
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Building a Hierarchical Finite-State Automaton: A Primer

Sean Luke
sean@cs.gmu.edu

Technical Report GMU-CS-TR-2014-5

Abstract

This primer introduces concepts in hierarchical finite-
state automata (HFA) and their use, gives a rough for-
malism, and then builds an entire HFA library, with all
the trimmings, in Lua. The primer is intended to edu-
cate the reader on how HFA can be used, how they are
programmed, and how HFA libraries are built.

1 Introduction

A Hierarchical Finite-State Automaton (or HFA) is a
finite-state automaton which contains other finite-state
automata within it. It’s a relatively common technique
for making automata for agents or robots.

Nesting or composition of automata should hardly be
alien to software programmers: it’s essentially how we
write code. We first write basic functions, then higher-
level functions which call the basic functions, and so on
until our program is complete. The only difference in
the HFA case is that our coding model is automata and
not general-purpose programming languages.

A plain finite-state automaton isn’t hard to build: it’s
often little more than a loop, a global variable, and a case
statement. But HFA can be complicated. In this primer
we will build a complete HFA library from scratch, with
some additional useful gizmos. Before we get all that,
let’s start with what kind of machines we’re going to
build. In short, we’re going to assume that our HFA are:

• Hierarchies of Deterministic Finite-State Automata
(DFA)

• In the form of Moore machines

• With behaviors (which may themselves be other
DFA) assigned to each state

• Which are designed to be pulsed repeatedly, each
time progressing the automaton just a little bit.

Such automata are very useful for programming
robots or simple agents in fields such as video games,
simulation, robotics, and multiagent problems.

If you are unfamiliar with basic notions of finite-state
automata (for example, what a DFA is), we won’t be
covering that. Furthermore, the description of things
here will be breezy and informal, sufficient for purposes
of this report but admittedly inexact. Formalists have
been dutifully warned.

As mentioned, our HFA are DFA, and thus only one
state is active in a given automaton at a given time. Per-
haps the most common use of these kinds of automata
is determining if strings belong to certain regular lan-
guages. Such automata have a distinguished start state
and (among other states) one or more accepting states.
We are not interested in these kinds of automata: we will
not be tokenizing strings, and thus our automata will
have no accepting states. Rather our automata will do
things while active in a given state. That is, they will have
behaviors associated with those states. These behaviors
may be either other DFA, or they may be hard-coded
basic behaviors we have given the DFA to perform.

2 Policies, Mealy Machines,
and Moore Machines

door switch

A B C

Consider a very simple
robot scenario, with
three rooms, A, B, and
C, as shown at right.
The robot is located in
room A. When in A, the robot can either go right to room
B, or it can go out a door to exit the scenario, but only if
the door is open. When in room B, the robot can go left
to room A or right to room C. Finally, when in room C,
the robot can go to left to room B, or it can flick a switch
which opens the door. The robot would like to go out
the door.

The robot can sense a few things. First, it knows at all
times what room it is in. Second, if it is in room A, it can

1

sense if the door is open or not. Third, if it is in room C,
it can sense if the switch is flicked or not. How might we
make a simple program to solve this?

Policies Imagine if our program consisted of a table
of items of the form When sensing ... −→ Do this... We
might construct a program which looks like this:

When Sensing ... Do this ...
In A, Door closed Right
In B Right
In C, Switch unflicked Flick
In C, Switch flicked Left
In B Left
In A, Door open Out

In essence, we have written a function π(~f)→ a which
takes the current sensor features ~f and returns a behavior
to perform. This is known as a policy.1 This program
looks like it’d do the job, but if you look closely, there’s a
bug. This table isn’t describing a sequence of rules to do,
but it’s rather supposed to be describing a set of rules for
various situations. And we need to have two different
rules for the same situation: “In B”. This is called having
two situations which are perceptually aliased: we can’t
distinguish between them, yet we need to do a different
action in each of them. And that’s not permitted.2

The problem here is that this scenario requires some
degree of memory, otherwise known as internal state,3

to do its task. When in room B, the robot needs to re-
member whether it had flicked the switch or not. But
policies, in this basic form, don’t provide for memory.
We need a finite-state automaton.

Mealy Machines If we assumed that our internal state
started at state 0, we could instead write a program like
this:

When in and Sensing... Do this... and set
State ... State to ...
0 In A Right 0
0 In B Right 0
0 In C Flick 1
1 In C Left 1
1 In B Left 1
1 In A Out 1

Notice that our “In B” confusion is cleared up because
each “In B” row has a different internal state value (0
and 1). This is a two-state DFA called a Mealy machine.

1Yes, π is the standard symbol for policies. Don’t ask.
2One way around this is to do actions with a certain degree of

randomness: that is, we might have one rule of the form “In B→ Go
Right 50% of the time, Left 50% of the time”. This would eventually work!
But it might not be a great idea, particularly in robotics, where such
randomness might land you in the ditch, breaking your fancy $10,000
robot. We’d like a somewhat more principled approach.

3As opposed to external state, which is the term sometimes used
to describe the current situation of the agent, or its current sensor
features. When someone just says state, unfortunately they might refer
to internal or external state: it’s not consistent.

We can draw this table as a graph. Each edge in
the Mealy machine graph connects a state to another
state and is labeled with two labels: the current sensor

information and the behavior to perform. Each edge
corresponds to one rule (a line) in our table. That is, an
edge may be described as:

When in State...
and Sensing... Do this...
−−−−−−−−−−−−−−−−−→ and set State to...

Thus we can write our Mealy machine in graphical
form like this:

1(Start) 0 in C flick

in C
left

in A

right

in Bright in B
leftin A

out

Note that now that we have internal memory we don’t
need to rely on as much sensor information. This isn’t
always the case.4

Moore Machines Mealy machines are straightforward
implementations of standard DFA. But we’re going to
focus on a somewhat different formulation which is of-
ten more intuitive for programming purposes. In this
different formulation, each state will be associated with
a behavior, though multiple states could be associated
with the same behavior. When in a state, we are doing
its associated behavior. Transition edges will only be
labeled with the sensor situation. If no edges match the
current sensor situation, we continue in the current state,
and continue doing its behavior. In this model, we might
write our program as:

When doing... and Sensing... Now do this...
0 [Right] In B 1 [Right]
1 [Right] In C, unflicked 2 [Flick]
1 [Right] In C, flicked 3 [Left]
2 [Flick] In C, unflicked 3 [Left]
3 [Left] In B 4 [Left]
4 [Left] In A 5 [Out]

We now have six states, each of which is associated
with a behavior (in [square brackets]). In two cases, the
same behavior is associated with two different states. It
looks more complex, but it’s really not: in fact, we have
exactly the same number of edges still. Our simplified
edges are still lines in the table, but they take this form:

4This program only works right if we start in state 0 and there’s no
noise in our state transitions. As an exercise, ask yourself: what pro-
gram would we need to write if our internal state could start randomly
either as 0 or 1? Would it need the additional sensor information we
had omitted? How about if the robot started randomly in any room?
How about both random initial states and random rooms?

