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Abstract

Multi-task learning improves generalization perfor-
mance by learning several related tasks jointly. Several
methods have been proposed for multi-task learning in
recent years. Many methods make strong assumptions
about symmetric task relationships while some are able
to utilize externally provided task relationships. How-
ever, in many real world tasks the degree of relatedness
among tasks is not known a priori. Methods which are
able to extract the task relationships and exploit them
while simultaneously learning models with good gen-
eralization performance can address this limitation. In
the current work, we have extended a recently proposed
method for learning task relationships using smooth
squared loss for regression to classification problems
using non-smooth hinge loss due to the demonstrated ef-
fectiveness of SVM classifier in single task classification
settings. We have also developed an efficient optimiza-
tion procedure using bundle methods for the proposed
multi-task learning formulation. We have validated our
method on one simulated and two real world datasets
and have compared its performance to competitive base-
line single-task and multi-task methods.

1 Introduction

In the standard settings of supervised machine learning,
the objective is to learn a predictive function using ex-
ample data. However, in real world settings, we often
encounter situations with several related learning tasks.
For example, in personalized email spam classification,
the classification of spam for each user can be consid-
ered a separate task; in automated driving, steering and
acceleration can be considered related tasks. Intuitively,
it would seem that learning these related classification or
regression tasks jointly should help us utilize common
knowledge and improve generalization performance. In

fact, this intuition is supported by empirical evidence
provided by recent developments in transfer learning
[26] and multi-task learning [10] [3] [31].

Multi-task learning (MTL) is a paradigm for learn-
ing several related tasks jointly. The generalization per-
formance of the learned tasks is improved by utilizing
inductive transfer across tasks. MTL achieves this by
leveraging the training signal in related tasks [3, 10],
and it has been empirically and theoretically [31] [4]
shown to improve the generalization performance, es-
pecially when the training data is scarce. Some of the
earliest models of multi-task learning were developed us-
ing multi-layer back-propagation neural networks [10].
Neural networks can be extended from single task to
multiple tasks trivially with additional outputs for each
task. Several tasks share the same input layer and one
or more intermediate layers in this setting. By training
multiple tasks simultaneously the back-propagation net
prefers the inductive bias that helps multiple tasks [10].

Recently, there has been a significant progress in re-
search in multi-task learning using Bayesian and regu-
larized risk minimization framework ( see [10, 31, 4, 2,
24, 12, 32, 7, 36, 29, 35, 1, 13] and the references therein).
Various MTL models differ in the kinds of assumptions
they make about the relatedness of the tasks and how
these assumptions are incorporated into the learning
algorithm. The simplest assumption could be that all
the tasks share a similar set of parameters with some
task specific variations [13]. This would be the case for
personalized spam classification where generic spam is
common for all users but different users might vary to
some degree in individual spam. Some MTL formula-
tions try to extract a good representation of the input
features or a subset of features that are informative for
all the tasks [15, 1]. Finally, we might also be interested
in learning a good distance metric for all the predictive
tasks [31].

In this work, we propose a convex formulation for
multi-task relationship learning using non-smooth hinge
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loss. In section 2, we provide a brief review of the litera-
ture in regularized multi-task learning. Then, we moti-
vate our MTL formulation and present an optimization
method based on bundle methods in section 3. Finally
in section 4, we evaluate the performance of our method
on a simulated dataset and two real world datasets, and
compare it to an STL model using SVM and two MTL
models

2 Regularized Multi-task learning

Given a training set with n input-output example pairs,
{(x1, y1), . . . , (xn, yn)}, the objective of standard ma-
chine learning models is to learn a mapping function
f : X → Y between the input domain X and the output
domain Y which minimizes the loss on data not encoun-
tered in training. The training examples (xi, yi) ∈ X ×Y
are drawn from an unknown distribution. The regular-
ized risk minimization framework achieves this goal by
modeling an objective function as a trade-off between
loss function, which minimizes the error, and regular-
ization penalty, which controls the model complexity to
discourage over-fitting.

