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Abstract complex XML configuration files to set up queues and quo-
tas. But, more importantly, testing and validation is nekttde
Large enterprises use clusters of computers with varying-co check if the schedulers are appropriate for the intende#-wor
puting power to process workloads that are heterogeneous |load mix.
terms of the type of jobs and the nature of their arrival pro- The efficacy of a job scheduler can be assessed in many
cesses. The scheduling of jobs from a workload has a signitiifferent ways: (1LExperimentation:Select a representative
icant impact on their execution times. This report presants mix of real jobs, setup a real cluster, run the jobs using a
trace-driven analytic model (TDAM) method that can be usedyiven scheduler and measure the job’s completion time. This
to assess the impact of different schedulers on job exetutiomethod is very onerous mainly because obtaining a suitable
times. The TDAM approach uses an implementation of thefree cluster for experimentation is often very difficult) &m-
scheduler to schedule jobs that are fed into analytic modelglation: Simulate a representative mix of real jobs running
of the computers in the cluster. These analytic models usthrough a simulated scheduler and using simulated servers.
closed queuing network methods to estimate congestioe at tiThis method is complex because not only the scheduler but
various nodes of the cluster. The report demonstrates the ushe processing and I/O resources of the servers have to be sim
fulness of the TDAM method by showing how four different ulated in software. (3f\nalytic modeling:Develop analytic
types of schedulers affect the execution times of jobs ddriv models of the scheduler, servers and their queues using the
from well-known benchmarks. The report also demonstrateproper arrival distributions. This is not trivial becausedel-
how the method can be applied to heterogeneous computgrg the behavior of even moderately complex scheduling dis-
clusters such as the ones used to run MapReduce jobs. ciplines and their interaction with the server models far he
erogeneous workloads may not be mathematically tractable.
] This report presents a novel method to assess schedulers
1 Introduction for server clusters. This method, called TDAM (Trace Driven
Analytic Model), relies on the implementation of the sched-
Many enterprises today run applications on a cluster of hetiler under evaluation and on analytic closed queuing nd¢wor
erogeneous machines. Apache Hadoop [24] and associaté@N) models to assess resource contention at the servegs. Th
software stacks (e.g., HBASE, Accumulo, Flume and manymplemented scheduler takes as input a synthetic tracésf jo
others [28, 29, 30]) are examples of such software platformsf various types and schedules them to the “servers,” which
and products. Large Internet software organizations likA  are modeled by the server QN models. By using an implemen-
zon, Yahoo and Facebook run thousands of Hadoop jobs amtion of the scheduler on a simulated or synthetic job trace
a routine basis on clusters comprising of thousands of serveve avoid the complexity of modeling the behavior of schedul-
nodes. These jobs have varied completion time requiremenisg policies. The analytic QN models capture the conges-
since some are ad hoc and quick query jobs, some are mediution of CPU and I/O resources at the various servers. These
size data mining jobs, and some are very large (in terms oQN models are solved using the Epochs algorithm (see [14]),
resource requirements and completion times) analytiaal prwhich uses Mean Value Analysis (MVA) [15, 17] for finite
cessing jobs. time intervals, called epochs, using an operational arsalys
Hadoop developers have developed several different scheldrmulation [5]. We applied the TDAM method to assess four
ulers over the years to schedule MapReduce jobs on Hadogpuster scheduling policies under different workload type
platforms to suit their particular organizational needsede The rest of this report is organized as follows. Section 2
schedulers need extensive testing and verification foectrr  discusses the need for assessing different job schedBlets.
ness. Most job schedulers in the Hadoop ecosystem haw®n 3 describes the building blocks of the TDAM method.



