the job is queued at the scheduler. When a
job completes at any machine, the scheduler attempts to
send the queued job again to one of the servers. The
goal of LMUF-T is to bound the contention at each node
by having jobs wait at the scheduler. It may be more
advantageous to wait a bit at the scheduler and then be
assigned to a less loaded machine.

For the workload used to compare the schedulers, we devel-
oped a program that creates job streams by randomly select-
ing jobs from one of the three benchmarks: Bonnie++ [25],

Nbench [27], and Dbench [26]. Inter-arrival times were as-
sumed to be exponentially distributed, even though this as-
sumption is not required by TDAM. Any arbitrary arrival pro-
cess that satisfies the homogeneous arrival assumption can be
used [4, 5]. The job stream files thus created, along with the
scheduling scheme and the number of servers in the cluster
are the main input parameters to the JSE.

We consider both single-task jobs and multi-task jobs. In a
multi-task job, the various tasks of a job run on the same or
different machines of a cluster and the job is deemed to have
completed only when all its tasks have completed. MapRe-
duce jobs are examples of multi-task jobs [24].

First, we consider the effect of different scheduling
schemes on the makespan of various single-task jobs. Then,
we consider the impact of the CPU utilization threshold in
the LMUF-T scheduling policy. Lastly, we discuss the results
of running the JSE with multi-task jobs on a heterogeneous
cluster.

4.1 Effect of the Scheduling Policy on the
Makespan

This section considers how the scheduling policy affects the
makespan, i.e., the time needed to execute all jobs in a job
stream. Table 1 shows the characteristics of the jobs used in
the evaluation carried out in this section. For single-taskjobs,
we made very minor modifications to three benchmark pro-
grams (Bonnie++ [25], Nbench [27] and Dbench [26]) and
measured their CPU and disk service demands (see Table 1).
Changing the input parameters to these benchmark programs
allowed us to obtain two sets of service demand values (e.g.,
for Bonnie++, the two sets of values for CPU and disk de-
mands are [8.2 sec, 9.8sec] and [16.4 sec, 19.6 sec]). The job
inter-arrival times are exponentially distributed with averages
of 3 sec and 6 sec. Thus, as shown in Table 1, we obtained
four different workloads by combining two service demand
sets and two average inter-arrival time values.

For each workload in Table 1, we created 10 job streams
by randomly selecting, with equal probability, the type of job
at each arrival instant. Figures 2(a)-2(d) depict the makespan
for all 10 streams for each of the four workloads and for each
of the four scheduling disciplines. The utilization threshold
used in LMUF-T is 70% for all the graphs. Note that the y-
axis does not start at zero so that the differences between the
schedulers become easier to visualize. However, as discussed

Workload 1 2 3 4
Job↓ Inter-arrival time:6 sec Inter-arrival time:3 sec

Bonnie++ (8.2, 9.8) (16.4, 19.6) (8.2, 9.8) (16.4, 19.6)
Nbench (25, 0) (50, 0) (25, 0) (50, 0)
Dbench (5.5, 4.5) (11, 9) (5.5, 4.5) (11, 9)

Table 1: (CPU, Disk) service demands (in sec) for benchmark
jobs Bonnie++, Nbench, and Dbench, and two values of the
workload intensity

3



below, statistical tests were used to analyze the data. The
following conclusions can be drawn from these figures. First,
LMFU-T provides the worst (i.e., the highest) makespan in all
cases. This is a consequence of LMFU-T not sending jobs to
a server when the utilization of its bottleneck device exceeds
the threshold T. While LMFU-T is inferior than the other poli-
cies for a 70% threshold, there may be good reasons to use
this policy: (1) the energy consumption of a server increases
with its utilization, and (2) running servers at high utilizations
may reduce their reliability and their lifetimes. Second, LRT
and LMUF provide similar makespans at the 95% confidence
level for most job streams and workloads. The reason is that
there is a strong correlation between the response time at a
server and the utilization of its bottleneck device. Finally, RR
is worse than LRT and LMUF in many cases, wspecially for
the ones with higher service demands and/or higher workload
intensity values. This is an expected result because RR is
oblivious to the workload or load on the server.