min
w

n

∑
i=1
L (w, xi, yi)︸ ︷︷ ︸

loss

+λ R (w)︸ ︷︷ ︸
regularization

(1)

This can be generically represented as (1) where w is
the set of model parameters to be learned. This prin-
ciple can be extended to MTL, where we have T tasks
with training data for each of the t = 1 . . . T tasks, given
by {(xit, yit) : i = 1 . . . nt}. The combined learning objec-
tive can be written as,

min
W

T

∑
t=1

nt

∑
i=1
L (wt, xit, yit)︸ ︷︷ ︸

loss

+λ R (W)︸ ︷︷ ︸
regularization

(2)

where nt is the number of training instances for the tth

task, wt denotes the model parameters for the tth task,
and W = {wt}T

t=1 is the combined set of model parame-
ters for all the tasks. Various multi-task learning meth-
ods take this general approach to build combined mod-
els for many related tasks, typically, by enforcing MTL
assumptions through regularization term.

One of the first MTL methods based on regularized
risk minimization framework was proposed by Evege-
niou and Pontil [13]. The key assumption of their model
is that all the tasks are closely related and their model
weights are similar. This assumption is incorporated
into the method by a regularization term that penal-
izes the deviation of the model weights for each task
from the mean of all tasks. However, the assumption of
symmetric relationships between all tasks made by this
formulation are not suitable for many real world prob-
lems where the degree of relatedness between different

tasks can vary. Clustered MTL formulations [37, 14],
on the other hand, assume that tasks are grouped into
clusters such that tasks within each cluster share greater
similarity with other tasks in the same cluster.

Some methods make try to constrain the model
weights to a low dimension subspace. For instance, the
MTL model proposed by Kumar et al. [23] represents
the weight matrix as a product W = LS where each col-
umn of the matrix L represents a latent task and S is a
sparse matrix. The number of latent tasks is smaller than
the number of tasks. In conjunction with sparsity of S,
this formulation, therefore, enforces a constraint that the
tasks are combinations of few latent tasks. Whereas, the
trace norm based formulation [17, 28] tries to minimize
the rank of the weight matrix W by enforcing the con-
straint that the tasks lie in a low dimensional sub-space.

In multi-task feature learning and feature selection
methods [16, 2, 24, 25], sparse learning schemes, simi-
lar to lasso [33] type regularization, are used to select
or learn a common set of features across many related
tasks. A common assumption made by many methods
[13, 1, 15] is that all tasks share a common sub-set of
informative features. This may be a limitation in certain
settings, which is addressed by the tree guided group
lasso method proposed by Kim et al. [21] where external
task relationships guide the feature selection by enforc-
ing a group wise sparsity constraints.

Whenever the relationships between tasks are avail-
able, it is beneficial to take them into account. The MTL
formulations proposed in [12, 19] incorporate externally
provided task relationship into the regularization term
and penalize the deviations of only related tasks. How-
ever, these relationships might not be available and may
need to be determined from the data. Although clus-
tered multi-task learning can extract related groups of
tasks to some extent, one of their shortcomings is that
the number of task clusters is not known beforehand and
hence, needs to be determined through parameter tun-
ing. Another set of approaches, mostly based on Gaus-
sian Process models, learn the task co-variance structure
[7, 36] and are able to take advantage of both positive
and negative correlations between the tasks. The method
proposed in this paper also falls into the task relation-
ship inference paradigm and tries to uncover the task
relationships using the training data.

3 Multi-task Relationship Learning

3.1 Notation

In this section we describe the commonly used notations
in this paper. I denotes the identity matrix of appropriate
size. A � 0 signifies that A is a positive semidefinite
matrix, tr (A) denotes the trace of a symmetric matrix
A, which is defined as the sum of the diagonal elements.
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|1− y f |+ denotes the hinge loss between the prediction
score f and the actual label y, where |g|+ ≡ max(0, g).
[p : q] denotes the set of integers i such that p ≤ i ≤ q.