The following section presents and discusses the results-of 3 A Job Scheduler Evaluator Based on
ing TDAM on different types of workloads and scheduling TDAM
policies. Section 5 discusses related work and lastlyaeéti

presents some concluding remarks and future work. Figure 1 shows a component-level diagram of the JSE. The

workload produced by thé/orkload Generatois a stream of
jobs with their types and the list of tasks that compose the
jobs. For example, MapReduce jobs are composed of map
tasks and reduce tasks. The workload trace is parsed by the

2  The Need for Robust Job Scheduler Job List Managerand by theTask List Managecomponents

of JSE.
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Most known schedulers, including those created for schedu
ing Hadoop MapReduce jobs, do not provide maximum com
pletion time guarantees. A big challenge in today’s Hadoog
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efficient, and realistic way to assess the schedulers bifeye
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source congestion at the servers.
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Our solution to this challenge is the TDAM method, which TDAM-based JSE Analytic
allows any type of job scheduler to be evaluated on any jot COMPONENTS Per;‘,,’;’g;“e
trace. It is conceivable that even for a single enterprise, d
pending on the time of day and workload mix, one scheduling
scheme outperforms another. Dynamically choosing sched- ,
ulers based on the workload mix and overall resource utiliza Figure 1: Components of the TDAM-based JSE
tion (which requires collecting and analyzing data fromrgve
node and other cluster characteristics like network badtiwi The Scheduler Evaluator Driveuses the Epochs algo-
and topology) is the subject of self-configuring autonomirj rithm [14] and the scheduling policy provided as input to-gen
scheduling [16]. We do not discuss autonomic aspects of dyerate a stream of tasks to individual server views managed by
namic scheduling in any detail here. the Server View ManagerThe Epochs algorithm estimates
the execution time of jobs in a job/task stream. Time is di-

One of the primary goals of our research is to show hoinded into intervals of finite duration callegpochs The first

t(? ?fply tthe TD’?\AM mRetzod tq ebnter|?)n_se_s 11”5|ng|;_|tr:je HadOOpepoch starts when the first job arrives and the end of an epoch
g:siggrg q ?o rruunn Iaérigpe t?atl::(rﬁ c:gssiﬁ fregS(lar:]at‘Iyy’Thz Oouoﬂfezvf‘sis characterized by either the arrival of a new job or the com-
box FIFO scheduler packaged with Hadoop was sufficient foPIeuon of a job. The Epochs algorithm predicts the staretim

of the next epoch on any cluster node by being aware of the

that purpose. There was really no need to worry about rer'esidual times of each task as tasks arrive and leave thesnode

source utilization to complete jobs in a timely manner. HOW'The Residual Task Calculatocomponent is at the heart of
ever, other schedulers were deyelqped as the number of Jo?ﬁe JSE and computes the residual service time of each task
increased many fold and organizations started to use HadoqR execution using the Epochs algorithm [14]. This algarith

not only for batch analytics but also for small ad-hoc guerie i

. .~ relies on the operational counterpart for finite time inédsv
The Capacity Schedulef31] was developed for more effi- . :
cient cluster sharing. Theair Schedulef32] was introduced of the Mean Value Analysis (MVA) [17] equations for closed

NS . QN models when flow balance, one-step behavior, and homo-

to maintain fairness between different cluster users. - .
geneous service times are met [4, 5]. The Epochs algorithm

A few more schedulers have been developed sinc#as validated experimentally using a micro-benchmark and
then [12]. These schedulers did not provide any method téeal jobs from a Unix benchmark [14].
assess their effects on a job trace, but more importanthgthe  The Analytic Performance Moddblock implements the
was no way to know how they would behave under moderApproximate Mean Value Analysis (AMVA) algorithm [15].
ate or heavy workloads without actually running real jobsln essence, the Epochs algorithm along with the AMVA cal-
The next section describe the Job Scheduler Evaluator (JSEulation engine allows us to predict the completion time of
which is based on the TDAM method and affords efficient asindividual tasks when a stream of jobs arrives to be executed
sessment of job completion times under a variety of schedun a cluster node.
ing disciplines. The idea behind JSE involves scheduling a stream of jobs