2

When doing...
and Sensing...
−−−−−−−−−→ Now do this...

The resultant DFA program is:

1
[right]

(Start) 0
[right] in B 2

[flick]in C, unflicked

3
[left]

in C, flicked

4
[left] in B5

[out] in A

in C, flicked

This is known as a Moore machine. Some items to
note. First, a Moore machine, as we’re defining it here,
has no self-loops in its edges: they’re unnecessary since
we have the rule that if no transition edge is matched
by the current situation, we just continue in the current
state and continue doing its behavior. Second, note that
the Moore machine we constructed feels much more like
a sequence of operations than a set of rules. This isn’t
really a feature of Moore machines: it’s more a result of
our example, which requires a sequence of operations to
perform the task, and this feature of our example is just
made more clear in the Moore machine configuration.

Consider the following more interesting example. A
can-collecting robot repeatedly spins around until it
finds a can, acquires the can, looks for another can,
moves to the second can, and releases the first can. It
then turns to some random angle to prevent it from con-
stantly grabbing the same can over and over again. Then
it repeats. Additionally, if the can slips out of its gripper,
or if it loses sight of a can, it must recover from this.
Here’s a Mealy machine program which performs this
task. The machine has six states. We have given them
names here rather than mere numbers:

Acquiring

else
forward

Looking 2

else
turn

next to can

grab

can see a can

forwardnext to can

release

Acquiring 2
else

forward

(Start)
Looking

else
turn

can see a can

forward

can't see
can

turn

lost can

turn

lost
can

turn

can't see can

turn

Spinning

at a random
angle

turn

else
turn

Spinning 2

else
turn

turn

at a random
angle

The Moore machine version isn’t much different. In
the Mealy Machine, the edges entering the Spinning and
Spinning 2 states have different behaviors (grab, pick ran-
dom angle vs. turn, for example), and to compensate for
this, the Moore machine has two additional states. But
other than that you can see the obvious similarity (and
lack of self-loops).

Acquiring:
forward

Looking 2:
turn

next to can

can see a can

next to can

Acquiring 2:
forward

(Start)
Looking:

turn

can see a can

can't see
can

lost can

lost
can

can't see can

Spinning:
turn

at a random angleSpinning 2:
turn

at a random angle

Grabbing:
grab

always

Releasing:
release

always

Another way to view this is to separate the behav-
iors from the states. This makes clear the many-to-one
relationship between states and behaviors.

Acquiring

Looking 2

next to can

can see a can

next to can

Acquiring 2

(Start)
Looking

can see a can

can't see
can

lost can

lost
can

can't see can

Spinning

at a random angle
Spinning 2

at a random angle

Grabbing

always

Releasing

always

forward

grab

turn

release

3

Relationships Between Policies and Automata
Though it may not look like it at first, Mealy and Moore
machines are equivalent: anything you implement in
one model can be implemented in the other.

Additionally, policies may be viewed simply as degen-
erate versions of either Mealy and Moore machines. For
example, a a policy is a Mealy machine with a single
state. To see this, here’s the previous (broken) policy
we developed, shown as a Mealy machine. The invalid
rules are shown in bold lines:

(Start) 0

in C, unflicked
flick

in C, flicked
left

in A, closed
right

in Bright

in B

left
in A, open

out

Similarly, a policy is a Moore machine where each
state has the exact same outgoing transition edges.
Here’s the same policy shown as a Moore machine, again
with the invalid rules shown in bold lines:

1
[right]

(Start) 0
[right]

2
[flick]

3
[left]

4
[left]

5
[out]

in B

in B

in A, open

in C, unflicked

in C, flicked

in A, closed

3 Hierarchies of Moore Machines

So far the behaviors we’ve attached to states are basic
behaviors, that is, hard-coded behaviors such as grab or
go forward or go left. But in a Hierarchical Finite-State
Automaton, behaviors can also be something else: they
can be other automata.

Consider extending our can collecting robot. The can
collecting behavior works great. We’ve created a sec-
ond automaton called Run Away which runs and hides

under the bed. Last, we have a basic (hard-coded) be-
havior called Lurk which stays quiet, in some low-power
mode. We have decided to tie these three behaviors
in a higher-level finite-state automaton which collects
cans in a student’s bedroom when the student is away.
But when the student comes in the room, the robot runs
away to hide under the bed, then lurks there until the
student leaves again, at which time it resumes collecting
cans. We could do this with the following automaton:

Running:
Run Away
(DFA)

under bed
human absent

Lurking:
Lurk

human present

Collecting:
Collect Cans

(DFA)
human absent

Notice that we have three states, each associated with
a different behavior. But two of these behaviors are
unusual: they are other automata. This hierarchy could
continue as far as you liked: you could use this new
automaton as a behavior in an even higher-level one,
and so on.

How would all this work? When we transition into
a state which has an automaton as its behavior, the au-
tomaton is reset. As long as we stay in that state, we
continually pulse the automaton. When we leave the
state, the automaton is suspended.

It’s important to note that an HFA could use the same
behaviors multiple times in its hierarchy: that is, the hi-
erarchy isn’t a tree so much as a directed acyclic graph
(or DAG). For example, consider a robot soccer automa-
ton. At the top level, the Play Soccer automaton iterates
between Do Defense and Do Offense, depending on the
ball location on the field. Each of these sub-automata
might include, somewhere in them, automata behaviors
such as Acquire Ball or Get Open. And certainly various
basic behaviors will be reused numerous times in many
different places in the hierarchy, such as Run or Kick or
Turn.

This is the basic advantage of using an HFA: modular
reuse. Once you have defined a behavior such as Get
Open, you can reuse it multiple times simply by refer-
ring to it, rather than reimplementing it over and over
again. Of course, you could flatten a hierarchical finite-
state automaton into a giant morass of states and basic
behaviors, but this could really be a mess. In the same
vein, assuming you had no need for recursion, you could
flatten a computer program into a single function, a-la
BASIC, but it’d be a mess.

4

Speaking of recursion, it should be clear at this point
that you are not permitted to have recursion in your
HFA hierarchy. That is, an automaton may not contain
itself. Automata are simpler than Turing-complete pro-
gramming languages. A finite-state automaton has finite
state. Recursion requires a stack, thus infinite state.

4 A Basic Model

We’re going to build HFA in the form of Moore machines.
Before we do so, let’s get down to brass tacks.

The Start State Rather than having some state desig-
nated as a start state, we’ll have a distinguished start
state, meaning an initial state literally called Start which
is associated with an empty behavior. Our automaton
will immediately transition out of this dummy Start state
to some other state as appropriate, and begin with that
one. This allows us to choose an effective “start state”
based on the initial conditions, using a transition func-
tion we provided, rather than having an initial state fixed
in stone. Generally we won’t ever transition into Start.

