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Abstract
The number of Android malware apps are increasing very
quickly. Simply detecting and removing malware apps is in-
sufficient, since they can damage or alter other files, data, or
settings; install additional applications; etc. To determine
such behavior, a security engineer can significantly benefit
from identifying the specific family to which an Android mal-
ware belongs. Techniques for detecting Android malware,
and determining their families, lack the ability to deal with
obfuscations (i.e., transformations of application to thwart de-
tection). Moreover, some of the prior techniques are highly
inefficient, making them inapplicable for real-time detection
of threats. To address these limitations, we present a novel ma-
chine learning-based Android malware detection and family
identification approach, RevealDroid, that provides selectable
features. We assess RevealDroid to determine a selection
of features that enable obfuscation resiliency, efficiency, and
accuracy for detection and family identification. We assess Re-
vealDroid’s accuracy and obfuscation resilience on an updated
dataset of malware from a diverse set of families, including
malware obfuscated using various transformations, and com-
pare RevealDroid against an existing Android malware-family
identification approach and another Android malware detec-
tion approach.

1 Introduction
Mobile devices have become ubiquitous, and are still grow-
ing quickly. Among such devices, Android has become the
dominant platform and is deployed on hundreds of millions
of devices around the world. With this widespread usage,
an increasing number of malware applications (apps) have
been found on such devices and the repositories that distribute
mobile apps (e.g., Google Play). These malware increas-
ingly resemble their counterparts in Desktop PC environments
[4, 2], demonstrating the growing sophistication of mobile
malware. Consequently, a significant amount of effort has

been expended on producing techniques to detect Android
malware.

Existing work on Android malware detection [21, 40, 45,
24, 23, 28, 43, 34, 38, 14, 26] has focused on distinguishing
between benign and malware apps. For example, previous
work has demonstrated how large-scale data mining, with
some program analysis, can be utilized to assess whether an
Android app is benign or malicious [23, 19]. Although accu-
rately making such a distinction is an important step towards
fighting the growing prevalence of malware on Android de-
vices, simply declaring an app as malicious and removing it
is not enough to address the damage it may have done once
deployed [27]. Engineers that assess the impact of a malware
app must determine if other apps, files, or settings may have
been damaged or altered; whether there are any remaining
malicious or problematic services or processes that have been
compromised; if any sensitive data has been stolen or leaked;
if any unlawful or illegitimate financial charges have been
made due to the malware’s presence; etc. To make such a de-
termination, a security engineer can significantly benefit from
identifying the specific family to which an Android malware
belongs. The family of a malware app can be coarse-grained
(e.g., Trojan, virus, worm, spyware, etc.) or finer-grained,
where more specific families (e.g., DroidKungFu [44], Droid-
Dream [44], Oldboot [9], etc.) are identified. Knowledge of
the family to which an Android malware belongs can help an
engineer determine the specific steps that need to be taken to
mitigate or undo damage caused by the malware.

Complicating the detection and family identification of An-
droid malware are transformations that obfuscate apps in order
to evade detection and family identification by anti-malware
software [8, 16, 32]. For example, Agent.BH!tr.spy steals
information by sending emails using SMTP with TLS authen-
tication [16], thus hiding the stolen data in a cryptographic
protocol. A recent study of Android malware obfuscation
has demonstrated that simple transformations can prevent ten
popular anti-malware products from detecting any of the trans-
formed malware samples, even though prior to the transfor-
mations those products were able to detect those malware
samples [32]. Thus, malware detection must be designed to
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defeat these evasion techniques. To achieve this goal, malware
detection techniques can utilize program analyses that focus
on the key semantics and behavior performed by a malware
(i.e., behavior as represented by control flow or data flow of
a program), particularly in its interactions with the system
APIs and libraries that are external to the app, rather than
just on syntactic aspects of its implementation (e.g., identifier
name or string constants). However, the extent to which recent
Android-malware detection techniques are resilient to mod-
ern transformation attacks is not well-understood. Existing
studies have largely applied their techniques to malware that
do not use any, or very limited, obfuscation [35, 42]. These
techniques use features that are not resilient to obfuscations
(e.g., features based on control flow [35] or constant strings
[42]).

To further reduce Android malware propagation and dam-
age, detection or family identification of such malware should
be scalable. Some state-of-the-art techniques run into scalabil-
ity issues and can take hours or up to an entire day to analyze
even a single app [26, 19]. Cumulatively, this delayed analysis
can allow Android apps to propagate undetected for a longer
period of time and, thus, cause more damage. Furthermore,
it can prevent users from scanning apps directly on their An-
droid devices, which is important given that Android markets
have relatively poor vetting processes [45]. Consequently, it is
desirable to utilize features that can be extracted efficiently for
detection and family identification of Android malware apps,
even obfuscated ones.

This paper makes the following contributions:

• We introduce RevealDroid, a machine-learning based
approach for detecting malicious Android apps and iden-
tifying their families that provides a selectable set of
features for achieving different trade-offs between ob-
fuscation resiliency, efficiency of analysis, and accuracy.
RevealDroid is capable of accurately detecting malicious
apps and identifying their families at above 93% for un-
transformed apps and above 87% for transformed apps,
and can do so, on average, for an app in under a minute.
We evaluate RevealDroid’s detection and family identi-
fication accuracy by comparing its ability to correctly
identify malware and classify its family on a dataset of
2,593 benign apps and 9,054 malware apps from two
different malware repositories. We further compare Re-
vealDroid’s detection and family identification accuracy
against state-of-the-art approaches: MUDFLOW [19], an
approach for malware detection, and Dendroid [35], an
approach for malware family identification. RevealDroid
has an overall greater accuracy by about 13%-17% and
mislabels 24%-30% fewer benign apps as malicious than
MUDFLOW. RevealDroid achieves a 14%-60% higher
classification rate than Dendroid.

• We construct an updated dataset of 857 malware apps
labeled with their malware families and assess Reveal-
Droid’s family identification accuracy on that dataset. We
make this updated dataset available for researchers and
practitioners [7].

• To evaluate RevealDroid’s obfuscation resiliency, we ap-
ply several transformations to malware apps in order to
obfuscate them and assess our ability to detect and iden-
tify families of those transformed apps. We compare
RevealDroid’s accuracy for detection under obfuscation
against MUDFLOW, and for family identification under
obfuscation against Dendroid.

• We assess the efficiency of RevealDroid’s feature extrac-
tion, which is the major bottleneck of machine learning-
based techniques that detect or identify families of mal-
ware. We show that a subset of RevealDroid’s features
can be more than 33-85 times faster than the features uti-
lized by MUDFLOW, while still exhibiting obfuscation
resiliency and accuracy for detection and family identifi-
cation.

The remainder of this paper is structured as follows. Section
2 discusses the manner in which we utilize machine learning
as a foundation for RevealDroid, and compares the use of
machine learning to signature-based methods for malware
detection. Section 3 introduces RevealDroid and its design.
Section 4 covers the design and configuration for our evalu-
ation, including the research questions we study; Section 5
discusses the evaluation results for each research question, and
examines and interprets our results. Section 6 covers work
related to RevealDroid. Section 7 concludes the paper and
discusses possible future work.