We use T for the number of tasks and D for the number
of input dimensions. W ∈ RD×T denotes the matrix of
task weights, where each column wt ∈ RD is the weight
vector for tasks t ∈ [1 : T], the rows of W are denoted
by w̃j ∈ RT for j ∈ [1 : D]. Ω ∈ RT×T denotes the task
covariance matrix. To simplify notation, we also define
Σ ≡ Ω−1; where Ω−1 is the inverse of Ω.

3.2 MTRL using hinge loss

The multi-task relationship learning (MTRL) for smooth
squared loss was proposed by Zang and Yeung [36]. The
key feature of this formulation is that it does not require
the task relationships to be known beforehand and it can
exploit both the positive and negative task correlations.
In order to extend the formulation to classification prob-
lems, it can be noted that the same regularizer can be
utilized in order to leverage its advantages while using
a loss function well suited for classification. In STL set-
tings, SVM has been empirically shown to perform well
for a diverse array of tasks. Hence, we chose to extend
the MTRL formulation using SVM hinge loss [9]. The
new model for MTLR using hinge loss is given by the
optimization problem in (3).

min
W,Ω

J =
T

∑
t=1

1
nt

nt

∑
i=1

∣∣∣1− yt
i

(
wT

t xt
i

)∣∣∣
+
+

λ1

2
tr
(

WWT
)

+
λ2

2
tr
(

WΩ−1WT
)

s.t. Ω � 0
tr (Ω) = T

(3)

In problem (3), the objective consists of the hinge loss
term which decomposes over all the examples and all
the tasks. The regularizer is composed of two parts
— the first term λ1

2 tr
(
WWT) is the Frobenius norm of

W, which penalizes the complexity of the weight ma-
trix, and the second term λ2

2 tr
(
WΩ−1WT) penalizes the

deviations between correlated tasks based on the task co-
variance matrix Ω. Due to the replacement of a smooth
squared loss with non-smooth hinge loss the problem
becomes significantly more difficult to solve. Hence, we
propose the following optimization procedure to solve
it efficiently.

3.3 Optimization Procedure

Theorem 1. Problem (3) is jointly convex in both W and Ω

Proof. To prove that (3) is convex we need to prove that
the objective function is convex and the constraints de-
fine a convex set. Since the sum of convex functions

preserves convexity, we only need to show that the
individual terms of the objective function are convex.
It is obvious that the first two terms in the objective
function in (3) are convex in terms of W, the first be-
ing the sum of hinge losses and the second being a
norm. The last term tr

(
WΩ−1WT) can be rewritten as

∑D
j=1 w̃jΩ−1w̃T

j where w̃j denotes the jth row of W. The

function f (x, Y) = xTY−1x, where x ∈ Rn and Y � 0,
known as the matrix fractional function, is convex (for
proof refer to [8] page 76). Once again, due to the con-
vexity preserving nature of sum, the last term is also
convex. Finally, the constraint Ω � 0 defines a positive
semi-definite cone and the tr(M) is just an affine func-
tion of the matrix M, and hence, the intersection of both
the constraints defines a convex set.

Although problem (3) is jointly convex in W and Ω, si-
multaneous optimization over both W and Ω is difficult.
Therefore, we use an alternating optimization strategy
[5] and iterate between optimizing W with Ω fixed and
vice-versa. The complete optimization procedure is sum-
marized in Algorithm 1.

Optimizing Ω with fixed W

With W fixed, we can ignore the terms which are not
dependent on Ω. The reduced problem involving only
terms dependent on Ω can be rewritten as (4).

min
W,Ω

tr
(

WΩ−1WT
)

(4)

s.t. Ω � 0
tr (Ω) = T

The analytical solution to the above problem can be
obtained in the closed form given by (5),

Ω =
T(WTW)

1
2

tr
(
(WTW)

1
2

) (5)

This can be proved using the Cauchy-Schwarz inequal-
ity for the Frobenius norm. For a detailed proof, please
refer to [36].