Transition Functions So far we’ve described DFA as
having transitions in the form of edges. But that’s not
really how we’re going to represent things. Instead,
each state is associated with a state transition function
which, when passed the current world situation, returns
a new state to transition to (or perhaps just returns the
current state, meaning that the DFA should not transition
at all). Essentially a state’s transition function is the
collection of all of the state’s outgoing transition edges.

We can abstract this even further, defining the au-
tomaton transition function as a function which, when
passed the current state in the automaton and the cur-
rent world situation, returns a new state to transition to.
This function can be implemented simply by looking up
the state transition function for the passed-in state, then
calling it and returning what it returns.

Formal Model A more or less formal model is as
follows. A hierarchical finite state automaton (HFA)
H = {S, B, M, F, T} ∈ H where:

• S = {S0, S1, ..., Sn} is the set of states. Exactly one
state is active at any particular time: we will refer
to this as S∗, and call it the current state. Initially (at
timestep t = 0), a distinguished start state S0 ∈ S is
the current state.

• B = {B0, B1, B2, ..., Bp} is a set of behaviors. A be-
havior may be a basic behavior, or it may another
hierarchical finite-state automaton H′ ∈ H, with the
constraint that recursion is not permitted: automata
may not contain themselves (either directly or by
transitivity). Multiple different HFA may serve as

behaviors in H. The behavior B0 is an empty basic
behavior and does nothing.

• M : S→ B is the mapping function which associates
states with behaviors. A behavior may be associated
with several states. The start state S0 is associated
with B0.

• F = {F1, F2, ...} is a set of situations in the environ-
ment, where each Ft describes the current situation
at time t.

• T : F× S → S− {S0} is the automaton’s transition
function which, given a state Si ∈ S and the current
situation Ft, returns a state Sj ∈ S, j 6= 0 to transition
to. It’s perfectly plausible that Si = Sj unless i = 0.
We may view T as a set of state transition functions
{T0, T1, ..., Tn}, one per state, where each Ti : F → S.

Generally we will have one top-level automaton
H ∈ H which directly or through transitivity contains
all other automata or behaviors of interest, and serves as
the entry point to our system. Each timestep t, H will be
pulsed, which causes it to do the following:

1. It first determines a new state Snew to transition to,
as Snew ← T(Ft, S∗).

2. It then sets Sold = S∗ and S∗ ← Snew.

3. It then determines the behavior B∗ associated with
the new current state S∗ as B∗ ← M(S∗).

4. If Snew 6= Sold, then it resets B∗. In particular, if B∗ is
itself an HFA H∗, then this will cause H∗ to set its
own internal state S∗ ← S0.

5. Finally, it pulses B∗ (both behaviors and automata
may be pulsed).

Note that because the transition is performed before
the pulsing, S0 can never be pulsed, which is just fine
since S0 has no associated behavior.

Mapping States to Behaviors In the formal model
above, we can map multiple states to the same behavior.
But to make coding more straightforward, we won’t ac-
tually do that. Instead, we’ll assume that, within a given
HFA, each state must be mapped to a unique behavior.
This allows us to just treat the behaviors as the states
themselves, which is very convenient when writing an
HFA library. Plus, in most cases each state will have a
unique behavior anyway.

But doesn’t this restrict our FSA’s capabilities? After
all, one would think that the three-room robot example
earlier would be impossible, since the robot has to go
“right” in two different states (0 and 1). Surely this brings
up the spectre of perceptually aliased states again.

One would think this, but actually no! Because our
HFA is hierarchical, we can get around it with a trick.

5

Let’s say we need to make two states S1 and S2 which
each map to the same behavior B4. We do it as follows:

• Map S1 to B4.

• Map S2 to a new HFA H7.

• HFA H7 has a simple transition function: its start
state S0 immediately and always transitions to a
state S′1, whose behavior is B4. H7 then never transi-
tions out of S′1.

I call this trick creating a wrapper HFA: essentially
H7 is a behavior which does the exact same thing as B4
(because it calls B4 itself), but is a different behavior than
B4.

5 Implementing an HFA Library

We’ll implement the HFA library in Lua. It’s a language
similar to Python in many respects, and JavaScript in
other ways. Some notes to make it easier to follow if
you’re not familiar with the language. Comments start
with two hyphens (--). A function of the form foo(x,y) is
defined using the pattern foo = function(x, y). Local
variables must be explicitly declared as local, else they
are considered global. A dictionary (hash table) with
string keys "a", "b", and "c", pointing to the values
stored in the variables x, y, and z respectively, could be
defined with the literal:

mydict = { ["a"] = x, ["b"] = y, ["c"] = z }

Thereafter, we can access the value stored with "a" ei-
ther as mydict["a"] or as mydict.a I defined a few clo-
sures (functions defined inside other functions or scopes
which use their local variables) here and there; dynamic
programming languages like Lisp or Javascript use these
in spades. nil is the empty value, equivalent to NULL in
C or null in Java. The rest you can probably figure out.

One more note: for succinctness, the code shown will
have no error checking at all.

Defining a Behavior To build an HFA, we must define
the concept of a behavior. A behavior is some kind of
object which contains, among other things, three func-
tions: start, stop, and go. We’ll do this in Lua using a
dictionary keyed with the names start, stop, and go.
Later we’ll use a slot in the dictionary keyed parent,
which will refer to the behavior which is pulsing this
one (if any). Last, we’d like to know if the behavior
has been pulsed yet, and also we’ll give the behavior a
name. Here’s a simple utility function that builds such a
behavior.

makeBehavior = function(name, start, stop, go)

return { ["start"] = start, ["stop"] = stop, ["go"] = go,

["name"] = name, ["parent"] = nil,

["pulsed"] = false }

end

When we first pulse a behavior, we call its start func-
tion, followed by calling its go function once. When we
next pulse the behavior, we just call its go function. Fi-
nally, when we are finished with a behavior, we call its
stop function. Thereafter if we wish to pulse it again,
we start from the beginning (calling start, then go, etc.).

It’s up to you to define the start, stop, and go func-
tions for your behavior. Typically you get things set up
in the start function, iterate the behavior once or more
in the go function, and close up shop in the stop func-
tion. You don’t have to implement all (or even any!) of
these functions: instead, you could just pass in nil.