2 Foundation
Malware detection and family identification can be placed into
two categories: signature-based and machine learning-based
[42]. For signature-based methods, security engineers must
produce (often, manually) specifications that match against
key properties of a malware family. For learning-based clas-
sification, techniques utilize machine learning to automati-
cally determine whether an app is benign or malicious. Each
Android app is an instance represented by features used to
distinguish between apps supplied to learning algorithms (e.g.,
Android API methods or permissions used). A dataset is a set
of instances along with their features.

To classify Android apps as benign, malware, or a specific
malware family, we leverage supervised learning algorithms.
For supervised learning, each instance is given a label; in the
case of malware detection, the labels chosen are often simply
“benign” or “malicious”. The dataset is split into a training
and testing set. A learning algorithm is applied to the training
set in order to produce a classifier, which can then label apps
as “benign” or “malicious”. The testing set is passed as input
to the classifier to assess its accuracy.

Signature-based methods are highly reliable for detecting
known malware, but are often constructed manually and un-
reliable for detecting variants of known malware or zero-day
malware. Learning-based methods require a sizeable dataset
and properly selected features to ensure accuracy, but are more
likely to generalize in their findings, making them particularly
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well-suited for identifying variants of known malware or zero-
day malware. To ensure the highest degree of automation, we
focus on learning-based methods for our Android malware
detection.

3 RevealDroid
To properly leverage learning-based methods, we must select
features that are likely to distinguish both benign apps from
malicious ones and different families of malware apps (e.g.,
DroidDream from DroidKungFu). Android malware detection
and family identification can benefit significantly from the uti-
lization of the Android platform itself to represent features of
apps. In particular, the types of Android API methods that an
Android app accesses must vary significantly between malware
families, in order to perform different types of malicious be-
havior (e.g., sending SMS messages to premium-rate numbers,
stealing location and identifier information, acting as a bot,
listening for different activation triggers, etc.). We leverage
this insight about distinguishing between Android malware to
design an approach for classifying Android malware families.
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Figure 1: Overview of RevealDroid’s malware classifier pro-
duction

Figure 1 depicts an overview of RevealDroid, our approach
for constructing a malware classifier capable of distinguishing
benign apps from malicious ones, and can further determine
the family of an Android malware. The Feature Extractor com-
ponent obtains a set of features used to distinguish between
apps that are benign or belong to a malware family. These fea-
tures, along with apps labeled with either their malware family
or as benign, are passed as input to a supervised-learning
algorithm—resulting in the construction of a classifier for
identifying malware families.

RevealDroid contains a set of features that involve Android
API usage so that they are obfuscation-resilient, represent core
semantics of an Android app, and are relevant for determining
if an app is malicious or belongs to a particular malware family.

RevealDroid allows its features to be used in different combi-
nations, resulting in different levels of obfuscation resiliency,
efficiency, and accuracy. RevealDroid contains the following
four types of Android API-based features: (1) Android API us-
age categorized by whether or not they provide access to secu-
rity sensitive information or functionality—which is identified
by Sensitive API Extractor in Figure 1, (2) data flows between
Android APIs, i.e., possible information leakages—obtained
by Information Flow Extractor in Figure 1; (3) actions of An-
droid messages that an app may listen to—which is identified
by Intent Action Extractor in Figure 1; and (4) Android API
usage categorized by the package to which the API belongs,
which is determined by Package API Extractor in Figure 1.

For each type of feature, this section explains its importance,
and the manner in which the feature type is represented and
extracted. The section ends by covering how apps are labeled
and supervised-learning algorithms are used in RevealDroid
to produce classifiers for detecting malware and identifying
their families.

3.1 Sensitive API-Usage Extraction
Malware apps must invoke or access Android APIs in order
to perform malicious behaviors (e.g., steal information, send
SMS messages to premium-rate numbers to make unlawful
financial charges, receive instructions from a remote server,
etc.).

To that end, we utilize 30 categories that distinguish the
behavior of an API, allowing a supervised-learning algorithm
to determine if the particular usage of those categories is either
malicious or characteristic of the actions performed by a partic-
ular malware family. 28 of these categories represent security-
sensitive APIs, one category represents widget-based APIs,
and another category represents any APIs not belonging to
the other categories. The security-sensitive API categories are
determined by SuSi [31], a machine-learning approach for cat-
egorizing Android source and sink API methods. For each cat-
egory, Sensitive API Extractor determines the number of invo-
cations per category an app makes to an Android API method,
which are used as features for an Android app. Formally, the
feature vector SAPIa = (s1, ...,si, ...,s|C|), where C is the set of
sensitive API categories, si = |{m•m ∈ methods(i)}|, m is an
invocation of a method in an Android app a, and methods(i) is
the set of methods in category i∈C. These features are similar
to and inspired by those found in [19]. However, unlike those
features, RevealDroid considers a wider set of categories, in-
cluding a category for GUI-widget methods and an additional
category for all other method invocations that are neither sen-
sitive nor widget-based.

To illustrate how such features can help distinguish malware
families, Table 1 depicts features for a subset of categories
from three Android malware families. For example, in Table
1, the Geinimi sample invokes database (DB) APIs 37 times,
and SMS APIs only once. The table shows that a supervised
learning algorithm can determine that Geinimi samples only
access the SMS API once, DroidKungFu1 invokes logging
APIs a limited number of times (e.g., 35 times rather than over
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220 times), and jSMSHider uses inter-process communication
APIs (i.e., sending Android messages) in a very limited manner
(e.g., 6 invocations rather than over 130).

Table 1: Example Sensitive API features from known Android
malware families

DB IPC LOG NET SMS Fam

mal4 37 133 246 23 1 Geinimi
mal5 7 139 35 24 0 DroidKungFu1
mal6 4 6 226 10 0 jSMSHider

It is possible to treat each access to particular Android API
as a separate feature. However, such a design would result
in a large feature space with over 26,500 features, resulting
in possible scalability and accuracy issues for a supervised-
learning algorithm or the resulting classifier [37, 41, 39].

3.2 API Flow Extraction
Data flows between Android APIs correspond to possible in-
formation leakages. Specifically, RevealDroid must determine
information flows between Android source API methods, ca-
pable of retrieving Android data, and sink API methods, which
can store or send data from source methods. An example of a
data flow leaking information is the flow from an API method
that returns a device’s IMEI, an identifier that uniquely identi-
fies an Android device, to a message-sending method, which
may send the IMEI to an entity outside the app. These features
are similar to and inspired by those utilized in [19]. However,
they vary in two key ways: the number of categories utilized
and the level of abstraction. RevealDroid has an extra cate-
gory for GUI widget-based methods, and only one category
to represent features that are neither sensitive API usage nor
widget-based.