that need to be executed virtually (since these jobs aresrot rNbench [27], and Dbench [26]. Inter-arrival times were as-
ally executing on servers) and thus have to be scheduledto risumed to be exponentially distributed, even though this as-
on different nodes of a cluster. As jobs arrive, ®eheduler sumption is not required by TDAM. Any arbitrary arrival pro-
Evaluator Driveruses the scheduling policy to decide which cess that satisfies the homogeneous arrival assumptiorecan b
cluster node should receive a task. So, each server in the clwsed [4, 5]. The job stream files thus created, along with the
ter sees a stream of arriving tasks (which is a sub-stream @&fcheduling scheme and the number of servers in the cluster
the original arriving stream). We then apply the Epochs-algoare the main input parameters to the JSE.
rithm [14] to each individual server using its sub-stream. We consider both single-task jobs and multi-task jobs. In a
The Scheduler Evaluator Driveras implemented here, multi-task job, the various tasks of a job run on the same or
does not have a callback mechanism from the task being “exifferent machines of a cluster and the job is deemed to have
ecuted” on the server into the scheduler driver when the taskompleted only when all its tasks have completed. MapRe-
completes. This means that when a task finishes, it cannot lelice jobs are examples of multi-task jobs [24].
the scheduler know that it is done. This was taken care of in First, we consider the effect of different scheduling
our implementation by having the scheduler be aware of thechemes on the makespan of various single-task jobs. Then,
next epoch information for each server, i.e., the time in theve consider the impact of the CPU utilization threshold in
future when a task will finish. Not having the servers havethe LMUF-T scheduling policy. Lastly, we discuss the result
their own thread of control simplifies the driver code. of running the JSE with multi-task jobs on a heterogeneous
cluster.

4 Using the JSE 4.1 Effect of the Scheduling Policy on the

We used the following four non-preemptive scheduling poli- Makespan

cies to illustrate the used of the JSE. This section considers how the scheduling policy affeats th
) _ _makespan, i.e., the time needed to execute all jobs in a job
e Round Robin (RR): Chooses the servers in the Cluster idyream_ Table 1 shows the characteristics of the jobs used in
a round robin fashion. This scheduling scheme is obliviyhe eyaluation carried out in this section. For single-fabk,
ous to the utilization of any server resource (either CPUye made very minor modifications to three benchmark pro-
or disk). grams (Bonnie++ [25], Nbench [27] and Dbench [26]) and

« Least Response Time (LRT): Selects the server on WhiCmeasu_red their CPU and disk service demands (see Table 1).
the incoming job is predicted to have the least responslcae:h"’mglng the input parameters to these benchmark programs
. . allowed us to obtain two sets of service demand values (e.g.,
time. Since the scheduler has the exact states of all th 2 Bonnie++. the two sets of values for CPU and disk de-
jobs running on all the servers, it can calculate the re ands are [8’2 sec, 9.8sec] and [16.4 sec, 19.6 sec]). The job
sponse time of the incoming job if it were added to any : o ; o )

node in the cluster inter-arrival times are exponentially distributed witreaages
’ of 3 sec and 6 sec. Thus, as shown in Table 1, we obtained
e Least Maximum Utilization First (LMUF): Selects the four different workloads by combining two service demand

server with the minimum utilization for the resource S€tS and two average inter-arrival time values.
with the highest utilization is the one that receives an FOr €ach workload in Table 1, we created 10 job streams

incoming job. The utilization of the resources at eachPY randomly selecting, with equal probability, the typea j

server is calculated as a snapshot at the time the new jdf ach arrival instant. Figures 2(a)-2(d) depict the madoes
arrives to be scheduled. for all 10 streams for each of the four workloads and for each