Let’s do an example. Suppose you were writing a
behavior which moves a game agent forward by one
step. Here you don’t care about starting up or shutting
down. You might write:

forward = makeBehavior("forward", nil, nil,

-- write the go function

function(behavior) goForwardOneStep() end)

Another example. Let’s say you want to write a robot
behavior which starts walking, and when the behavior
is exited he needs to clean up and get in a decent pose
before he does something else, or otherwise he’ll fall
over. Once the robot is walking, there’s no reason to tell
the robot to continue to walk, so the go function isn’t
relevant. You might write:

walk = makeBehavior("walk",

-- write the start function

function(behavior) startWalking() end,

-- write the stop function

function(behavior) stopWalking() end,

nil)

A final example. You want to write a game behavior
which causes the agent to fire his laser. This is a one-shot
behavior, so you only need to bother writing the start

function:
fire = makeBehavior("fire",

-- write the start function

function(behavior) fireLaser() end,

nil, nil)

Pulsing Let’s assume that we’re going to only pulse
a single behavior —- likely an HFA, and as part of that
pulsing it’ll recursively pulse sub-behaviors as necessary.
We could define this with as the functions:

-- Pulse a behavior

pulse = function(behavior)

if (not (behavior.pulsed)) then

behavior.pulsed = true

if (not (behavior.start == nil)) then

behavior.parent = nil

behavior.start(behavior)

end

end

if (not (behavior.go == nil)) then

behavior.go(behavior)

end

end

6

-- Reset the behavior

reset = function(behavior)

if (behavior.pulsed) then

if (not (behavior.stop == nil)) then

behavior.stop(behavior)

end

behavior.pulsed = false

end

end

We’ll discuss the behavior.parent stuff later.

Defining an HFA An HFA is a special version of a be-
havior. It has the same slots as a behavior, plus extra slots.
Additionally, the start, stop, and go slots of the HFA
are filled in with special hard-coded functions which
we’ll define in a moment (called startHFA, stopHFA, and
goHFA). We also have a few additional slots of interest.
First, transition will hold our HFA’s transition func-
tion. Second, current will hold the current (active) state.
Because we have defined states to have unique behav-
iors, in this code states will literally be behaviors. The
object which current will hold will be a behavior or
HFA object.

Every HFA will have a special start state,5 which is a
hard-coded behavior which does nothing at all. We’ll
define it as the following constant:

start = makeBehavior("start", nil, nil, nil)

Now as before, we can make a small utility function
which sets these slots for us. We’ll also include some
additional slots, to be discussed and used later on:

makeHFA = function(name, transition)

return { ["start"] = startHFA, ["stop"] = stopHFA,

["go"] = goHFA, ["name"] = name,

["parent"] = nil, ["pulsed"] = false,

["transition"] = transition,

["current"] = start,

-- These is for other gizmos we’ll add

-- later, so you can ignore them for now

["counter"] = 0, ["timer"] = 0,

["done"] = false, ["failed"] = false,

["targets"] = nil, ["behaviorTargets"] = nil,

["goReturned"] = nil, ["propagateFlags"] = false,

["events"] = { }, ["returnEvent"] = nil }

end

When you make an HFA, you provide a name (as be-
fore) and a transition: a function which, when passed
the HFA in question, returns the next state the HFA
should transition to. The transition function usually
does this by querying the current state of the HFA (via
its slot current), plus extracting the world situation as
it sees fit, and then determining where to transition to.

This function could be very simple to write. But it
in most cases general, though, it’d be more convenient
to write a bunch of per-state transition functions rather
than one monolithic HFA-wide transition function. Here
we’ll make a simple utility function to do this:

5Though this state is called start, this is not the same thing as the
function stored in the start slot of a behavior. Sorry for the confusion.

makeTransition = function(transitions)

return function(hfa)

local transition = transitions[hfa.current]

if (type(transition) == "function") then

return transition(hfa)

else

return transition

end

end

end

This function will take a dictionary of per-state transi-
tion functions and return an HFA-wide transition func-
tion suitable to hand to the makeHFA function. Each per-
state transition function is keyed by the state (behavior)
it is associated with. Instead of a transition function ,
we may simply store a state keyed by another, which
indicates that the transition is made unilaterally from the
one state to the other. For example, let’s build an HFA
for the following wall-following behavior:

CurveLeft

Start Forwardalways

left wall
too far away

CurveRight

left wall
too near

TurnRight90

front wall
and left wall

TurnLeft90

front wall and
no left wall alwaysalways

left wall
close enough

Notice the three edges labeled “always”: these are uni-
lateral transitions. Suppose we had built five behaviors
stored as the global variables turnLeft90, turnRight90,
forward, curveLeft, and curveRight. We also have
a few sensor functions such as frontWallAhead() or
leftWallTooNear(). We might implement the HFA, and
its HFA-wide transition function, as:

myTransition = makeTransition(

{

[start] = forward,

[forward] = function(hfa)

if (frontWallAhead() and noLeftWall()) then

return turnRight90

elseif (frontWallAhead()) then return turnLeft90

elseif (leftWallTooFar()) then return curveLeft

elseif (leftWallTooNear()) then return curveRight

else return forward end

end,

[turnRight90] = forward,

[turnLeft90] = forward,

[curveRight] = function(hfa)

if (leftWallCloseEnough()) then return forward

else return curveRight end

end,

[curveLeft] = function(hfa)

if (leftWallCloseEnough()) then return forward

else return curveRight end

end

})

wallFollow = makeHFA("WallFollow", myTransition)

7

Notice that the keys are actual behaviors, rather than
“strings”, like we’ve seen before.

Making a Wrapper HFA A wrapper HFA has just a
single sub-behavior of interest, and a unilateral transi-
tion function from start to that behavior. Thus we can
define a utility function for wrapper HFAs very simply:

makeWrapper = function(name, wrappedBehavior)

return makeHFA(name,

function(hfa)

return wrappedBehavior

end)

end

Making a Policy Recall that a policy is just a Moore
machine where all of the states have the same transition
function. If that’s the case, we don’t need to do call
makeTransition at all. We can just directly provide a
single transition function and it’ll be used regardless of
what state we’re in. For example, take the transition
function we defined for [forward] above. Imagine if we
wanted to use that transition function for all the states:
that is, we would make a policy out of this transition
function. We could do it simply as:

myTransition = function(hfa)

if (frontWallAhead() and noLeftWall()) then

return turnRight90

elseif (frontWallAhead()) then return turnLeft90

elseif (leftWallTooFar()) then return curveLeft

elseif (leftWallTooNear()) then return curveRight

else return forward end

end

wallFollow = makeHFA("WallFollow", myTransition)

Policy implemented. Or even simpler: what if regard-
less of what state we are in, we always transition to
forward? That’s a brutally simple policy. Essentially we
start in start, then immediately transition to forward

and stay there. To do this, we could just say:

myTransition = function(hfa) return forward end

wallFollow = makeHFA("WallFollow", myTransition)

Hmmm, wait a minute. That’s exactly the same proce-
dure as our makeWrapper function. Ah, right. A wrapper
is just a trivial policy which immediately goes to a cer-
tain state and stays there.