Optimizing W with fixed Ω

To solve this problem, we use the Bundle Methods for
Regularized Risk Minimization (BMRM) proposed by
Teo et al. [30]. BMRM is an optimization scheme for
efficiently solving convex optimization problems com-
monly encountered in regularized risk minimization
framework. This method converges in O(ε) steps for
general convex problems and in O(log(1/ε)) steps for
smooth convex problems.
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Figure 1: Illustration of convex function lower bounded
by cutting planes. Cutting planes are tangents to the
curve. The black dots represent the points at which
the cutting planes are defined. The piecewise linear
approximation is defined by the collective maxima of
the cutting planes. The red dot represents the current
minima of JCP

t

The central idea of BMRM is based on the cutting
plane and bundle methods, which is to bound a con-
vex objective function using a piecewise linear ap-
proximations, denoted by JCP

t . This is illustrated in
Fig. 1 for a single variable convex function. The cut-
ting planes are defined by the (sub)gradients to the
curve at each of the points marked by black circles.
The collective maximum of the cutting planes, JCP

t :=
max1≤i≤t

{
tr
(
WT Ai

)
+ bi

}
, provides an approximation

of the objective function. Due to convexity of the ob-
jective function, the cutting planes, and as a conse-
quence JCP

t , always lower bound the objective. New
cutting planes are added to the approximation as the
algorithm progresses to make the lower bound progres-
sively tighter. The highlighted gray area in Fig. 1 marks
the approximation gap, which is defined as the differ-
ence between the current best minimum of the objective
function and the minimum of the cutting plane approxi-
mation JCP

t

Even though the cutting plane method is convergent
[20], it generally suffers from instability and extremely
slow convergence [22] when new iterates move far away
from the previous ones. To mitigate this problem, bundle
methods add a proximal term to prevent the zig-zag be-
havior caused by next iterates moving too far away from
the current iterates. There are three popular variants of
bundle methods [30].

proximal:

wt = argminw

{
ξt

2
‖w− ŵt−1‖2 + JCP

t (w)

}
(6a)

trust region:

wt = argminw

{
JCP
t (w) | 1

2
‖w− ŵt−1‖2 ≤ κt

}
(6b)

level set:

wt = argminw

{
1
2
‖w− ŵt−1‖2 | JCP

t (w) ≤ τt

}
(6c)

As it can be seen for (6a), (6b), and (6c), each of the
variants penalize large steps in some form. However
tuning the exact parameters for the proximal terms for
achieving good rate of convergence can be difficult. The
main insight of BMRM, which is based on proximal bun-
dle methods, is to note that the objective function in
regularized risk minimization consists of a loss term and
a regularization term, as shown in (1), where the regu-
larization term R(w) is typically a norm of some kind.
Therefore, the regularization term can be used as the
proximal term, obviating the need for a specialized prox-
imal term and the additional inconvenience associated
with its parameter tuning.

To apply BMRM to Problem (3) we split the objective
into two parts — the loss term and the regularization
term.

J = Remp + Ψ

where

Remp =
m

∑
t=1

1
nt

nt

∑
i=1

∣∣∣1− yt
i

(
wT

t xt
i

)∣∣∣
+

Ψ =
λ1

2
tr
(

WWT
)
+

λ2

2
tr
(

WΣWT
)

We proceed by defining a cutting plane approximation
of Remp and use Ψ as the proximal term. The cutting
plane approximation is defined by

RCP
t (W) = max

1≤i≤t

{
tr
(

WT Ai

)
+ bi

}
where At ∈ ∂Remp (Wt−1) and bt = Remp (Wt−1) −

tr
(
WT

t−1 At
)
. Therefore, we minimize problem (7) to get

the next iterate

Jt (W) = Ψ (W) + max
1≤i≤t

{
tr
(

WT Ai

)
+ bi

}
Wt = arg min

W
Jt (W)

(7)
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The algorithm terminates when the gap between the
approximation and the original objective function falls
below a specified tolerance level ε, i.e. min0≤i≤t J (Wi)−
Jt (Wt) ≤ ε.