of the four scheduling disciplines. The utilization threkh

e Least Maximum Utilization First-Threshold (LMUF-T): used in LMUF-T is 70% for all the graphs. Note that the y-
Similar to LMUF except that a job is not sent to a serveraxis does not start at zero so that the differences between th
if the utilization for the resource with the highest uti- sSchedulers become easier to visualize. However, as destuss
lization at that server exceeds a certain threshold. In
that case, the job is queued at the scheduler. When a
job completes at any machine, the scheduler attempts to¥Vorkload 1 | 2 3 | _ 4
send the queued job again to one of the servers. T eJob| Inter-arrival time:6 sec| Inter-arrival time:3 sec
goal of LMUF-T is to bound the contention at each node Bonnie++| (8.2,9.8)| (16.4,19.6)| (8.2,9.8)| (16.4,19.6)
by having jobs wait at the scheduler. It may be morg Nbench (25, 0) (50, 0) (25, 0) (50, 0)
advantageous to wait a bit at the scheduler and then beDbench | (5.5, 4.5) (11,9) (5.5,4.5) (11,9)
assigned to a less loaded machine.

Table 1: (CPU, Disk) service demands (in sec) for benchmark
For the workload used to compare the schedulers, we devgbbs Bonnie++, Nbench, and Dbench, and two values of the
oped a program that creates job streams by randomly selegtorkload intensity
ing jobs from one of the three benchmarks: Bonnie++ [25],



below, statistical tests were used to analyze the data. The

following conclusions can be drawn from these figures. First 130 ————————————
LMFU-T provides the worst (i.e., the highest) makespanlin al 1250 | i
cases. This is a consequence of LMFU-T not sending jobs tog LMUFT e
a server when the utilization of its bottleneck device exsee  § |

the threshold T. While LMFU-T is inferior than the other poli % 1150 |

cies for a 70% threshold, there may be good reasons to us@ i100 |

this policy: (1) the energy consumption of a server increase &

with its utilization, and (2) running servers at high uttions 1050

may reduce their reliability and their lifetimes. Secon®IL 1000

3 4 5 6 7
Job Stream Number

and LMUF provide similar makespans at the 95% confidence
level for most job streams and workloads. The reason is that
there is a strong correlation between the response time at a
server and the utilization of its bottleneck device. FpndRR

is worse than LRT and LMUF in many cases, wspecially for
the ones with higher service demands and/or higher workload 4,
intensity values. This is an expected result because RR is
oblivious to the workload or load on the server.

We performed one-factor ANOVA [13] at the 95% confi-
dence level for the data shown in the graphs of Figs. 2(a)-& 1500 |
2(d). LMFU-T was shown to be significantly different at the 1400 |
95% confidence level then the three other scheduling disci< 1590 |
plines. We applied the Tukey-Kramer [13] procedure to the =
three other scheduling disciplines and found significafit di
ferences among them in some of the tested workloads. Hoe

(a) Makespan vs. job stream number for workload 1
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4.2 Effect of Scheduler Throttling Based on
Device Utilization

(b) Makespan vs. job stream number for workload 2

We now discuss the effect of holding schedulable tasks at the
scheduler queue when a particular device utilization isidig
than a specified threshold as done in LMFU-T. In that case,_ s
the total execution time of a job consists of two components:
wait time at the scheduler and time spent at the server, whichg
includes time spent using resources and time waiting to useg
resources at the server.
The graphs in Figs. 3(a)-3(f) show timing data (wait time 700 |
at the scheduler, server time, and total time) for worklahds
and 3. These workloads contain a mix of the three types of 4 5 6 7 8
jobsin Table 1. However, each of the graphs only shows aver- Job Stream Number
age values for one specific job within the multi-job workload
Figures 3(a)-3(c) show the total job execution time, server (c) Makespan vs. job stream number for workload 3
time, and wait time versus the CPU utilization threshold for
workload 1. As the threshold approaches 100%, the wait time
goes to zero as expected because no jobs will be queued at the
scheduler. However, as can be seen in the figures, the server
time increases due to increased congestion at the senaars. Fg 15 |
each type of program (meaning different service demands),g 1450 ¢
the range of threshold values that provides the best to&l ex ¢ 1400
cution time is not the same. For Bonnie++, this range is [0.6,§, 1350
0.9]; for Nbench it is [0, 0.4] and for Dbench the lowest ex- £ 1300
ecution time is reached for a CPU utilization threshold équa 1250 |
to 100%. 1200
Figures 3(d)-3(f) show the total execution time, wait time,
and server time, for the same jobs as in Figs. 3(a)-3(c) (i.e.
same service demands) but with an average arrival rate twice
as big. This corresponds to workload 3 in Table 1. In the case