HFA Functions Armed with this knowledge, now
we’re ready to define the startHFA, stopHFA, and goHFA

functions which form the heart of our HFA.
Let’s start with startHFA. This function simply resets

the current state to start.6

6At this point we could bring up an extra gizmo not being imple-
mented in this document: the notion of an interruptable automaton. If
you were doing this kind of automaton, and transitioned away, then
transitioned back again, it’d start right where it left off. In essence
it treated your transition-away-then-back as an interrupt to handle

startHFA = function(hfa)

hfa.current = start

end

Equally simple is stopHFA. All we have to do is stop
our subsidiary behavior. To do this, the function just calls
stop on the current state, assuming the stop function
was implemented for the state.
stopHFA = function(hfa)

if (not (hfa.current.stop == nil)) then

hfa.current.stop(hfa.current)

end

end

Done and done. Now the only actually interesting
function: goHFA. This function has three parts. First, it
must determine what state to transition to. Second, it
must perform the transition. If the transition involves
changing to a new state, this is done by calling stop on
the old state, then calling start on the new state (first
setting the new state’s parent backpointer to the HFA so
the state knows who its current parent is). The current
state is then updated. Third, it must call go on whatever
the current state is. The code looks like this:
goHFA = function(hfa)

-- DETERMINE TRANSITION

local newBehavior = hfa.transition(hfa)

-- PERFORM TRANSITION

if (not (newBehavior == nil)) then

if (not (newBehavior == hfa.current)) then

if (not (hfa.current.stop == nil)) then

hfa.current.stop(hfa.current)

end

newBehavior.parent = hfa

if (not (newBehavior.start == nil)) then

newBehavior.start(newBehavior)

end

hfa.current = newBehavior

end

end

-- EXECUTE

if (not (hfa.current.go == nil)) then

hfa.current.go(hfa.current)

end

And that’s pretty much all there is to it!7 Perhaps the
most surprising part of this implementation is that al-
though an HFA consists of a collection of states (or, in
our case, behaviors), in this implementation there is no
set or array of states at all: all that exists is a transition
function. That’s really all you need for an HFA.

6 Targets

One item I’ve found to be useful to add to an HFA is
the ability to add parameters to behaviors or transition

some exceptional condition. The straightforward way to implement
this would be to not reset the current state to start in startHFA. This
is all a nice notion but it has a lot of buggy interactions with other
mechanisms, like the parent backpointer, and later utility function
such as flags, counters, and timers. So I’d advise against it.

7Does the behavior.parent=nil line in the pulse function make
sense now?

8

functions. For historical reasons I have called these tar-
gets. The idea is simple. Let’s say you’re writing the
HFA for a soccer-playing robot. You might need to write
a basic behavior called GoToGoal , and another one called
GoToBall , and another one called GoToMidfield , and an-
other one called GoToNearestOpponent. Or you could
just write a single behavior called GoTo(X), where X can
be specified later. X is a target.

Similarly, you might need to write a transition func-
tion for the GoTo(X) state (behavior) which says that if
the distance to X is less than 3 meters, transition to Stop,
else continue doing GoTo(X). Thus it’d be helpful if your
transition function likewise had access to targets.

To keep things simple, targets will be untyped. That
is, you cannot create a target designed for (say) positions
like “the goal” or “the ball location”, and a different
kind of target designed for (say) lengths of time such
as “time ball has been in possession ” or “time until
halftime”. There can only be one kind of target, and the
user will have to be careful what he passes in as a target
in different situations. This is analogous to languages
such as Lua, or Lisp, or Python, which have untyped
parameters and variables, as opposed to Java or C, which
are typed.

We will add targets to our HFA by changing the
start, stop, and go functions of all behaviors and HFA
to accept, in addition to the behavior itself, a set of
zero or more targets (such as X), each bound to a value
(such as an object representing “the ball”). These will
take the form of a dictionary where the keys are the
target names and the values are the values bound to
those targets. For example, if we had a target value
object representing the goal stored in goal, and a target
value object representing the ball stored in ball, and we
were intending to pass them into some behavior called
getBetween(X, Y), where X and Y were two targets the
robot was supposed to position itself between, we might
store them bundled like this:

targetBindings = { ["X"] = goal, ["Y"] = ball }

We pass these into the getBetween’s start, stop, and
go functions. It’s up to getBetween’s functions to use
these bindings as it sees fit (and keep in mind, that since
you’re binding these things, the objects you bind to the
targets can be whatever you deem appropriate). For
example, here’s a possible getBetween(X, Y) behavior:

getBetween = makeBehavior("getBetween", nil, nil,

-- write the go function. NOTICE IT NOW TAKES TARGETS

function(behavior, targets)

-- we assume X and Y are actually objects that

-- our made-up function halfWayBetween understands

local pos = halfWayBetween(targets.X, targets.Y)

moveTowards(pos)

end)

Now let’s modify the pulse and reset functions to
pass in the right bindings:

-- Pulse a behavior

pulse = function(behavior, targets)

if (not (behavior.pulsed)) then

behavior.pulsed = true

if (not (behavior.start == nil)) then

behavior.start(behavior, targets)

end

end

if (not (behavior.go == nil)) then

behavior.go(behavior, targets)

end

end

-- Reset the behavior

reset = function(behavior, targets)

if (behavior.pulsed) then

if (not (behavior.stop == nil)) then

behavior.stop(behavior, targets)

end

behavior.pulsed = false

end

end

Now we need to modify our startHFA, stopHFA, and
goHFA functions to accept bindings. Targets pose a spe-
cial difficulty for HFA. An HFA is a behavior, so it has
bindings. But it also uses behaviors as its states, and
they might have their own bindings. The HFA may
pass some of its targets to its current behavior. Thus
we need a way for the HFA to map its targets to the
behaviors’ targets. For example, if the HFA’s job is
to go to X while constantly starting at Y, then wall
follow around X, and to do this it is using a behav-
ior called goTo(Obj, LookingAt) and another behav-
ior called wallFollow(Thing), then it needs to stipulate
that X = Obj = Thing, and Y = LookingAt.

We’ll define a mapping as a dictionary whose keys
are a sub-behavior’s targets, and whose values are the
HFA’s targets meant to be mapped to them. Thus we for
goTo we have:

gotoMap = { ["Obj"] = "X", ["LookingAt"] = "Y" }

... and for wallFollow we have:

wallFollowMap = { ["Thing"] = "X" }

For reasons which will become clear in a moment, we
also need to indicate the behavior for which these map-
pings will be used. Let’s store that with a key of 0 (zero):8

gotoMap = { [0] = goTo,

["Obj"] = "X", ["LookingAt"] = "Y" }

wallFollowMap = { [0] = wallFollow, ["Thing"] = "X" }

In addition to binding targets to each other, we can
explicitly provide a value for a target. We call this a
ground target value. For example, we could say that
we should be going to X but looking only at theGoal, a

8Why zero? Answer: we need something other than a string. Zero
seemed reasonable.