A feature space for Android information leakage that
straightforwardly represents the flow between API methods as
features can result in over 92,000 features, due to the fact that
there are over 300 source and sink API methods. This large
feature space, just for a single type of feature, would cause scal-
ability and accuracy issues for machine learning [37, 41, 39],
especially since we aim to accurately assign one of many
possible families to an app. To address that issue, Reveal-
Droid uses the following feature vector for information flow
Flowa = ( f1, ..., fi, ..., f|Csrc

⊗
Csnk|), where Csrc ∈C is the set of

source API method categories; Csnk ∈C is the set of sink API
method categories, fi = |{(mx,my) •mx ∈Csrc∧my ∈Csnk}|,
and mx and my are respectively source and sink methods in-
volved in an information flow within Android app a. Other
than the widget category, which we specify as a source cate-
gory, the rest of the source and sink categories are obtained
from SuSi. We assign source API methods to a set of 20 cate-
gories (|Csrc|= 20), and sink API methods to a set of 21 cate-
gories (|Csnk|= 21). Consequently, for these information-flow
features, we only need 420 features rather than over 92,000
features, which alleviates the feature-space issue. As an exam-
ple, a flow from a method that retrieves the Android device’s
IMEI and sends the information over SMS is represented as

a flow between the UNIQUE IDENTIFIER and SMS MMS
categories. To help a learning algorithm better distinguish
between information flows of malware families, each flow
feature is a count of the number of flow instances between
categories. For instance, if the IMEI and SIM card ID of a
device—each obtained from two different source methods—
flow to SMS sink methods, then the value for the feature
(UNIQUE IDENTIFIER,SMS MMS) is 2.

To illustrate our information-flow feature space for learning-
based Android malware detection and family identification,
Table 2 depicts example information-flow features for a set
of real malware apps, where we elide irrelevant features for
brevity. Three malware apps are depicted, each from a dif-
ferent malware Family. The number of information flows be-
tween the following categories are shown for each app: SMS;
inter-process commmunication (IPC); CONTact information;
EMAIL; BROWSer information; SYNChronization data; BUN-
DLEs, which contain data that can be included as part of an
Intent; NETwork; FILE manipulation; and UNCategorized,
which are Android API methods not classified into their own
specific categories. For example, malware mal3, an instance
of DroidKungFu3, has 5 flows between source API methods
from the Bundle category to sink API methods of the Network
category.

Table 2 demonstrates the intuition behind how a classifier
can be built from these features: A learning algorithm can
determine that a low value for (SMS,IPC) uniquely identifies
Geinimi, a low value for (CONT,EMAIL) uniquely identi-
fies GoldDream, and non-zero values for (BROWS,SYNC),
(BUNDLE,NET), and (FILE,IPC) distinguish DroidKungFu3.

3.3 Intent Action Extraction
Different families of malware activate based on different ac-
tions of Intents [44], which are messages sent and received
by Android components. An action of an Intent specifies the
expected behavior to be performed on receipt of the Intent
(e.g., opening an editor), or an event that has occurred in the
Android system (e.g., an indication that the device has finished
booting). Consequently, Intent actions are important informa-
tion useful for distinguishing between malware families. For
example, DroidDream listens for Intents indicating the launch
of the Android home screen; BeanBot listens for messages
that request the initiation of a phone call.

To identify such actions, Intent Action Extractor analyzes
an app’s Android Manifest file and any Broadcast Receiver
components to determine messages that an app may listen
to. The Android Manifest file is an XML file included with
every Android app. In that file, a developer can specify the
actions of an Intent that the app may process. Broadcast
Receivers listen to Intents broadcasted by other apps or the
Android system. In particular, Intent Action Extractor ex-
amines the onReceive method of Broadcast Receivers, which
are callbacks that process broadcasted Intents. By analyzing
both the app’s code and Manifest file, Intent Action Extractor
obtains comprehensive information about actions that may
activate different families of malware. For our approach, a
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Table 2: Example information-flow features from three known Android malware families
SMS,IPC CONT,EMAIL BROWS,SYNC BUNDLE,NET FILE,IPC Fam

mal1 1 0 0 0 0 Geinimi
mal2 0 1 0 0 0 GoldDream
mal3 0 0 2 5 1 DroidKungFu3

total of 108 boolean features represent the actions that an app
may process. More formally, the Intent actions feature vector
IAa = (ia1, ..., iai, ..., ia|I|), where I is the set of actions for In-
tents, iai = 1 if app a listens to action i in a Broadcast Receiver
and iai = 0 otherwise.

Table 3: Example Intent action features from three known
Android malware families

MAIN BATT SYS PKG Fam

mal4 1 0 0 0 DroidDream
mal5 0 1 1 0 DroidKungFu1
mal6 0 0 0 1 jSMSHider

Table 3 shows a simplified version of the Intent action fea-
tures for three malware families: DroidDream, DroidKungFu1,
and jSMSHider. Both DroidDream and DroidKungFu1 are
malware families that utilize root exploits and enable remote
control. However, they can be distinguished by the Intent
actions they listen to: DroidDream listens to Intent actions cor-
responding to the launch of the Android home screen (MAIN);
DroidKungFu1 listens to a variety of system events (SYS)
and Intent actions related to battery consumption (BATT).
jSMSHider is one of the rare malware families that register to
receive Intent actions corresponding to packages (PKG) being
installed, replaced, or removed on an Android device.

3.4 Package API-Usage Extraction
In situations where data flows and Intent actions are insuffi-
cient, Android API usage information is included as a feature
to aid a classifier in distinguishing between malware fami-
lies. These features have been shown to be useful features
for distinguishing malware families when manually specify-
ing their signatures [22]. Consequently, we chose to include
such features for detecting and identifying families of Android
malware using machine learning. To that end, Package API
Extractor in Figure 1 determines the number of API invoca-
tions per Android package. For example, if three methods of
classes in the android.telephony package are invoked, then the
feature corresponding to that package obtains a value of 3. For-
mally, the feature vector PAPIa = (p1, ..., pi, ..., p|P|), where
pi = |{m•m ∈ methodPkgs(i)}|, P is the set of Android API
packages, methodPkgs(i) are the set of methods in package i,
and m is an invocation of a method in an Android app a. By
selecting packages to represent API usage, we reduce the fea-
ture space, similar to the case for information-flow features, to
a total of 81 features, which helps to ensure efficient classifier
production.

3.5 Labeling and Classifier Selection
RevealDroid can detect whether an app is benign or malicious,
or determine the family to which a malware belongs. Reveal-
Droid can produce different classifiers to perform these func-
tionalities. The classifier constructed by RevealDroid depends
on the labels used when training a classifier. Furthermore,
RevealDroid is designed to use different machine-learning
classifiers—some of which may be better for identifying mal-
ware families, while others may produce better malware de-
tectors.

To that end, RevealDroid can build multiple n-way clas-
sifiers, where n is the number of labels for an Android app.
To simply detect whether an app is malware, the training set
of Android apps can simply contain n = 2 labels: benign or
malicious. For malware family identification, the number of
labels correspond to the number of malware families in the
training set. For example, Android Malware Genome con-
tains 49 malware families, resulting in n = 49 for a malware
classifier trained on Malware Genome.

The supervised-learning algorithm used to construct a clas-
sifier can considerably affect its resulting accuracy. Conse-
quently, we (1) allow RevealDroid to utilize different learning
algorithms and (2) assess the algorithms best-suited for An-
droid malware detection and family identification in Sections
5.5-5.6.