800

750

Makes

650

1600
1550 r

1 2 3 4 5 6 7 8 9 10
Job Stream Number

(d) Makespan vs. job stream number for workload 4

Figure 2: Makespan for single-task jobs.



of these graphs, there is a marked difference in behavior. A2, respectively. Figures 5(b) and 5(d) show similar data for
we can see from the figures, because the arrival rate has ddtMUF-T scheduling with a 70% threshold. Remember that
bled, server congestion increases significantly when fieetef according to Table 1, the workload intensity is the same for
of scheduler throttling is reduced by using a high utiliaati workloads 1 and 2. But, service demands for workload 2 are
threshold. For example, the best utilization thresholdiesis ~ twice as high as those for workload 1. Note that in the RR
[0.1, 0.4] for Bonnie++, Nbench, and Dbench. case, workload 1 (Fig. 5(a)) shows a moderate average CPU
Figures 4(a) and 4(b) depict similar graphs for MapReuutilization with a few peaks reaching 100%. But, for work-
duce [24] jobs with different CPU and disk service demanddoad 2 (Fig. 5(c)) the CPU utilization quickly reaches 100%
(small and large). These are multi-task jobs typical of MepR and stays there. Let us now contrast the RR case with the
duce applications. Table 2 shows the number of tasks pdrMUF-T case (Figs. 5(b) and 5(d)). Here we see that for
job and their service demands. This experiment assumed Ioth workloads, the average CPU utilization stays at a lower
servers and was run with the assumption that all the taskievel and never stays fixed at 100% (an undesirable sitjation
of all the jobs are available for scheduling immediately, aas in Fig. 5(c). This is because of the 70% threshold for CPU
typical scenario for map tasks in MapReduce. The graphstilization used by LMUF-T in this case.
of Figs. 4(a) and 4(b) show that both types of jobs exhibit
the lowest execution time for a CPU utilization threshold of ; ;
90%. These graphs illustrate very clearly the tradeoffs beé—‘r'3 Scheduling Multi-task Jobs on a Heteroge-
tween spending time waiting at the scheduler because of the neous Cluster

utilization threshold versus spending more time at theeserv This subsection discusses the results obtained by exegcutin
due to a heavily congested server. various MapReduce jobs consisting of map tasks only on a

cluster with heterogeneous servers. A job is considered fin-
ished only when all its tasks finish. The workloads used in

900

this subsection are described in Table 2 and they differ in
800 ) terms of their CPU and disk service demands. We assume
oy that all the jobs arrive at the same time so their tasks need to
g zgg et be all scheduled at time zero as is customary for MapReduce
g ap | SemerTime v I Job_s. Bgsed on the number of tasks per job and the number
E 200 | i of jobs in Table 2, there are 50 small job tasks, 50 medium
200 | Ay job tasks, and 50 large job tasks. We assume a cluster with 12
100 | i\l nodes, six of which are half as fast as the other six. The CPU
0 ‘ ‘ g and disk service demands in Table 2 correspond to the faster
0 02 coét umizaﬁi 08 1 machines. The corresponding values for the slow machines

are twice the values in that table.
(@) Timing vs. CPU utilization threshold for small MOS_’[ of the time, each task in a MapReduce job I§ given
MapReduce jobs exclusive use of a CPU core so that at most one task is sched-
uled to run at a given core at any given time. We explore
here the impact of using LMFU-T using three different CPU
utilization threshold values:

1200 T -
Wait Time ——
Server Time -
1000 Total -~ 0/ . P P
e 0 %: at most one task per core is allowed. This is simi-

goo | ——— e lar to the conventional Hadoop scheduling approach de-

scribed above.
600

Time (seconds)

400 | f ] e 70%: atask is not scheduled into a core if its utilization

exceeds 70%, and
200 +

rrrrrrrrrrrrrrrrrrrrr

e 100%: tasks do not have to wait in the scheduler queue

CPU Utiization ' and can be assigned to any core. This is equivalent to

LMFU. Note that the 70% and 100% cases correspond

(b) Timing vs. CPU utilization threshold for large to CPU oversubscribing, not typical in Hadoop environ-
MapReduce jobs ments.

Tables 3-5 show data for experiments using the three uti-
Figure 4: Average execution time, waiting time, server timelization thresholds, respectively. Each table shows the av
vs. CPU utilization threshold for MapReduce jobs. erage waiting time at the scheduler queue, the average time
spent at the server, and the average total time. Additignall
Figures 5(a) and 5(c) show the CPU utilization for a typicalthe overall makespan is shown. Four scenarios are shown in
server in the cluster using RR scheduling for workloads 1 an@ach table: (1) Any job can be scheduled on any machine, (2)
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Figure 3: Average execution time, wait time, and server tiieCPU utilization threshold.




| Job Type [ No. Tasks| No. Jobs| CPU Demand (sec) Disk Demand (sec)

Small 5 10 5 1
Medium Jobs 25 2 10 5
Large 25 2 30 15

Table 2: Multi-task job characteristics.