We performed one-factor ANOVA [13] at the 95% confi-
dence level for the data shown in the graphs of Figs. 2(a)-
2(d). LMFU-T was shown to be significantly different at the
95% confidence level then the three other scheduling disci-
plines. We applied the Tukey-Kramer [13] procedure to the
three other scheduling disciplines and found significant dif-
ferences among them in some of the tested workloads.

4.2 Effect of Scheduler Throttling Based on
Device Utilization

We now discuss the effect of holding schedulable tasks at the
scheduler queue when a particular device utilization is higher
than a specified threshold as done in LMFU-T. In that case,
the total execution time of a job consists of two components:
wait time at the scheduler and time spent at the server, which
includes time spent using resources and time waiting to use
resources at the server.

The graphs in Figs. 3(a)-3(f) show timing data (wait time
at the scheduler, server time, and total time) for workloads1
and 3. These workloads contain a mix of the three types of
jobs in Table 1. However, each of the graphs only shows aver-
age values for one specific job within the multi-job workload.
Figures 3(a)-3(c) show the total job execution time, server
time, and wait time versus the CPU utilization threshold for
workload 1. As the threshold approaches 100%, the wait time
goes to zero as expected because no jobs will be queued at the
scheduler. However, as can be seen in the figures, the server
time increases due to increased congestion at the servers. For
each type of program (meaning different service demands),
the range of threshold values that provides the best total exe-
cution time is not the same. For Bonnie++, this range is [0.6,
0.9]; for Nbench it is [0, 0.4] and for Dbench the lowest ex-
ecution time is reached for a CPU utilization threshold equal
to 100%.

Figures 3(d)-3(f) show the total execution time, wait time,
and server time, for the same jobs as in Figs. 3(a)-3(c) (i.e.,
same service demands) but with an average arrival rate twice
as big. This corresponds to workload 3 in Table 1. In the case
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Figure 2: Makespan for single-task jobs.
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of these graphs, there is a marked difference in behavior. As
we can see from the figures, because the arrival rate has dou-
bled, server congestion increases significantly when the effect
of scheduler throttling is reduced by using a high utilization
threshold. For example, the best utilization threshold range is
[0.1, 0.4] for Bonnie++, Nbench, and Dbench.

Figures 4(a) and 4(b) depict similar graphs for MapRe-
duce [24] jobs with different CPU and disk service demands
(small and large). These are multi-task jobs typical of MapRe-
duce applications. Table 2 shows the number of tasks per
job and their service demands. This experiment assumed 12
servers and was run with the assumption that all the tasks
of all the jobs are available for scheduling immediately, a
typical scenario for map tasks in MapReduce. The graphs
of Figs. 4(a) and 4(b) show that both types of jobs exhibit
the lowest execution time for a CPU utilization threshold of
90%. These graphs illustrate very clearly the tradeoffs be-
tween spending time waiting at the scheduler because of the
utilization threshold versus spending more time at the server
due to a heavily congested server.
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(a) Timing vs. CPU utilization threshold for small
MapReduce jobs
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MapReduce jobs

Figure 4: Average execution time, waiting time, server time
vs. CPU utilization threshold for MapReduce jobs.

Figures 5(a) and 5(c) show the CPU utilization for a typical
server in the cluster using RR scheduling for workloads 1 and

2, respectively. Figures 5(b) and 5(d) show similar data for
LMUF-T scheduling with a 70% threshold. Remember that
according to Table 1, the workload intensity is the same for
workloads 1 and 2. But, service demands for workload 2 are
twice as high as those for workload 1. Note that in the RR
case, workload 1 (Fig. 5(a)) shows a moderate average CPU
utilization with a few peaks reaching 100%. But, for work-
load 2 (Fig. 5(c)) the CPU utilization quickly reaches 100%
and stays there. Let us now contrast the RR case with the
LMUF-T case (Figs. 5(b) and 5(d)). Here we see that for
both workloads, the average CPU utilization stays at a lower
level and never stays fixed at 100% (an undesirable situation)
as in Fig. 5(c). This is because of the 70% threshold for CPU
utilization used by LMUF-T in this case.