4 Evaluation Design and Setup
To evaluate RevealDroid, we study its accuracy, efficiency, and
resiliency to transformations intended to obfuscate malware.
Furthermore, we compare RevealDroid to another state-of-the-
art Android malware-family identification approach, Dendroid,
and a detection approach, MUDFLOW. Specifically, we an-
swer the following research questions:

• RQ1: Which combinations of RevealDroid’s features
and classifiers accurately distinguish between benign and
malicious Android apps?

• RQ2: Which combinations of RevealDroid’s features
and classifiers accurately identify the specific family of a
malicious Android app?

• RQ3: To what extent is RevealDroid’s accuracy affected
by transformations that obfuscate malware?

• RQ4: How efficient is RevealDroid’s extraction of fea-
tures compared to another state-of-the-art detection ap-
proach?
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• RQ5: How does RevealDroid’s detection accuracy com-
pare to another state-of-the-art detection approach?

• RQ6: How does RevealDroid’s family identification
capability compare to another state-of-the-art malware-
family identification approach?

We implemented RevealDroid in Java for its feature extrac-
tion, malware detection, and malware-family identification.
We utilized FlowDroid [18], a technique for obtaining infor-
mation flows in Android, to implement Information Flow
Extractor. To construct the Sensitive API Extractor, Intent
Action Extractor, and API Extractor, we leveraged Soot [36],
a static analysis framework, and Dexpler [20], a translator
from Android Dalvik Bytecode to Soot’s intermediate repre-
sentation. For machine learning, we selected Weka [25], a
widely-used machine-learning toolkit for Java.

We configured FlowDroid to maximize performance by set-
ting it as follows. Our experiences showed that RevealDroid’s
correctness remains high despite configuring FlowDroid for
maximum performance. For alias analyses, we set FlowDroid
to be flow-insensitive. We disabled tracking of static fields
and emulation of Android callbacks. We do not compute exact
propagation paths for FlowDroid, which are unnecessary for
RevealDroid’s design. We set FlowDroid’s layout mode to
none, preventing analysis of GUI elements (e.g., input fields).
Lastly, the access paths propagated by FlowDroid’s taint anal-
ysis is set to 1. This setting specifies that fields of objects
(e.g., o. f ) are propagated, where o is an object and f is a field;
however, no fields of fields are propagated (e.g., o. f .g).

For conducting feature extraction, we leveraged George Ma-
son University’s ARGO computing cluster [1]. 35 of Argo’s
compute nodes each have 8-core 2.60GHz CPUs and 64GB
RAM, which are the compute nodes we utilized for our exper-
iments.

To assess RevealDroid’s accuracy, we constructed a dataset
of both benign and malicious Android apps. To obtain benign
apps, we downloaded 2,593 apps from two sources: Google
Play [6], Google’s official Android app repository, and F-
Droid [5], an open-source repository of Android apps. For
Google Play, we selected popular apps to increase the likeli-
hood of them being benign. F-Droid apps are overwhelmingly
benign apps for two reasons. First, apps uploaded to F-Droid
are scanned for malicious behaviors before they are posted.
Second, given that all F-Droid apps are open source, they are
all open to scrutiny for malicious behaviors.

We obtained malware samples from two Android malware
repositories: the Android Malware Genome project [44] and
VirusShare [10]. Malware Genome contains over 1,200 An-
droid malware apps from 49 different malware families. We
utilized 9,054 Android malware samples from VirusShare.

5 Evaluation Results
For each research question, we convey its importance, specific
experimental setup needed to study it, and our corresponding

results. After examining each research question in detail, we
discuss the overall findings and limitations of our study.

5.1 RQ1: Detection Accuracy
In order to answer RQ1, we assess how accurate RevealDroid’s
features are for detecting whether an app is benign or mali-
cious. To that end, we developed two approaches based on
a C4.5 decision-tree classifier [30] and a 1-nearest-neighbor
(1NN) classifier [13] for labeling an app as either benign or
malicious. We also experimented with a few others, including
support vector machines [15], that did not show the same level
of accuracy.

Table 4 shows the correct classification rate among the dif-
ferent combinations of four features: API Flows, sensitive
APIs (SAPI), Intent Actions (IA), and package APIs (PAPI).
The number of Benign and Malicious apps vary across dif-
ferent experiments due to either limits on computational re-
sources preventing timely extraction of flow features (which
in some cases could take many hours to execute even on Argo
cluster), or errors with Soot and FlowDroid that sometimes
fail on certain Android apps. For each combination of features,
classifiers, and apps, we performed a 10-fold cross-validation
and report the rate of correctly classified apps. However, we
do not combine flow features and sensitive API features in
our study because the two features overlap: The categorized
sensitive API methods serve as the source and sink methods
of information flow.

Table 4: Detection results for different combinations of Re-
vealDroid’s features and classifiers.

Features C4.5 1NN Ben Mal

Flow 87.57% 85.23% 1,747 7,800
Flow, IA 90.43% 88.53% 1,747 7,786
Flow, IA, PAPI 95.32% 94.41% 1,104 7,780

SAPI 93.88% 92.94% 2,593 10,313
SAPI, IA 94.78% 94.02% 2,583 10,283
SAPI, IA, PAPI 96.35% 95.56% 1,268 10,288

All combinations of features exhibit a high correct classi-
fication rate. Feature combinations with flow features have
a correct classification rate between 85% and 95%. Feature
combinations with sensitive API features have a correct clas-
sification rate between 93% and 96%. The addition of Intent
action features and package API features increases the clas-
sification rate for flow features by 7% for C4.5 and 9% for
1NN. The addition of Intent action and package API features
to sensitive API features only increases its classification rate
by about 2%-3%.

To illustrate the high accuracy for detection of RevealDroid,
we showcase additional results of RevealDroid’s most accu-
rate classifier, a C4.5 classifier using sensitive API, Intent
actions, and package API features. Table 5 depicts the 10-fold
cross-validation results for that classifier, which includes the
following: Precision indicates the extent to which the classifier
produces false positives; Recall shows the extent to which the
classifier produces false negatives; F-Measure is the weighted
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harmonic mean of precision and recall; ROC Area represents
the discriminatory power of our classifier when distinguishing
between benign and malicious apps; and the average weighted
by the number of apps (WAvg.).

Table 5: Cross-validation results for the combination of sensi-
tive API, Intent action, and package API features using a C4.5
classifier

Prec Rec F-Meas ROC
Area

Benign 84.8% 81.3% 83.0% 91.1%
Malicious 97.7% 98.2% 98.0% 91.1%
WAvg. 96.3% 96.3% 96.3% 91.1%

The table illustrates that RevealDroid’s most accurate detec-
tion classifier obtains high accuracy for both benign and mali-
cious apps, with an F-measure value of 96%. RevealDroid also
demonstrates a high discriminatory power, as demonstrated by
the 91% ROC Area for benign apps, malicious apps, and the
weighted average.