Large jobs are only scheduled on slow machines and the oth& Related Work
jobs are scheduled on any machine, (3) Small and medium
jobs are scheduled on the slow machines and large jobs drhere is a significant body of work on scheduling for single
the fast machines only, and (4) Small jobs are scheduled tqueues. Harchol-Balter brings an excellent survey of ditaly
the slow machines and medium and large jobs are schedulggheduling results for M/G/1 queues in Part VI of her recent
into any machine. book [10]. In [10], Harchol-Balter also looks at the problem
The following observations can be derived from these taof immediate dispatching of arriving tasks to a server farm.
bles. First, for a given CPU utilization threshold valuee th She considers that each server in the server farm is modeled
best makespan values are obtained either when any job can Bé a single queue, i.e., the CPU and disk resources of the
scheduled to any machine (case 1) or when fast nodes are usggfver are not individually modeled as we do here. Also, the
exclusively by large jobs (case 3). Second, the tables showork in [10] does not consider the possibility of queuing at
the clear impact of the threshold on server congestion. Fdihe scheduler, as is done in LMFU-T. Several papers on job
example, Table 3, which is similar to the Hadoop approach ofcheduling for parallel environments appear in [7] and [8].
granting exclusive access to CPU cores to each task, sho/f®r example, the paper in [22] uses a simulation study to ana-
very small server contention and large waiting times at thdyze failure-aware scheduling strategies in cluster sotiegl.
scheduler queue. For example, large jobs spend between 73%During the last half a decade or so, performance analy-
and 79% of their total time at the scheduler queue in any okis and modeling of MapReduce jobs has received signifi-
the four scenarios. When the utilization threshold is 70% (T cant attention and several different approaches have breen p
ble 4), there is a slight increase in server time due to addesented [11, 18]. A representative group from HP Labs and
server congestion and a decrease in waiting time at the scheazbllaborating researchers have published numerous papers
uler queue. As a consequence, the total times are lower thdrow to improve the resource allocation of MapReduce pro-
when the utilization threshold is zero (Table 3). Third, thegrams and have presented proposals on how to model the map,
case in which there is no queuing at the scheduler (Table 5gduce, and shuffle phases of these jobs [19, 20, 23].
favors small jobs over the other threshold values for alésas  |n [11], the authors discuss a query system to answer clus-
except for case 3. This is expected because in case 3 sma#r sizing problems using a combination of job profiles and
and medium jobs can only use the slower machines and in théstimations. The authors in [18] built a cost function based
case of Table 5 there is significant contention at these nodesh the complexity of the map and reduce tasks. The profile
because there is no admission control at the scheduler.€On thyf these tasks is calculated on a testbed environment. We
other hand, large jobs have a much higher total time under thglso measure job characteristics (i.e., service demamda) o
100% threshold. This is due to the very high contention at theéestbed environment. However, we do not require that the
server nodes when compared with the other threshold valuagstbed be sized as the intended production site. In fait; a s
In fact the slowdown (i.e., total time divided by total se®i gle node is sufficient to measure service demands. The ARIA
demand) for large jobs is 6.3, 12.2, 5.7, and 8, for cases 1-aper [19] provides a solid foundation on how to analyze the
respectively for the 100% utilization threshold and thereer  different phases of MapReduce jobs. The authors first create
sponding values for the 70% threshold are 4.3, 7.9, 4.6, anb profiles from which they can ascertain the optimum allo-
4.4. cation of map and reduce slots. Consequently, they create an
Even though we have shown results for three different utiSLO scheduler that incorporates the aforementioned model.
lization threshold values and for four scenarios for altoga ~ However, that work does not consider resource contention
tasks to the different types of nodes, the approach presentglue to multiple tasks running on the same node, as done here.
in this report can easily be applied to a wide variety of “what In [1], the authors discuss a tool called Tresa that helps sys
if” scenarios. The reason is that the scheduler is impleetent tem administrators predict execution times when constlida
and the servers are modeled using closed queuing networl@g workloads in a data center. The tool automates workload
The integration between the scheduler implementation an@haracterization and uses MVA to predict execution times.
the closed QN models is done through the Epochs [14] algaFhere is no mention to the effect of scheduling policies on
rithm. A significant advantage of the TDAM approach is thatjob execution times.
it allows for any scheduling discipline to be assessed fgr an However, none of the above referenced papers and no other
size and type of cluster given that the serversin the claster studies, to the best of our knowledge, consider the effdcts o
modeled analytically. resource contention when predicting the effect of schaduli



Table 3: Timing for small, medium, large MapReduce jobs aRtU@tilization threshold =0

Avg. Wait | Avg. Server| Avg. Total | Overall

LMUF-T (Uepu < 0.0) 'Iqime qI'ime '%ime makespan
(1) Any job to any machine
Small Jobs 148.0 8.2 156.2
Medium Jobs 150.2 19.0 169.2 391.0
Large Jobs 152.4 55.8 208.2
(2) Large jobs to slow machines, other jobs to any machine
Small Jobs 270.7 6.1 276.8
Medium Jobs 270.9 15.2 286.1 675.0
Large Jobs 281.8 75.0 356.8

| (3) Small/Medium jobs to slow machines, large jobs to fasthirzes |
Small Jobs 168.2 11.0 179.2
Medium Jobs 169.0 25.0 194.0 405.0
Large Jobs 175.2 45.0 220.2

| (4) Small jobs to slow machines, medium/large jobs to anyhimec |
Small Jobs 159.2 11.0 170.2
Medium Jobs 160.3 17.2 177.5 413.0
Large Jobs 161.7 56.4 218.1

Table 4: Timing for small, medium, large MapReduce jobs aRtUQ@itilization threshold = 0.7