4.3 Scheduling Multi-task Jobs on a Heteroge-
neous Cluster

This subsection discusses the results obtained by executing
various MapReduce jobs consisting of map tasks only on a
cluster with heterogeneous servers. A job is considered fin-
ished only when all its tasks finish. The workloads used in
this subsection are described in Table 2 and they differ in
terms of their CPU and disk service demands. We assume
that all the jobs arrive at the same time so their tasks need to
be all scheduled at time zero as is customary for MapReduce
jobs. Based on the number of tasks per job and the number
of jobs in Table 2, there are 50 small job tasks, 50 medium
job tasks, and 50 large job tasks. We assume a cluster with 12
nodes, six of which are half as fast as the other six. The CPU
and disk service demands in Table 2 correspond to the faster
machines. The corresponding values for the slow machines
are twice the values in that table.

Most of the time, each task in a MapReduce job is given
exclusive use of a CPU core so that at most one task is sched-
uled to run at a given core at any given time. We explore
here the impact of using LMFU-T using three different CPU
utilization threshold values:

• 0 %: at most one task per core is allowed. This is simi-
lar to the conventional Hadoop scheduling approach de-
scribed above.

• 70%: a task is not scheduled into a core if its utilization
exceeds 70%, and

• 100%: tasks do not have to wait in the scheduler queue
and can be assigned to any core. This is equivalent to
LMFU. Note that the 70% and 100% cases correspond
to CPU oversubscribing, not typical in Hadoop environ-
ments.

Tables 3-5 show data for experiments using the three uti-
lization thresholds, respectively. Each table shows the av-
erage waiting time at the scheduler queue, the average time
spent at the server, and the average total time. Additionally,
the overall makespan is shown. Four scenarios are shown in
each table: (1) Any job can be scheduled on any machine, (2)

5
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(b) Timing vs. CPU utilization threshold for Nbench and
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(c) Timing vs. CPU utilization threshold for Dbench and
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Figure 3: Average execution time, wait time, and server timevs. CPU utilization threshold.
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Job Type No. Tasks No. Jobs CPU Demand (sec) Disk Demand (sec)

Small 5 10 5 1
Medium Jobs 25 2 10 5
Large 25 2 30 15

Table 2: Multi-task job characteristics.

Large jobs are only scheduled on slow machines and the other
jobs are scheduled on any machine, (3) Small and medium
jobs are scheduled on the slow machines and large jobs on
the fast machines only, and (4) Small jobs are scheduled to
the slow machines and medium and large jobs are scheduled
into any machine.

The following observations can be derived from these ta-
bles. First, for a given CPU utilization threshold value, the
best makespan values are obtained either when any job can be
scheduled to any machine (case 1) or when fast nodes are used
exclusively by large jobs (case 3). Second, the tables show
the clear impact of the threshold on server congestion. For
example, Table 3, which is similar to the Hadoop approach of
granting exclusive access to CPU cores to each task, shows
very small server contention and large waiting times at the
scheduler queue. For example, large jobs spend between 73%
and 79% of their total time at the scheduler queue in any of
the four scenarios. When the utilization threshold is 70% (Ta-
ble 4), there is a slight increase in server time due to added
server congestion and a decrease in waiting time at the sched-
uler queue. As a consequence, the total times are lower than
when the utilization threshold is zero (Table 3). Third, the
case in which there is no queuing at the scheduler (Table 5)
favors small jobs over the other threshold values for all cases
except for case 3. This is expected because in case 3 small
and medium jobs can only use the slower machines and in the
case of Table 5 there is significant contention at these nodes
because there is no admission control at the scheduler. On the
other hand, large jobs have a much higher total time under the
100% threshold. This is due to the very high contention at the
server nodes when compared with the other threshold values.
In fact the slowdown (i.e., total time divided by total service
demand) for large jobs is 6.3, 12.2, 5.7, and 8, for cases 1-4,
respectively for the 100% utilization threshold and the corre-
sponding values for the 70% threshold are 4.3, 7.9, 4.6, and
4.4.