5.2 RQ2: Family Identification
Simply identifying an Android app as malware is insufficient
for dealing with the app. Once a malicious app is deployed,
it may install other apps, steal information, modify settings,
etc. Consequently, determining the family to which an app
belongs can aid engineers and end users in determining how
to deal with the malicious app, besides simply removing it.

To determine RevealDroid’s ability to classify Android mal-
ware apps into families, we assessed RQ2 by utilizing the
Android Malware Genome (AMG) [44], which contains over
1200 apps and 49 malware families. To that end, we used
RevealDroid to construct classifiers with up to 49 different
labels, one for each family in AMG. We determined the com-
binations of classifiers and features that provided the most
accurate classification of AMG.

Table 6 depicts the classification rate for the two most ac-
curate classifiers among the different combinations of four
features. As in the prior experiment, the numbers of apps
(No. Apps) in Table 6 vary due to the types of features used.
The increased computational resources required to extract flow
features reduced the number of apps we could analyze for that
type of feature. Furthermore, errors from Soot and FlowDroid
further limited the number of apps from which we can extract
features.

Table 6: RevealDroid’s classification rate for family identifica-
tion utilizing different features and classifiers on AMG

Features C4.5 1NN No. Apps

Flow 91.54% 91.78% 1,217
Flow, IA 94.17% 93.43% 1,217
Flow, IA, PAPI 95.07% 94.66% 1,217

SAPI 87.69% 87.29% 1,259
SAPI, IA 91.51% 91.75% 1,248
SAPI, IA, PAPI 93.62% 92.98% 1,253

Overall, the accuracy of RevealDroid’s malware-family clas-
sifiers is between 87% and 95% for all combinations of fea-
tures and classifiers. These results showcase RevealDroid’s
ability to identify a malicious app with high accuracy. Sets of
features based on flows (top half of Table 6) are about 2%-3%
more accurate than features based on sensitive APIs without
flows (the bottom half of Table 6). This outcome indicates
that our API-based features are well-chosen for discriminating
between malware families.

The Intent action and package API features combined with
either flow or sensitive API significantly increased the accu-
racy for family identification, which is difficult to do given
the already high classification rate of either flow or sensitive
API features alone. Although the overall increase in correct
classification rate is 4%-7%, these features significantly im-
proved accuracy for specific families. For example, Intent
action features raised the accuracy of samples from the Gold-
Dream family, consisting of 47 samples, to 97% from 51%
for flow features. As another example, package API features
increased the accuracy for the GPSSMSSpy family, consisting
of 10 samples, from 67% to 92% for flow features.

To further assess our classifier and determine if more sam-
ples for particular families would improve our results, we
significantly expanded the samples that exist in AMG. To
that end, we utilized a set of Android malware samples from
VirusShare [10], which contains over 24,000 unlabeled mal-
ware samples ranging from May 2013 through March 2014,
whereas the original AMG samples are from August 2010
through October 2011. To identify the families of those sam-
ples, we leveraged VirusTotal [11], a service that contains
metadata about malware. We constructed a client to obtain
possible families identified by over 50 commercial antivirus
products. For each Android malware sample in VirusShare,
we recorded the malware family that appears most among the
50 products. From the VirusShare samples, we identified 857
samples from families that are part of the AMG project and ex-
tracted their features using RevealDroid. We combined those
857 samples with the original AMG samples to produce an
expanded AMG (EAMG). As a result, we increased the num-
ber of samples by 68% of its original size. The overwhelming
majority (76%) of the new samples belong to GingerMaster
(305), Plankton (242), and KMin (107). This increase in sam-
ples is particularly stark for the GingerMaster family, which
originally contained only 4 samples—a relatively low number
for training a classifier.

To assess RevealDroid on EAMG, we performed a 10-fold
cross-validation on EAMG using a C4.5 and 1NN classifier
with the same combinations of features, similar to the previous
experiment for malware-family identification. Table 7 shows
our results for EAMG. Just as before, the numbers of apps per
combination of features vary due to limits on computational
resources or errors in Soot and FlowDroid when extracting
features from apps.

Similar to our previous results, RevealDroid correctly clas-
sifies 84%-94% of the malware samples in EAMG. This con-
sistently high accuracy, despite a significant increase in the
dataset size, demonstrates the effectiveness of RevealDroid
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for family identification. Furthermore, the trends regarding
increases for specific families remain for EAMG as it did
for AMG. For example, adding both Intent action features
and package API features to flow features improved the accu-
racy for the GoldDream family— consisting of 63 samples—
from 67% to 88% and for the Zitmo family—consisting of
15 samples—from 67% to 90%. Lastly, whether the Ginger-
Master family could be reliably classified was unclear because
there were only 4 samples in AMG. However, in EAMG,
with an additional 305 GingerMaster samples, combinations
involving flow features obtained up to 89% accuracy, while
combinations involving sensitive API features obtained up to
91% accuracy.

The results for AMG and EAMG indicate that either com-
binations of flow features or combinations of sensitive API
features are highly accurate for identifying malware families.
At the same time, flow features tend to be slightly more accu-
rate for family identification.

Table 7: RevealDroid’s classification rate for family identifica-
tion utilizing different features and classifiers on EAMG

Features C4.5 1NN No. Apps

Flow 89.15% 88.94% 1,907
Flow, IA 92.13% 91.29% 1,906
Flow, IA, PAPI 93.02% 93.81% 1,905
SAPI 84.38% 86.11% 2,080
SAPI, IA 89.93% 91.09% 2,066
SAPI, IA, PAPI 90.54% 91.74% 2,071

5.3 RQ3: Obfuscation Resiliency
Malware can avoid detection by using evasive techniques that
obfuscate malicious behaviors. Previous work has shown
that 10 commercial antivirus products are unable to detect
Android malware after simple transformations are applied to
obfuscate such malware [32, 33]. To assess RevealDroid’s
resiliency to obfuscations, we transformed existing malware
using DroidChameleon [32, 33], a tool suite capable of trans-
forming malware in a variety of ways. We selected apps
from the original AMG to assess RevealDroid’s obfuscation
resiliency. Using AMG allows us to assess both the malware
detection and family identification abilities of RevealDroid
for obfuscation resiliency. Specifically, we evaluated differ-
ent subsets of RevealDroid’s four types of features for their
obfuscation resiliency.

Table 8 depicts the sets of transformations we applied: call
indirection, where a method invocation is moved into a new
method which, in turn, is invoked in place of the original
method; renaming of classes, where the identifier of classes is
changed, which may prevent detection or family identification
that searches for specific class names; and encrypting arrays
and strings if they are used by an app. These DroidChameleon
transformations have previously been shown to prevent 10
commercial antivirus products from detecting the resulting
transformed apps [33]. For each app, we first attempted to
obfuscate it using all transformations. Each time a set of
transformations could not be applied by DroidChameleon,

we removed one transformation from the set. Consequently,
we attempted to transform apps in the following sequence
(ts0, ts1, ts2, ts3). Using this scheme for our selected set of
malware apps from AMG, we successfully applied transfor-
mation set ts0 to 969 apps, transformation set ts1 to a single
app, and transformation set ts3 to 231 apps. No apps could be
successfully transformed using transformation set ts2. In total,
we ended up with 1,201 obfuscated malware samples for this
experiment.