9

target value object I just made up. To do this we provide
the value directly rather than a string:

gotoMap = { [0] = goTo,

["Obj"] = "X", ["LookingAt"] = theGoal }
wallFollowMap = { [0] = wallFollow, ["Thing"] = "X" }

We’ll use these mappings in our transition function.
The way it works will be as follows: our transition func-
tion can either return a new state to transition to (if the
state takes no targets), or it can return a mapping. This
mapping contains the state to transition to (as the item
keyed by “0”),9 plus all the mappings necessary to con-
vert the HFA’s targets into the behavior’s targets. Besides
start we have only goto and wallFollow, which both
take targets, so everything in the following example will
return a mapping:

myTransition2 = makeTransition(

{
[start] = gotoMap,

[goto] = function(hfa)

if (closeEnough() then

return wallFollowMap

else

return goToMap

end,

[wallFollow] = wallFollowMap,

})

myHFA = makeHFA("MyHFA", myTransition2)

Now we need a way of taking the “transition” (a state
or a mapping object) returned by the transition function
and translating it into a set of targets the underlying be-
havior will be able to use. The particular translation will
depend on the current targets provided by the parent
HFA. To do this, we use the following utility function:
translateTargets = function(targets, mapping)

mapped = { }

for mapname, original in pairs(mapping) do

if (not (mapname == 0)) then

-- we are mapping a target to another target

if (type(original) == "string") then

mapped[mapname] = targets[original]

else

-- we assume it’s a ground target value

mapped[mapname] = original

end

end

end

return mapped

end

The Lua function pairs returns key/value pairs
from a dictionary (in this case mapping). We’re setting
mapname to each key and original to each pair in turn.

The translateTargets function takes a set of targets
mapped to values from the HFA, plus a set of mappings
from the transition function, and returns a new, properly
mapped set of targets and their values to give to an
underlying behavior. Armed with this, we can now
perform the translation in our goHFA function.

9Now do you see why we included the behavior in the mappings?

Recall that HFA have a mysterious slot called
behaviorTargets. We’ll now use this slot during goHFA:
it holds the mapped targets for the current behavior, so
we can reuse them on each call to go without rebuilding
them. While we’re at it, let’s store the HFA’s own targets
(as opposed to the sub-behavior’s mapped targets) in
a slot called targets. This probably isn’t that useful in
general except for debugging.
goHFA = function(hfa, targets)

hfa.targets = targets

-- DETERMINE TRANSITION

local newBehavior = hfa.transition(hfa)

-- EXTRACT TARGETS

-- the old targets for the behavior we’re stopping

local oldBehaviorTargets = hfa.behaviorTargets

-- figure the new targets. Both behaviors and mappings

-- are dictionaries, but we can tell them apart because

-- a mapping has a 0 (zero) key in it.

if (not (newBehavior == nil) and

not (newBehavior[0] == nil)) then

-- extract the new targets

hfa.behaviorTargets = translateTargets(targets,

newBehavior)

-- update the underlying behavior

newBehavior = newBehavior[0]

else

hfa.behaviorTargets = nil

end

-- PERFORM TRANSITION

if (not (newBehavior == nil)) then

if (not (newBehavior == hfa.current)) then

if (not (hfa.current.stop == nil)) then

hfa.current.stop(hfa.current, oldBehaviorTargets)

end

newBehavior.parent = hfa

if (not (newBehavior.start == nil)) then

newBehavior.start(newBehavior, hfa.behaviorTargets)

end

hfa.current = newBehavior

end

end

-- EXECUTE

if (not (hfa.current.go == nil)) then

hfa.current.go(hfa.current, hfa.behaviorTargets)

end

end

Once hfa.behaviorTargets is set, we can also use it
in our stopHFA function. So we define:
startHFA = function(hfa, targets)

hfa.current = start

end

stopHFA = function(hfa, targets)

hfa.targets = nil

if (not (hfa.current.stop == nil)) then

hfa.current.stop(hfa.current, hfa.behaviorTargets)

end

end

... and we’re done! Now so far we’ve been using
targets just for behaviors, and have been concentrating
on mapping them from HFA to HFA to behavior. But
targets can also be used in transitions too. Instead of

10

passing targets to a transition, we’ll just directly access
the HFA’s current targets in our transition functions. For
example, if we want to perform goTo only until we’re
close enough to whatever the HFA had called X, we
could say:

myTransition2 = makeTransition(

{
[start] = goToMap,

[goto] = function(hfa)

if (closeEnough(hfa.behaviorTargets.X) then

return wallFollowMap

else

return goToMap

end,

[wallFollow] = wallFollowMap,

})

myHFA = makeHFA("MyHFA", myTransition2)

Going way back to our wall-follower pro-
vides additional opportunities. Instead of saying
frontWallAhead(), we could say ahead(...), passing
in a target which specifies the object of interest to us
(perhaps a wall, perhaps not). Recall that the WallFollow
behavior took a target called Thing:

myTransition = makeTransition(

{
[start] = forward,

[forward] = function(hfa)

if (ahead(hfa.behaviorTargets.Thing)

and noLeftWall()) then

return turnRight90

elseif (ahead(hfa.behaviorTargets.Thing)) then

return turnLeft90

elseif (leftWallTooFar()) then return curveLeft

elseif (leftWallTooNear()) then return curveRight

else return forward end

end,

[turnRight90] = forward,

[turnLeft90] = forward,

[curveRight] = function(hfa)

if (leftWallCloseEnough()) then return forward

else return curveRight end

end,

[curveLeft] = function(hfa)

if (leftWallCloseEnough()) then return forward

else return curveRight end

end

})

wallFollow = makeHFA("WallFollow", myTransition)

Obviously we could have used this target in other
functions as well.

7 An Alternative Transition Method

In the HFA we’ve developed so far, we have separate
behaviors (states) and transition functions for them. An-
other approach that’s often done (in plain DFA anyway)
is to have events posted to the HFA which may trigger
transitions. Events are just strings, such as "finished",
or "failedToKick", or what have you. The current

state’s go function itself may post such an event to sug-
gest a transition. This is sometimes a more convenient
model than the more general transition model we’ve
described here.

Recall that our HFA had three special slots, events,
returnEvent, and goReturned. The events slot holds
a list of strings called events. These events have been
posted by various sources. You can post an event
yourself using the function:

-- post an event to the end of the HFA’s event list

postEvent = function(hfa, event)

table.insert(hfa.events, event)

end

In this case, the event will be added to the end of the
list. Events are cleared every iteration, immediately after
determining the transition but before performing it. You
can clear all the events manually if you like:

-- clear all events on the HFA’s event list

clearEvents = function(hfa)

hfa.events = { }
end

You can have a state’s go function return an event (a
string) rather than nil. This is usually done to indicate
that your state wants the HFA to transition to somewhere
else. If a go function returns an event, it is posted at the
very end of the events list.