Even though we have shown results for three different uti-
lization threshold values and for four scenarios for allocating
tasks to the different types of nodes, the approach presented
in this report can easily be applied to a wide variety of “what-
if” scenarios. The reason is that the scheduler is implemented
and the servers are modeled using closed queuing networks.
The integration between the scheduler implementation and
the closed QN models is done through the Epochs [14] algo-
rithm. A significant advantage of the TDAM approach is that
it allows for any scheduling discipline to be assessed for any
size and type of cluster given that the servers in the clusterare
modeled analytically.

5 Related Work

There is a significant body of work on scheduling for single
queues. Harchol-Balter brings an excellent survey of analytic
scheduling results for M/G/1 queues in Part VII of her recent
book [10]. In [10], Harchol-Balter also looks at the problem
of immediate dispatching of arriving tasks to a server farm.
She considers that each server in the server farm is modeled
as a single queue, i.e., the CPU and disk resources of the
server are not individually modeled as we do here. Also, the
work in [10] does not consider the possibility of queuing at
the scheduler, as is done in LMFU-T. Several papers on job
scheduling for parallel environments appear in [7] and [8].
For example, the paper in [22] uses a simulation study to ana-
lyze failure-aware scheduling strategies in cluster scheduling.

During the last half a decade or so, performance analy-
sis and modeling of MapReduce jobs has received signifi-
cant attention and several different approaches have been pre-
sented [11, 18]. A representative group from HP Labs and
collaborating researchers have published numerous paperson
how to improve the resource allocation of MapReduce pro-
grams and have presented proposals on how to model the map,
reduce, and shuffle phases of these jobs [19, 20, 23].

In [11], the authors discuss a query system to answer clus-
ter sizing problems using a combination of job profiles and
estimations. The authors in [18] built a cost function based
on the complexity of the map and reduce tasks. The profile
of these tasks is calculated on a testbed environment. We
also measure job characteristics (i.e., service demands) on a
testbed environment. However, we do not require that the
testbed be sized as the intended production site. In fact, a sin-
gle node is sufficient to measure service demands. The ARIA
paper [19] provides a solid foundation on how to analyze the
different phases of MapReduce jobs. The authors first create
job profiles from which they can ascertain the optimum allo-
cation of map and reduce slots. Consequently, they create an
SLO scheduler that incorporates the aforementioned model.
However, that work does not consider resource contention
due to multiple tasks running on the same node, as done here.
In [1], the authors discuss a tool called Tresa that helps sys-
tem administrators predict execution times when consolidat-
ing workloads in a data center. The tool automates workload
characterization and uses MVA to predict execution times.
There is no mention to the effect of scheduling policies on
job execution times.

However, none of the above referenced papers and no other
studies, to the best of our knowledge, consider the effects of
resource contention when predicting the effect of scheduling
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Table 3: Timing for small, medium, large MapReduce jobs and CPU utilization threshold = 0

LMUF-T (Ucpu ≤ 0.0)
Avg. Wait

Time
Avg. Server

Time
Avg. Total

Time
Overall

makespan

(1) Any job to any machine
Small Jobs 148.0 8.2 156.2

391.0Medium Jobs 150.2 19.0 169.2
Large Jobs 152.4 55.8 208.2

(2) Large jobs to slow machines, other jobs to any machine
Small Jobs 270.7 6.1 276.8

675.0Medium Jobs 270.9 15.2 286.1
Large Jobs 281.8 75.0 356.8

(3) Small/Medium jobs to slow machines, large jobs to fast machines

Small Jobs 168.2 11.0 179.2
405.0Medium Jobs 169.0 25.0 194.0

Large Jobs 175.2 45.0 220.2

(4) Small jobs to slow machines, medium/large jobs to any machine

Small Jobs 159.2 11.0 170.2
413.0Medium Jobs 160.3 17.2 177.5

Large Jobs 161.7 56.4 218.1

Table 4: Timing for small, medium, large MapReduce jobs and CPU utilization threshold = 0.7