We solve the approximate problem (7) in its dual form
using following result from [30] restated in a modified
form for the current problem.

Theorem 2. Let {Ai}t
i=1 be the set of (sub)gradients and b =

(b1, b2, . . . , bt)
T be defined such tha bt = Remp (Wt−1) −

tr
(
WT

t−1 At
)
. The dual problem of

Wt = arg min
W
{Jt (W)}

Jt (W) ≡ Ψ (W) + max
1≤i≤t

{
tr
(

WT Ai

)
+ bi

}
is

αt = arg max
α∈Rt

{
J∗t (α) ≡ Ψ∗

(
−∑

i
Aiαi

)
+ αTb

}
subject to:

α ≥ 0
‖α‖1 = 1

where Ψ∗ denotes the Fenchel Dual of Ψ. Furthermore,
Wt and αt are related by the dual connection Wt =
∂Ψ∗ (−∑i Aiαi)

Please note that our statement differs slightly, in nota-
tion, from the original theorem presented in [30] because
the variables in the original theorem are presented in a
vector form, whereas in our case the optimization vari-
ables are presented in matrix format.

Fenchel Dual of Ψ

In order to provide a concrete instantiation of the dual
problem we have to compute the Fenchel dual of Ψ.

Definition 1. Fenchel Dual: Let φ : W → R be a convex
function on a convex setW . Then the dual φ∗ of φ is defined
as

φ∗ (µ) := sup
w∈W

wTµ− φ (w) (8)

The matrix equivalent of dot product for vectors is the
trace of the matrix product. Hence, the Fenchel dual of
Ψ (·) is computed as follows.

Ψ∗ = sup
W

tr
(

UTW
)
−Ψ (W)

= sup
W

tr
(

UTW
)
− λ1

2
tr
(

WWT
)
− λ2

2
tr
(

WΣWT
)

(9)

To maximize R.H.S., we take its derivative w.r.t. W
and equate it to zero to find the stationary point, noting
that Σ is symmetric.

∣∣∣∣∂F (W, U)

∂W

∣∣∣∣
W=W∗

= 0

U − λ1W∗ − λ2W∗Σ = 0

=⇒ W∗ = U (λ1 I + λ2Σ)−1 ≡ UB,

where we have defined B = (λ1 I + λ2Σ)−1. Substitut-
ing back into (9), we get the closed form expression for
Fenchel dual, which we further simplify using the cyclic
property of trace [27].

Ψ∗ =tr
(

UTUB
)
− λ1

2
tr
(

UBBTU
)
− λ2

2
tr
(

UBΣBTUT
)

=tr
(

UBUT
)
− λ1

2
tr
(

UBBTU
)
− λ2

2
tr
(

UBΣBTUT
)

=tr
{

U
(

B− λ1

2
BBT − λ2

2
BΣBT

)
UT
}

=tr
{

UGUT
}

,

where we define G :=
(

B− λ1

2
BBT − λ2

2
BΣBT

)
Finally, the connection between primal and dual vari-

ables according to Theorem 2 is given by

Wt = ∂Ψ∗
(
−∑

i
Aiαi

)

=

∣∣∣∣∣∂tr
{

UGUT}
∂U

∣∣∣∣∣
U=−∑i Aiαi

= |2UG|U=−∑i Aiαi

= −2

(
∑

i
Aiαi

)
G

(10)

The dual problem in this form can be solved using any
constrained quadratic solver. This optimization proce-
dure is summarized in Algorithm 2.

4 Results

In this section we present the results of experimental
evaluation of our method on a simulated dataset and
two real world datasets commonly used in multi-task
learning literature and compare the results with a sin-
gle task model and two competitive multi-task learning
models described below.