Avg. Wait | Avg. Server| Avg. Total | Overall

LMUF-T (Uepu < 0.7) 'Ig'ime g'I'ime 'gl'ime makespan
(1) Any job to any machine
Small Jobs 118.9 10.2 129.0
Medium Jobs 120.8 23.8 144.6 344.0
Large Jobs 122.7 71.7 194.3

| (2) Large jobs to slow machines, other jobs to any machine |
Small Jobs 269.8 6.8 276.5
Medium Jobs 269.8 18.6 288.4 675.0
Large Jobs 281.8 75.0 356.8

| (3) Small/Medium jobs to slow machines, large jobs to fasthirzes |
Small Jobs 136.9 11.0 149.9
Medium Jobs 141.0 25.0 166.0 342.9
Large Jobs 141.0 63.6 204.7

| (4) Small jobs to slow machines, medium/large jobs to anyhimec
Small Jobs 125.6 11.0 136.6
Medium Jobs 126.5 23.1 159.6 347.0
Large Jobs 127.9 69.8 197.7




Table 5: Timing for small, medium, large MapReduce jobs aRtU@tilization threshold = 1.0

Avg. Wait | Avg. Server| Avg. Total | Overall

LMUF-T (Uepu < 1.0) 'Iqime qI'ime '%ime makespan
(1) Any job to any machine
Small Jobs 0.0 81.6 81.6
Medium Jobs 0.0 147.1 147.1 373.4
Large Jobs 0.0 283.8 283.8

| (2) Large jobs to slow machines, other jobs to any machine |
Small Jobs 0.0 74.9 74.9
Medium Jobs 0.0 125.6 125.6 611.9
Large Jobs 0.0 548.4 548.4
(3) Small/medium jobs to slow machines, large jobs to fasthires
Small Jobs 0.0 165.8 165.8
Medium Jobs 0.0 2515 2515 273.3
Large Jobs 0.0 254.3 254.3

| (4) Small jobs to slow machines, medium/large jobs to anyhimac |
Small Jobs 0.0 86.9 86.9
Medium Jobs 0.0 163.8 163.8 461.9
Large Jobs 0.0 361.5 361.5

policies on job completion times. jobs and compute clusters. In this report, we proposed an

Most clusters today are heterogeneous in nature due to tessessment method that schedules job traces of varied work-
fact that machines are added to a compute cluster as the neldd characteristics. The approach explores the abiligxto
grows. It is not uncommon to find a cluster with 8, 16 andperiment with complex schedulers, which are actually imple
24 core CPU machines with either 8, 16 or 32 GB of RAM.mented to process a global job trace, with a server clusaér th
In [21], the authors deal with speculative executions dfsas is modeled as a collection of closed queuing networks, one
so that failing tasks do not degrade the running time of a jokper server. Therefore, no actual cluster is needed to eealua
The authors create a new scheduler called LATE (Longest A given scheduler algorithm. The glue between the sched-
proximate Time to End) that is based on heuristics. Againuler implementation and the server analytic models is the
this work does not take into account resource contention d@Epochs algorithm [14], which was validated experimentally
the node level. The identification of straggler jobs, at theusing real jobs.
heart of the work in [21], would benefit from knowing if a ~ We plan to extend the TDAM approach into modeling
task is falling behind because the executing node is fading memory contention generated by servers with a large number
if the job is having to contend with other high demand jobsof cores sharing memory resources (e.g., caches and buses).
An analytical model could accurately predict the delay & tas Our hierarchical closed queuing network model [2] will be
may experience due to resource contention thus improvinthe basis of such extension.
the LATE scheduler heuristic. We plan to extend the Mumak simulator [24], which comes

The impact of scheduling policies has been studied on vabundled with Hadoop, with an analytical performance model
ious additional domains. For example, in [9] the authorsbacking its trace execution simulation. This will allow Mu-
analyze the tradeoffs of different scheduling algorithms o mak, which can handle job traces of MapReduce jobs, to ana-
achieving performance goals in multimedia storage systemlyze the makespan of these jobs more accurately and possibly
In [3] the authors discuss content-aware scheduling ofi@irt shed light on the most appropriate scheduling schemes to use
machines in cloud systems. for a given workload.
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