Table 8: Sets of transformations attempted or applied on An-
droid malware

Trans.
Set

Call
Indirection

Rename
Classes

Encrypt
Arrays

Encrypt
Strings

ts0 X X X X
ts1 X X X
ts2 X X
ts3 X

We split our app dataset using two different training strate-
gies to assess RevealDroid for obfuscation resiliency. For the
first strategy, we trained classifiers on a dataset that contains
the original apps and then tested those classifiers on the obfus-
cated versions of those apps. This strategy has been leveraged
by previous work [42]. For the second strategy, we refrain
from training classifiers on any apps that we transformed (i.e.,
original, malicious apps before obfuscation); however, we
test on the transformed apps. The second strategy raises the
standard of obfuscation resiliency compared to the standard
used in previous work. For the second strategy, the classifier
must be able to detect and identify the family of malicious
apps that are (1) obfuscated and (2) never seen before in any
form by a RevealDroid classifier. For example, this kind of
strategy simulates the case where a malicious app is previ-
ously packaged as a game—but is later packaged instead as
an app for downloading wallpaper, given a few new malicious
functionalities, and is finally obfuscated. Note that an over-
whelming majority of apps in AMG are repackaged, making
the previous example particularly relevant. Overall, the second
strategy gives us a clearer idea about RevealDroid’s ability to
generalize its detection and family identification while still
maintaining accuracy in the face of obfuscation.

Table 9 showcases the Detection and Family Identification
rates for the two most accurate classifiers (C4.5 and 1NN)
produced by RevealDroid for a combination of either flow or
sensitive API Features. The top section of the table depicts
the results for classifiers Trained on the Original malicious
apps that are transformed for obfuscation, i.e., the first training
strategy explained above. The bottom section of the table
reports the results for classifiers that are Not trained on the
original apps that are transformed for obfuscation, i.e., the sec-
ond training strategy explained above. As before, limitations
in computational resources and errors from Soot or FlowDroid
limit our Training or Test Sizes—as shown in Table 9 and
measured in terms of the number of apps—particularly for the
more expensive to compute flows. Gray cells indicate the high-
est detection or family-identification rate for a combination of
features and a training strategy.
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Table 9: Detection rates for obfuscated, malicious apps using two training strategies.
Detection Family Identification

Trained on Original Features C4.5 1NN Train Size Test Size C4.5 1NN Train Size Test Size

Yes

Flow 98.82% 98.48% 9,547 1,188 69.78% 71.46% 1,217 1,188
Flow, IA 96.38% 96.89% 9,533 1,188 71.89% 69.87% 1,217 1,188
Flow, PAPI 99.49% 99.92% 8,898 1,186 96.42% 95.57% 1,217 1,186
SAPI 97.42% 99.00% 12,906 1,186 92.84% 99.50% 1,259 1,186
SAPI, IA 97.98% 93.11% 12,866 1,186 74.79% 72.52% 1,248 1,186
SAPI, PAPI 99.50% 100.00% 11,588 1,201 96.67% 99.67% 1,259 1,201

No

Flow 90.66% 90.32% 8,359 1,188 68.15% 66.95% 607 584
Flow, IA 88.55% 86.70% 8,345 1,188 61.30% 65.24% 607 584
Flow, PAPI 96.96% 95.36% 7,712 1,186 77.49% 87.46% 607 582
SAPI 93.42% 92.01% 11,720 1,186 83.22% 86.44% 626 590
SAPI, IA 92.35% 87.40% 11,680 1,186 75.17% 68.66% 627 584
SAPI, PAPI 92.01% 94.09% 10,383 1,201 88.81% 87.63% 626 590

For the first training strategy, the detection rate is very
high for all combinations of features and classifiers—ranging
from 93% to 100%. The combination of sensitive API and
package API features along with a 1NN RevealDroid classifier
obtains a perfect detection rate. Flow features and package
API features used with a 1NN classifier obtains a near perfect
99% detection rate.

For the second training strategy, the detection rate remains
high for all combinations of features and classifiers, ranging
from 86% to 97%. Unlike for the first strategy, the C4.5
classifiers tend to slightly outperform 1NN classifiers. The
combination of flow and package API features still outper-
forms other combinations of flow features, similar to the first
training strategy. Sensitive API features alone also outperform
their combination with Intent action features.

As can be observed in Table 9, Intent action features slightly
reduce the detection rate for obfuscated apps, unlike for non-
obfuscated detection (see Section 5.1). This result indicates
that Intent action features are sensitive to obfuscations. For
that reason, we do not include a combination involving Intent
action features as a third feature involving two other features
(e.g., Flow, IA, and PAPI). We will examine the affect of
obfuscations on Intent action features more below in the case
of family identification under obfuscation.

For family identification, the effect of obfuscation on dif-
ferent features varies widely. The set of transformations that
we have applied affect standalone flow features significantly
for both training strategies—with only a 67%-71% correct
classification rate. Intent action features—which have already
shown slight evidence for a lack of obfuscation resilience for
detection—have a generally negative effect on the correct clas-
sification rate for both training strategies. We took a closer
look at the results and determined that Intent action features
are not necessarily being referenced using the Android API
directly, but instead are hard-coded as strings. As a result,
the encrypt strings transformations can obfuscate Intent action
features.

The results for family identification under obfuscation im-
prove significantly for flow features when combined with pack-
age API features—with an improvement of about 25% for both

classifiers when using the first training strategy. The improve-
ment is still considerable but less dramatic for the second
training strategy, where the classification rate increases by 9%
for C4.5 and 20% for 1NN.

Sensitive API combined with package features exhibit very
high obfuscation resiliency for both training strategies. For
the first training strategy, a 1NN classifier with sensitive and
package API features achieves a 99.67% classification rate—
the highest classification rate for the first training strategy. For
the second training strategy, a C4.5 classifier with sensitive
and package API features achieves an 89% classification rate.

Across all combinations of features, sensitive API features
combined with package API features exhibit the most obfus-
cation resiliency for both detection and family identification.
These results suggest that, without having to compute expen-
sive flows, both detection and family identification of Android
malware can be accurately performed, even for obfuscated
malware.

5.4 RQ4: Efficiency Comparison
The number of both benign and malicious Android apps is
growing very quickly [12] making it is increasingly important
that Android malware analysis scales so that such malware
does not remain undetected long enough to do major damage,
or even any damage. A slow analysis of Android apps can
allow malware to propagate undetected longer. Furthermore,
an efficient analysis of malware apps is particularly benefi-
cial for Android end users, since they can protect themselves
further by using RevealDroid’s classifiers and extractors on
their Android devices. Note that this device-level detection
and family identification is particularly useful since Android
markets have relatively poor vetting processes [45].