MTRL: Our method proposed in this paper.
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Algorithm 1 Main Algorithm (MTRL-hinge)
Input: X, Y, λ1, λ2
Output: W, Ω
W0 ← 0; Ω0 ← T ∗ I
ε← 10−3 max_iter ← 30; t← 0; εt ← ∞

for t = 1, . . . , max_iter do
Wt := optimizeW (X, Y, W, Ωt, λ1, λ2)

Ωt := T ∗ (WT
t Wt)

1
2

tr
(
(WT

t Wt)
1
2

)
if ‖Wt−Wt−1‖2

‖Wt‖2
> ε then

break;
end

end
return Wt, Ωt

Algorithm 2 OptimizeW (BMRM)
Input: W1, X, Y, Ω, λ1, λ2
Output: Wbest
t← 1, ε← 10−4, max_iter ← 100
B =

(
λ1 I + λ2Ω−1)−1

G =

(
B− λ1

2
BBT − λ2

2
BΩ−1BT

)
for t = 1, . . . , max_iter do

At ∈ ∂Remp (Wt−1)

bt := Remp (Wt−1)− tr
(
WT

t−1 At
)

M such that Mij = tr
{

AiGAT
j

}
αt = arg minα∈Rt

{
αT Mα− αTb | α ≥ 0, 1Tα = 1

}
Wt = −2 (∑i Ai (αt)i) G
Wbest = argWt {min0≤i≤t J (Wi)}
εt ← J (Wbest)− Jt (Wt)
if εt < ε then

break
end

end
return Wbest

SVM: STL baseline using support vector machines.
SVM is the most competitive single task learning
baseline because our method uses hinge loss in its
objective.

TRACE: MTL formulation using Trace Norm mini-
mization [17, 28] tries to enforce a low rank constraint
on the combined weights matrix for all the tasks, thereby
favoring the weight vectors for the tasks that lie in a low
dimensional subspace. Due to the difficulties involved
in directly minimizing the rank of a matrix, trace norm
is used as a surrogate.

L21: MTL formulation uses L21 norm as the regular-
izer [1, 11]. This has the effect of joint feature selection
on all the tasks.

Both TRACE and L21 MTL formulations use a smooth
logistic loss which is different from the non-smooth
hinge loss used in our method. For our experiments we
used the publicly available implementation of libSVM
for SVM 1. TRACE and L21 are available in MALSAR
package [18], which provides implementations for sev-
eral well known multi-task methods using logistic loss
and squared loss.

4.1 Simulated Toy Dataset

In this section, we discuss the results on a simulated
dataset. The purpose of testing our method on this
dataset is to verify that our method is indeed able to
extract the task relationships as encoded in the data. By
controlling the dataset generation process we know the
ground truth about the task relationship, which can be
then compared with the results of the method execu-
tion. To generate this dataset, we create two groups of
four tasks each by first generating two orthonormal vec-
tors which form the bases for the two groups. Then, we
add random noise to the weight vectors of the group
weight vectors to generate four independent task weight
vectors in each group. Therefore, by construction we
have one group of four tasks which has high correlation
within the group and another group of four tasks with
similarly high correlation within the group. Finally, we
generate random examples and assign positive and neg-
ative classes using the generated weight vectors. Any
correlation, positive or otherwise, with tasks from the
other group are mere chance occurrences. We chose the
number of input dimensions as 4. Each task has equal
number of positive and negative training examples. We
used a validation set for tuning the model parameters
in the range

{
10−5, 10−4, 10−3, 10−2, 10−1, 100} and mea-

sured the performance on an independent test set.
In Table 1, we compare the accuracy of our MTRL for-

mulation with that of STL using SVM. Our MTRL model
outperforms SVM by a huge margin when the amount of

1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 2: Learned task correlations for simulated data us-
ing 10 training examples. Each square represents the cor-
relation between a pair of tasks. The size of the squares
represents the magnitude of the value with positive val-
ues shown in green and negative values in red.