HFAs are obviously themselves states: but you
don’t have any control over what they return, unlike
hand-coded states you’ve created. How might you get
an HFA to return an event? This is done by setting
hfa.returnEvent to the event string. Then the HFA will
return this event at the end of its go function. There’s a
utility function to do this for you:

-- set the event the HFA returns after goHFA is done

setReturnEvent = function(hfa, event)

hfa.returnEvent = event

end

We need to modify the stopHFA(...) function to
clean up the HFA’s events when it is called.

stopHFA = function(hfa, targets)

hfa.targets = nil

if (not (hfa.current.stop == nil)) then

hfa.current.stop(hfa.current, hfa.behaviorTargets)

end

clearEvents(hfa)

end

Obviously we’ll need to make some modifications to
the goHFA function too. Here’s how it’ll work. When
the HFA is calling the go(...) function of the under-
lying state, the return value of that function will get

11

stored away in the slot hfa.goReturned. The next iter-
ation, the first thing that goHFA will do is check to see
if hfa.goReturned has any event in it. If it does, it will
post that event, then clear it.

After goHFA has determined what transition to use,
it will clear all the existing events. Then it extracts the
targets and performs the transition as usual. It executes
the underlying go(...) method, possibly yielding an
event to put in hfa.goReturned, and then it finally re-
turns an event of its own if that event had been set in
hfa.returnEvent. All in all it looks like this:
goHFA = function(hfa, targets)

hfa.targets = targets

if (not (hfa.goReturned == nil)) then

postEvent(hfa, hfa.goReturned)

hfa.goReturned = nil

end

-- DETERMINE TRANSITION

local newBehavior = hfa.transition(hfa)

clearEvents(hfa)

-- EXTRACT TARGETS

-- the old targets for the behavior we’re stopping

local oldBehaviorTargets = hfa.behaviorTargets

-- figure the new targets. Both behaviors and mappings

-- are dictionaries, but we can tell them apart because

-- a mapping has a 0 (zero) key in it.

if (not (newBehavior == nil) and

not (newBehavior[0] == nil)) then

-- extract the new targets

hfa.behaviorTargets = translateTargets(targets,

newBehavior)

-- update the underlying behavior

newBehavior = newBehavior[0]

else

hfa.behaviorTargets = nil

end

-- PERFORM TRANSITION

if (not (newBehavior == nil)) then

if (not (newBehavior == hfa.current)) then

if (not (hfa.current.stop == nil)) then

hfa.current.stop(hfa.current, oldBehaviorTargets)

end

newBehavior.parent = hfa

if (not (newBehavior.start == nil)) then

newBehavior.start(newBehavior, hfa.behaviorTargets)

end

hfa.current = newBehavior

end

end

-- EXECUTE

if (not (hfa.current.go == nil)) then

hfa.goReturned = hfa.current.go(hfa.current,

hfa.behaviorTargets)

end

-- RETURN THE RETURNEVENT IF ANY

if (not (hfa.returnEvent == nil)) then

return hfa.returnEvent(hfa, targets)

else

return nil

end

end

We’ll also need to tweak startHFA to clear out
hfa.goReturned in the first place:

startHFA = function(hfa, targets)

hfa.current = start

hfa.goReturned = nil

end

Transitioning on Events We now have a facility for
posting and clearing events. How do we transition on
them? By creating a new kind of transition function.
We’ll make a function called event(...) which builds a
transition function which transitions based on events as
indicated in its arguments.
event(...) takes a table of states or transition func-

tion, keyed by events. If an event has been posted,
it will return the appropriate state, or call the appro-
priate transition function and return whatever it had
returned. For example, imagine if we had a system
which posted the events "leftWallCloseEnough", and
"bumpedIntoWall". We might revise the curveRight

and curveLeft transition functions like this:

myTransition = makeTransition(

{
[start] = forward,

[forward] = function(hfa)

if (ahead(hfa.behaviorTargets.Thing)

and noLeftWall()) then

return turnRight90

elseif (ahead(hfa.behaviorTargets.Thing)) then

return turnLeft90

elseif (leftWallTooFar()) then return curveLeft

elseif (leftWallTooNear()) then return curveRight

else return forward end

end,

[turnRight90] = forward,

[turnLeft90] = forward,

[curveRight] = event({
["leftWallCloseEnough"] = forward,

["bumpedIntoWall"] = turnRight90 })
end,

[curveLeft] = event({
["leftWallCloseEnough"] = forward,

["bumpedIntoWall"] = turnLeft90 })
end

})

wallFollow = makeHFA("WallFollow", myTransition)

This says that when curving right, if the
leftWallCloseEnough event was posted, transition
to forward. If the bumpedIntoWall event was posted,
transition to turnRight90. Otherwise continue curving
right. What if both were posted? Then whichever event
was posted first wins. The curveLeft state is similar.

Note that you could have whole transition
functions rather than states. That is, instead of
["leftWallCloseEnough"] = forward, you might
do ["leftWallCloseEnough"] = function(hfa) ...

The event(...) method is pretty straightforward to
write:

12

-- build a transition function based on events

event = function(transitions)

return function(hfa)

for event in ipairs(hfa.events) do

local transition = transitions[event]

if (not (transition == nil)) then

if (type(transition) == "function") then

return transition(hfa)

else

return transition

end

end

end

return nil

end

end

8 Utility Behaviors

I’ve found it useful to have certain utility behaviors built
into the library:

• Behaviors which increment or reset counters so
HFAs can conveniently do things for a set number
of times.

• Behaviors which update or reset timestamps so
HFAs can conveniently do things for a set amount
of wall-clock time (useful for HFAs involved in
robotics).

• Behaviors which raise flags to signal parent HFAs
that it might be a good time for the parent HFA to
transition to something else now.

Each of these behaviors will need to update some
special slots stored in the HFA. Let’s discuss these in
turn.

Counters We’ll include one counter in each HFA. The
counter is just an integer which starts at zero and incre-
ments or is reset to zero as requested. At any time, our
transition functions can query the current counter value
and make transition decisions based on it. This would
allow us, for example, to try kicking a ball six times, and
if we still have failed, go do something else.

If our HFA were called hfa, the counter in the HFA
will be called hfa.counter. We’ll create two behaviors
which modify it:

-- increments the parent HFA’s counter

bumpCounter = makeBehavior("bumpCounter",

function(behavior, targets)

if (not (behavior.parent == nil)) then

behavior.parent.counter = behavior.parent.counter + 1

end

end, nil, nil)

-- zeros the parent HFA’s counter

resetCounter = makeBehavior("resetCounter",

function(behavior, targets)

if (not (behavior.parent == nil)) then

behavior.parent.counter = 0

end

end, nil, nil)

Notice that we’re also finally making use of the parent
slot in behaviors. This slot was set in our goHFA function
before the behavior was called.