To assess the efficiency improvement of RevealDroid’s fea-
ture extraction over a state-of-the-art detection approach, we
compare RevealDroid’s efficiency extraction against MUD-
FLOW’s feature extraction, which is a state-of-the-art ma-
chine learning-based approach for Android malware detection.
MUDFLOW obtains its highest accuracy by using flow fea-
tures alone. Furthermore, MUDFLOW and RevealDroid ex-
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Table 10: Efficiency analysis of selected apps for feature extraction
Extraction Runtime (s)

Name or Hash Description Rep. Size SAPI IA PAPI Flow
com.socialnmobile.hd.flashlight flashlight app B 1.3MB 29.18 5.72 54.93 280.04
com.netqin.mobileguard system optimizer B 2.6MB 60.42 11.70 61.49 446.66
org.sufficientlysecure.keychain 27000 file and communcation encryption B 3.5MB 58.98 14.08 89.54 1503.82
com.opentable restaurant reservations B 4.5MB 132.97 19.60 120.51 2550.36
com.yahoo.mobile.client.android.atom Yahoo news reader B 5.7MB 48.42 12.37 87.62 1672.98
com.twitter.android Twitter app B 15MB 91.86 23.88 173.74 4464.50
fc8012f0f79d44c930449a4725a106a1 from the PJApps family M 634KB 11.30 4.03 21.63 936.74
a85446e62ea283542653b6d7599d2e8f adware and information stealer M 574KB 32.70 4.98 37.68 458.36
7316dcd5c397ac0644a5a41eaae9db05 trojan and information stealer M 692KB 33.21 4.65 39.86 35782.35
a3110b41d078d60979f147342c88a6d0 adware, information stealing M 1.3MB 22.03 4.16 30.22 417.67
83b960675682705f94464fd7e26def55 adware and information stealer M 985KB 10.91 3.56 23.24 1199.36
030b481d0f1014efa6f730bf4fcaff3d4b4c85ac from the PJApps family M 3.1MB 33.99 5.22 34.77 1642.97
da58fdfc0042315ab3393904ec602c6115d240a5 from the PJApps family M 634KB 17.19 3.72 17.55 926.58
207fd9f3619ee825d38cf5e48efc3522e42a9c83 from the DroidKungFu3 family M 392KB 11.90 2.70 14.17 278.00
0274a66cd43a39151c39b6c940cf99b459344e3a from the DogWars family M 4.3MB 13.27 2.79 13.24 259.00
d1643fb08bbb8bf5759c73cdb4ea98800700950c from the GingerMaster family M 199KB 9.12 2.44 10.55 588.00
f8c6d33e8dbd2172654bae104a484fcd80cf22ba from the BaseBridge family M 1.1MB 19.54 3.57 21.55 440.60

AVG 37.47 7.60 50.13 3167.53

tract flow features utilizing the same tool, FlowDroid. We de-
termine the performance of RevealDroid’s and MUDFLOW’s
feature extraction by computing the runtime for extracting
their features from a selection of apps. We do not focus on
classifier training and testing times because all of our datasets
and combinations of features—which contain thousands of
apps—can execute in a matter of minutes on a PC laptop. How-
ever, execution of feature extraction can take hours for certain
features on the nodes of the computing cluster we utilized
(recall Section 4).

For our runtime analysis, Table 10 shows the apps we se-
lected including their Reputation as either Benign or Malicious,
their Size in KB or MB, a short Description of each app, and
the name of the benign apps or the hashes of malicious apps.
We selected 6 benign apps, 5 malicious apps from VirusShare,
and 6 malicious apps from Malware Genome. Our selec-
tion of apps vary across several dimensions, allowing us to
draw broader lessens about RevealDroid’s and MUDFLOW’s
feature extraction efficiency. A gray cell for flow extraction
indicates an analysis of an app that ran out of memory before
feature extraction completed. In such a case, we show the
runtime up until the out-of-memory error occurred.

Flow features, which both MUDFLOW and RevealDroid
extract using the same tool, took the longest to run with an
average runtime of 53 minutes—with one malware sample
taking almost 10 hours to run before the analysis ran out
of memory. This lack of scalability for flow extraction is
consistent with previous findings [19].

The other features could all be extracted, on average, under
a minute. Sensitive API feature extraction ran from 9 seconds
to 133 seconds. Package API feature extraction ran from 10
seconds to 174 seconds. Package API features likely take
longer to extract than sensitive API features simply because
there are more Android API packages than security-sensitive
categories. Intent action features were the fastest to analyze,
taking on average under 8 seconds and ranging from 2 seconds
to 24 seconds.

Due to the overlap between sensitive API features and flow
features—recall that security information flows to and from

sensitive API methods—the use of each feature alone obtains
high accuracy in general. However, there is a greater than 85
times speedup from extracting sensitive API features instead
of flow features. Remember that some apps (marked with gray
cells in Table 10) actually take more memory and time to run
than we were able to allocate even on a high performance com-
puter cluster. To obtain higher accuracy for detection or family
identification, sensitive API and package API features can
be used together—which results in an over 36 times speedup
compared to flow feature extraction. Combining sensitive
API, package API, and Intent action feature extraction times
together still achieves a 33 times speedup compared to flow
feature extraction.

Significant time savings are gained from using combinations
of features not involving data flow. For feature combinations
that exhibited high accuracy, a 33-85 times speedup for feature
extraction is achievable compared to flow feature extraction,
allowing thousands of more apps to be analyzed in the same
amount of time.

Consequently, the accuracy results from the previous sec-
tions combined with our efficiency results indicate that very
high accuracy can be obtained without computing flow fea-
tures, i.e., MUDFLOW’s most accurate features. In the next
section, we will demonstrate that RevealDroid can achieve
higher accuracy than MUDFLOW, even with computationally
inexpensive feature extraction.

5.5 RQ5: Detection Comparison
To determine RevealDroid’s accuracy improvement over the
state-of-the-art in Android malware detection, we compared it
against MUDFLOW. We downloaded MUDFLOW and con-
sulted with its authors to verify that we are using their imple-
mentation correctly by re-running MUDFLOW to replicate
their results on their original dataset. We further computed
method-level flows from FlowDroid as described in Section
4, used those flows as inputs to MUDFLOW, and verified that
we can replicate the high accuracy results from MUDFLOW’s
original study on a subset of apps from their dataset. We
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Table 11: Comparison of MUDFLOW 2-Way Classifier with RevealDroid’s C4.5 SAPI Detection Classifier
MUDFLOW 2-Way Classifier RevealDroid C4.5 Classifier with SAPI features

No Obfuscations For Obfuscations No Obfuscations For Obfuscations

Prec Rec F-Meas Prec Rec F-Meas Prec Rec F-Meas Prec Rec F-Meas
Ben 85.14% 34.17% 48.77% 98.09% 47.46% 63.97% 84.30% 73.20% 78.36% 93.30% 77.30% 84.55%
Mal 87.29% 98.70% 92.65% 72.14% 99.33% 83.58% 94.30% 97.00% 95.63% 85.20% 96.00% 90.28%
AVG 86.22% 66.44% 70.71% 85.11% 73.39% 73.77% 89.30% 85.10% 86.99% 89.25% 86.65% 87.41%

further leveraged MUDFLOW’s two-way Support Vector Ma-
chine (SVM) classifier since it exhibited the greatest accuracy
in the prior work [19]. Lastly, we modified MUDFLOW to
allow it to accept a pre-defined training and testing set, as it
could only perform cross-validation initially. This only modi-
fies the manner in which input is provided to MUDFLOW and
allows us to directly compare RevealDroid to it using the same
training and testing set. We further verified the correctness of
our modification by checking that it obtains the same results
as a 2-fold cross-validation.