Table 1: Simulated Dataset Accuracy

Train Size (# Examples) SVM MTRL

5 0.8158 0.8785
10 0.8979 0.9186
30 0.9815 0.9822
50 0.9941 0.9948

training data per task is small. Given sufficient amount
of training data, SVM performs just as well as our MTRL
formulation. In Fig. 2 we show the task correlations
for our MTRL model learned with 10 training examples.
The figure shows two distinct groups of tasks uncovered
by our method.

4.2 Landmine Detection

The landmine detection dataset2 consists of 29 tasks.
Each task is a binary classification problem of learning a
classification model to discriminate between instances
of landmines and clutters using features extracted from
radar images. The 9 features in this dataset consist of
four moment-based features, three correlation-based fea-
tures, one energy ratio feature and one spatial variance
feature [34]. Tasks 1-15 are taken from regions with high
foliage and the rest are taken from bare earth or desert
regions. Therefore, it is reasonable to assume that the
tasks form two distinct groups. The number of examples
per task vary between 445 and 690, whereas the number
of positive examples per task vary in the range from 15
to 48.

We selected 25% of the examples for test set and
25% for validation set and using the remaining 50% of

2http://people.ee.duke.edu/~lcarin/LandmineData.zip

Table 2: Landmine AUC Scores
Train Size (%) SVM MTRL TRACE L21

10 0.6902 0.6708 0.7512 0.7533
20 0.6697 0.6688 0.7393 0.7384
30 0.6841 0.6914 0.7711 0.7676
40 0.6983 0.7107 0.7708 0.7646
50 0.7016 0.7225 0.7724 0.7682

the examples we created datasets of varying sizes to
evaluate classification performance at different train-
ing sizes. We used the validation set to select the
best parameters for all the methods in the range{

10−5, 10−4, 10−3, 10−2, 10−1, 100}.
Due to the imbalance in the number of positive and

negative examples in this dataset, accuracy is not a good
measure of performance. Hence, we evaluate the perfor-
mance of different models using area under the receiver
operating characteristic curve (AUC). The results for
this dataset are provided in Table 2. In general, with
increasing training size the performance of the classi-
fier improves, as can be expected. Our MTRL model
performs better than the STL using SVM, but for this
dataset, the performance using hinge loss based models
was considerably worse than the models using logistic
loss.

As mentioned earlier, the tasks in this dataset are nat-
urally clustered into two groups. In order to observe
our method’s ability to extract these groups at various
training sizes, we plotted the correlations of the weight
vectors of the models extracted from the learned model
parameter Ω in Fig. 3, for different training sizes. We
observed that the first group of tasks, consisting of tasks
1-15, is more strongly correlated than the second group
of tasks, consisting of task 16-29. With sufficient train-
ing sample sizes, the correlation pattern between tasks
recovered by MTRL converges to the expected pattern
consisting of two distinct groups.

4.3 Amazon Sentiment Classification

The tasks in Amazon sentiment classification dataset
3 are to classify the the polarity of different product
reviews using their text. This dataset was originally
provided by Blitzer et al. [6] and used in the con-
text of domain adaptation. The instances consist of
product reviews, and ratings, which are provided in
terms of 1 to 5 stars. The ratings are converted into
positive and negative reviews for classification tasks.
Each task corresponds to a particular product category -
books, DVDs, electronics, and kitchen appliances. 1000
positive and 1000 negative examples are available for
each task. The instances are represented by a term fre-

3http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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Figure 3: Task correlations of best models for Landmine
dataset. Sub-figures correspond to different percentages
of data used for training. Each square represents the cor-
relation between a pair of tasks. The size of the squares
represents the magnitude of the value with positive val-
ues shown in green and negative values in red.