If you’re too spooked about accessing the slot directly,
your transition functions can get the current counter
value using the following convenience function:

currentCounter = function(hfa) return hfa.counter end

Timers Timers are just like counters, only they store
intervals of time. Whereas counters are useful for simu-
lations, timers are particularly useful for real-time stuff
like robotics or game agents. We’ll include one single
timer, in the HFA slot timer.

Unfortunately, Lua doesn’t have a good measure of
system time (Google for “lua time milliseconds”): its
finest resolution is one second. But it’s better than noth-
ing. Here we’ll make a behavior which sets timer to
the current time, and provide a utility function which
measures the difference between the current time and
the last time the timer had been set.

-- updates the timer to the current time

resetTimer = makeBehavior("resetTimer",

function(behavior, targets)

if (not (behavior.parent == nil)) then

behavior.parent.timer = os.time()

end

end, nil, nil)

-- returns the number of seconds

-- since the timer was last updated

currentTimer = function(hfa)

return os.time() - hfa.timer

end

Flags A flag is a slot in an HFA which is either true
or false. Flags are most often used by HFA to inform
their parent HFA that they think they have finished their
task (or failed at it) and perhaps the parent should now
transition to something else.

We’ll define two flags: done and failed. The actual
flag slot is stored in the parent HFA, and the parent
HFA’s transition functions can test these flags (to deter-
mine if they should transition somewhere else) using the
following convenience functions:

-- isDone(hfa) returns the current done flag in the HFA

isDone = function(hfa) return hfa.done end

-- isFailed(hfa) returns the current failed flag in the HFA

isFailed = function(hfa) return hfa.failed end

A child HFA sets a flag in its parent HFA by transi-
tioning its current state to a flag-setting behavior. There
are four such behaviors provided, which differ based
on what happens after the flag is set. In some cases you
just want to set the flag. In other cases, you set the flag
because you’re out of stuff to do: where you should you
transition to then? In these other cases, we just auto-
matically transition to the start of the automaton. So we
have:

13

• sayDone raises the done flag.

• sayFailed raises the failed flag.

• done raises the done flag and immediately resets to
the start state, so the next transition will be out
of the start state. This is often more convenient
than sayDone because you don’t have to specify a
transition function for this state. More often then
not, when your HFA thinks it is “done”, you don’t
care about specifying further behaviors: you might
as well just start it over again if its parent foolishly
decides to continue on.

• failed raises the failed flag and immediately resets
to the start state, so the next transition will be out
of the start state. This is often more useful than
sayFailed for the same reason that done (above) is
more useful than sayDone.

These behaviors set flags using an internal function
called setFlag. We’ll include one last gizmo in setFlag

called flag propagation. Often we see HFA which look
like this:

DoneDo Some
StuffStart always is done

Note the transition to done when the flag is done. Ick.
In fact often we see whole cascades of HFA and par-
ent HFA with this pattern. Rather than explicitly add
all these “done” behaviors into these HFA, we can sim-
ply tell the HFA to propagate their done and failed

flags to their parents: that is, when their done flag is set,
they automatically set their parent’s done flag (similarly
failed):

myHFA.propagateFlags = true

Then the HFA would look like:

Do Some
StuffStart always

... because flag propagation is being handled automat-
ically. Thus setFlag will look like this:

-- Internal utility function.

-- Sets a flag in the *parent* of the given HFA

setFlag = function(hfa, flag)

if (not (hfa.parent == nil)) then

hfa.parent[flag] = true

if (hfa.parent.propagateFlags == true) then

setFlag(hfa.parent, flag)

end

end

end

Armed with this function, we can create our four be-
haviors:

-- done: sets the "done" flag in the HFA’s parent,

-- and transitions to "start"

done = makeBehavior("done", nil, nil,

function(behavior, targets)

if (not (behavior.parent == nil)) then

behavior.parent.current = start

setFlag(behavior.parent, "done")

end

end)

-- sayDone: sets the "done" flag in the HFA’s parent

sayDone = makeBehavior("sayDone",

function(behavior, targets)

if (not (behavior.parent == nil)) then

setFlag(behavior.parent, "done")

end

end, nil, nil)

-- failed: sets the "failed" flag in the HFA’s parent,

-- and transitions to "start"

failed = makeBehavior("failed", nil, nil,

function(behavior, targets)

if (not (behavior.parent == nil)) then

behavior.parent.current = start

setFlag(behavior.parent, "failed")

end

end)

-- sayFailed: sets the "failed" flag in the HFA’s parent

sayFailed = makeBehavior("sayFailed",

function(behavior, targets)

if (not (behavior.parent == nil)) then

setFlag(behavior.parent, "failed")

end

end, nil, nil)

It’s convenient, or sometimes critical, to reset these
flags, counters, and timers whenever we start an HFA,
or in some cases whenever we iterate the HFA. We’ll do
this in startHFA. Specifically, we’ll reset the hfa.done,
hfa.failed, hfa.counter, and hfa.timer variables,
yielding:

startHFA = function(hfa)

hfa.done = false;

hfa.failed = false;

hfa.counter = 0;

-- maybe this is too costly and we should

-- restrict it to the resetTimer function?

hfa.timer = os.time()

hfa.goReturned = nil;

hfa.current = start;

end

Last but not least, we want to clear the hfa.done and
hfa.failed flags every iteration, so we modify goHFA as
follows:

14

goHFA = function(hfa, targets)

hfa.targets = targets

if (not (hfa.goReturned == nil)) then

postEvent(hfa, hfa.goReturned)

hfa.goReturned = nil

end

-- DETERMINE TRANSITION

local newBehavior = hfa.transition(hfa)

clearEvents(hfa)

-- EXTRACT TARGETS

-- the old targets for the behavior we’re stopping

local oldBehaviorTargets = hfa.behaviorTargets

-- figure the new targets. Both behaviors and mappings

-- are dictionaries, but we can tell them apart because

-- a mapping has a 0 (zero) key in it.

if (not (newBehavior == nil) and

not (newBehavior[0] == nil)) then

-- extract the new targets

hfa.behaviorTargets = translateTargets(targets,

newBehavior)

-- update the underlying behavior

newBehavior = newBehavior[0]

else

hfa.behaviorTargets = nil

end

-- PERFORM TRANSITION

if (not (newBehavior == nil)) then

if (not (newBehavior == hfa.current)) then

if (not (hfa.current.stop == nil)) then

hfa.current.stop(hfa.current, oldBehaviorTargets)

end

newBehavior.parent = hfa

if (not (newBehavior.start == nil)) then

newBehavior.start(newBehavior, hfa.behaviorTargets)

end

hfa.current = newBehavior

hfa.done = false

hfa.failed = false

end

end

-- EXECUTE

if (not (hfa.current.go == nil)) then

hfa.goReturned = hfa.current.go(hfa.current,

hfa.behaviorTargets)

end

-- RETURN THE RETURNEVENT IF ANY

if (not (hfa.returnEvent == nil)) then

return hfa.returnEvent(hfa, targets)

else

return nil

end

end

15