LMUF-T (Ucpu ≤ 0.7)
Avg. Wait

Time
Avg. Server

Time
Avg. Total

Time
Overall

makespan

(1) Any job to any machine
Small Jobs 118.9 10.2 129.0

344.0Medium Jobs 120.8 23.8 144.6
Large Jobs 122.7 71.7 194.3

(2) Large jobs to slow machines, other jobs to any machine

Small Jobs 269.8 6.8 276.5
675.0Medium Jobs 269.8 18.6 288.4

Large Jobs 281.8 75.0 356.8

(3) Small/Medium jobs to slow machines, large jobs to fast machines

Small Jobs 136.9 11.0 149.9
342.9Medium Jobs 141.0 25.0 166.0

Large Jobs 141.0 63.6 204.7

(4) Small jobs to slow machines, medium/large jobs to any machine

Small Jobs 125.6 11.0 136.6
347.0Medium Jobs 126.5 23.1 159.6

Large Jobs 127.9 69.8 197.7
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Table 5: Timing for small, medium, large MapReduce jobs and CPU utilization threshold = 1.0

LMUF-T (Ucpu ≤ 1.0)
Avg. Wait

Time
Avg. Server

Time
Avg. Total

Time
Overall

makespan

(1) Any job to any machine
Small Jobs 0.0 81.6 81.6

373.4Medium Jobs 0.0 147.1 147.1
Large Jobs 0.0 283.8 283.8

(2) Large jobs to slow machines, other jobs to any machine

Small Jobs 0.0 74.9 74.9
611.9Medium Jobs 0.0 125.6 125.6

Large Jobs 0.0 548.4 548.4

(3) Small/medium jobs to slow machines, large jobs to fast machines
Small Jobs 0.0 165.8 165.8

273.3Medium Jobs 0.0 251.5 251.5
Large Jobs 0.0 254.3 254.3

(4) Small jobs to slow machines, medium/large jobs to any machine

Small Jobs 0.0 86.9 86.9
461.9Medium Jobs 0.0 163.8 163.8

Large Jobs 0.0 361.5 361.5

policies on job completion times.
Most clusters today are heterogeneous in nature due to the

fact that machines are added to a compute cluster as the need
grows. It is not uncommon to find a cluster with 8, 16 and
24 core CPU machines with either 8, 16 or 32 GB of RAM.
In [21], the authors deal with speculative executions of tasks
so that failing tasks do not degrade the running time of a job.
The authors create a new scheduler called LATE (Longest Ap-
proximate Time to End) that is based on heuristics. Again,
this work does not take into account resource contention at
the node level. The identification of straggler jobs, at the
heart of the work in [21], would benefit from knowing if a
task is falling behind because the executing node is failingor
if the job is having to contend with other high demand jobs.
An analytical model could accurately predict the delay a task
may experience due to resource contention thus improving
the LATE scheduler heuristic.

The impact of scheduling policies has been studied on var-
ious additional domains. For example, in [9] the authors
analyze the tradeoffs of different scheduling algorithms on
achieving performance goals in multimedia storage systems.
In [3] the authors discuss content-aware scheduling of virtual
machines in cloud systems.

6 Concluding Remarks and Future
Work

Job schedulers play a very important role in many large enter-
prise IT infrastructures. A myriad of distributed applications
run on multi-node clusters of heterogeneous servers. It is im-
portant to test the efficacy of a particular scheduling scheme
in an extensive manner before it is put in production. It is
generally not feasible to do a live test of schedulers with real

jobs and compute clusters. In this report, we proposed an
assessment method that schedules job traces of varied work-
load characteristics. The approach explores the ability toex-
periment with complex schedulers, which are actually imple-
mented to process a global job trace, with a server cluster that
is modeled as a collection of closed queuing networks, one
per server. Therefore, no actual cluster is needed to evaluate
a given scheduler algorithm. The glue between the sched-
uler implementation and the server analytic models is the
Epochs algorithm [14], which was validated experimentally
using real jobs.

We plan to extend the TDAM approach into modeling
memory contention generated by servers with a large number
of cores sharing memory resources (e.g., caches and buses).
Our hierarchical closed queuing network model [2] will be
the basis of such extension.

We plan to extend the Mumak simulator [24], which comes
bundled with Hadoop, with an analytical performance model
backing its trace execution simulation. This will allow Mu-
mak, which can handle job traces of MapReduce jobs, to ana-
lyze the makespan of these jobs more accurately and possibly
shed light on the most appropriate scheduling schemes to use
for a given workload.
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