Table 3: Per Task Accuracy - Amazon Sentiment Classifi-
cation

Train Method Books DVDs Electronic Kitchen
Size (%) Appliances

10

SVM 0.6360 0.6800 0.7720 0.7560
MTRL 0.7380 0.7500 0.8280 0.8100
TRACE 0.7000 0.7620 0.8180 0.7920
L21 0.6380 0.6960 0.7640 0.7620

20

SVM 0.7040 0.7680 0.8080 0.8020
MTRL 0.7580 0.7860 0.8640 0.8420
TRACE 0.7600 0.7680 0.8660 0.8420
L21 0.7000 0.7400 0.8200 0.7620

30

SVM 0.7540 0.7880 0.8060 0.8160
MTRL 0.7860 0.8020 0.8600 0.8520
TRACE 0.7940 0.7960 0.8620 0.8420
L21 0.7280 0.7440 0.8320 0.8320

40

SVM 0.7420 0.8180 0.8200 0.8240
MTRL 0.7980 0.8380 0.8640 0.8340
TRACE 0.7860 0.8260 0.8560 0.8280
L21 0.7320 0.8020 0.8160 0.8220

50

SVM 0.7740 0.8160 0.8240 0.8540
MTRL 0.8080 0.8440 0.8820 0.8640
TRACE 0.7940 0.8300 0.8720 0.8460
L21 0.7360 0.8140 0.8420 0.8400

quency vector of 473856 feature dimensions. We se-
lected 25% examples for testing and 25% examples for
validation and to assess the performance with differ-
ent training sizes, we created different training split
with 10%, 20%, 30%, 40%, and 50% of the original
data. We validated the models using parameters in the
range

{
10−5, 10−4, 10−3, 10−2, 10−1, 100} on a validation

set and selected the best model for final test on a held
out test set.

Accuracies on the test set for various methods are
reported in Table 3. Both MTRL and Trace perform con-
siderably better than STL and L21. We expected L21
to perform well, given the high dimensionality of this
dataset, but, it performed worse than STL for this dataset.
The overall performance of our model was better than
all other models.

In Table 4, we show the task correlations recovered
by our model for different tasks. We observed a strong
correlation between the Books-DVDs and Electronics-
Kitchen Appliances task pairs.

5 Conclusion

In this work, we have presented a multi-task model
using non-smooth hinge loss which is capable of learn-
ing the task relationships between different tasks. Our
method can not only use positive task relationships, but
it can also leverage negative task relationships. We
demonstrated the effectiveness of the method in im-
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Table 4: Task Correlation - Amazon Sentiment Classifica-
tion

Correlation Tables

Train Size(%) Books DVDs Electronic Kitchen
Appliances

10

1.0000 0.7830 0.6192 0.5629
0.7830 1.0000 0.7291 0.7000
0.6192 0.7291 1.0000 0.9413
0.5629 0.7000 0.9413 1.0000

20

1.0000 0.5848 0.5492 0.5516
0.5848 1.0000 0.4589 0.5263
0.5492 0.4589 1.0000 0.7397
0.5516 0.5263 0.7397 1.0000

30

1.0000 0.5898 0.5774 0.6009
0.5898 1.0000 0.5557 0.5885
0.5774 0.5557 1.0000 0.7925
0.6009 0.5885 0.7925 1.0000

40

1.0000 0.6084 0.4683 0.5578
0.6084 1.0000 0.4847 0.5593
0.4683 0.4847 1.0000 0.7450
0.5578 0.5593 0.7450 1.0000

50

1.0000 0.6835 0.5638 0.6386
0.6835 1.0000 0.5782 0.6214
0.5638 0.5782 1.0000 0.8179
0.6386 0.6214 0.8179 1.0000

proving generalization performance using a simulated
dataset and two real world datasets. Our method com-
pared favorably with competing multi-task learning
methods and consistently outperformed them on one of
the datasets. We also compared the performance of our
method to competing STL and MTL methods at different
training sizes and found that the MTL methods signif-
icantly outperform STL methods and the performance
gains are more pronounced for smaller training sizes.
With respect to extracting task correlations we observed
that some amount of training data is required to extract
robust task correlations.
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