We compared MUDFLOW and RevealDroid in the follow-
ing two scenarios for training and testing: one involving only
the original untransformed apps, and another involving apps
transformed as described in Section 5.3. In the scenario with
no transformed apps, we split a dataset consisting of 8,013
malicious apps and 1,742 benign apps into a training set that
has half of the benign apps and half of the malicious apps,
while the testing set has the remaining apps. For the other
scenario, the training set consists of 6,827 malicious apps and
876 benign apps; the testing set contains (1) 1,186 malicious
AMG apps obfuscated as described in Section 5.3 and (2)
the remaining 866 benign apps. As before, computational re-
source limits and errors from Soot or FlowDroid prevented us
from extracting features from all 1,201 obfuscated, malicious
apps.

For classifier selection, we compared MUDFLOW’s two-
way classifier with RevealDroid’s C4.5 classifier that uses
sensitive API features only. This selection of classifier and
features are obfuscation resilient and highly efficient, but not
necessarily the most accurate, as demonstrated in the previous
sections. However, our results below will show that it still
outperforms MUDFLOW in terms of accuracy.

Table 11 showcases the Precision, Recall, and F-Measure re-
sults for MUDFLOW’s classifier and RevealDroid’s C4.5 clas-
sifier on the two scenarios for both Benign apps and Malicious
ones. Overall, for both scenarios, RevealDroid’s classifier
outperforms MUDFLOW’s two-way classifier. In the sce-
nario with no obfuscations, RevealDroid obtains an average
F-Measure of 87% compared to MUDFLOW’s 71%. For
the scenario with obfuscated apps, RevealDroid obtains an
average F-measure of 87% compared to 74%.

The most striking difference between MUDFLOW’s and
RevealDroid’s results for both scenarios is each classifier’s
recall for benign apps. In the scenario with obfuscations, Re-
vealDroid achieves a 77% recall for benign apps compared
to MUDFLOW’s 47%. For benign apps in the other scenario,
RevealDroid obtains a 73% recall compared to MUDFLOW’s
49% recall. These results indicates that MUDFLOW’s classi-

fier has a strong tendency to mark benign apps as malicious,
unlike RevealDroid’s classifier.

5.6 RQ6: Family-Identification Comparison
To demonstrate the improvement in accuracy of RevealDroid’s
family identification over the state-of-the art, we compare Re-
vealDroid against a state-of-the-art Android malware-family
identification approach, i.e., Dendroid [35], which also uti-
lizes machine learning to classify malware. Dendroid uses
features that represent each method of an app as a sequence
of typed statements. We contacted the authors of another ap-
proach, DroidSIFT [42], that is capable of identifying families.
However, DroidSIFT’s authors are unable to share their im-
plementation or dataset. Consequently, we could not compare
against DroidSIFT.

We closely consulted with the authors of Dendroid to ensure
we obtain the most accurate results using their tool as possible.
To that end, we replicated their evaluation and verified the
accuracy of our results with Dendroid’s authors. To compare
Dendroid and RevealDroid, we assessed both approaches us-
ing AMG. Specifically, we split AMG apps into a training
and testing set of approximately equal size using the second
training strategy from Section 5.3. Given that 13 families in
AMG only have a single sample, we selected families which
had at least two samples, resulting in 33 families in total. For
each family, half of the samples were placed into the test set
and half into the training set. For families with odd-numbered
samples, the remaining sample was added to the training set.
This splitting strategy resulted in a training set of 626 apps
and a testing set of 607 apps. For RevealDroid, we selected its
1NN classifier with sensitive API and package API features
since it demonstrated high accuracy in our earlier experiments
(see Section 5.3).

Using that experimental setup, Dendroid correctly classified
73% of the test apps, while RevealDroid achieves an 87%
correct classification rate. Although our replicated results for
Dendroid are significantly lower than the Dendroid author’s
original results [35], we verified our results with those authors
and discovered an error in their experiment, where they, in
fact, trained on the entire dataset.

We further compared RevealDroid’s and Dendroid’s ob-
fuscation resiliency. To that end, we trained both Dendroid
and RevealDroid using the training set consisting of half of
AMG. We then replaced apps in the test set with their obfus-
cated versions—transformed as discussed in Section 5.3. The
resulting test set contains 590 apps.
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RevealDroid demonstrated overwhelmingly greater obfusca-
tion resiliency than Dendroid: RevealDroid maintains an 87%
correct classification rate, while Dendroid’s classification rate
falls to 27%. This low result for Dendroid is unsuprising since
it relies on the structure of a method as features. Given that
the call indirection transformation that we applied to the test
apps alters that structure, the transformation prevents proper
classification by Dendroid.

5.7 Discussion and Limitations
One of the major goals of RevealDroid is to aid in the selec-
tion of features that are obfuscation-resilient, highly accurate,
and highly efficient. The most inefficient features to extract
are flow features, due to the need to compute a potentially
expensive data-flow analysis. However, our results strongly
indicate that sensitive API features, possibly with the com-
bination of package API features, can replace flow features.
Although Intent actions tend to improve detection and family-
identification results, they are, unfortunately, not obfuscation-
resilient. Overall, the features that best achieve obfuscation
resiliency, accuracy, and efficiency are sensitive API features,
possibly with package API features.

Flow features had limited obfuscation resiliency for fam-
ily identification, despite their focus on Android APIs. An
in-depth analysis to determine the source of FlowDroid’s sen-
sitivity to obfuscations is beyond the scope of this paper. How-
ever, it is possible that the DroidChameleon transformations
result in special cases not handled by FlowDroid. More im-
portantly, as previously stated, flow features are not needed to
achieve high accuracy, obfuscation resiliency, and efficiency
of Android malware detection and family identification.

RevealDroid is limited by the underlying analysis and tools
utilized for feature extraction. In particular, Soot and Flow-
Droid could not extract features from all apps in our study.
This limitation occurred mainly due to computational resource
constraints and scalability issues, particularly for FlowDroid.
To address these issues, more robust tools than Soot or Flow-
Droid may be substituted. Furthermore, missing a small num-
ber of apps is mitigated by our use of machine learning, which
attempts to learn general characteristics of Android malware.

Limitations of the dataset utilized by RevealDroid repre-
sents a threat to external validity. However, we carefully se-
lected apps to maximize the probability that they are correctly
marked as benign or malicious (see Section 4). We further
utilized family labels already verified by security experts (see
Section 4 and Section 5.2). Furthermore, malware that min-
imizes use of Android APIs or leverages mechanisms such
as reflection, native code, or dynamic class loading may not
be properly classified by RevealDroid. Extracting features to
represent these characteristics is an interesting challenge for
future work.

6 Related Work
We provide an overview of the current state of Android mal-
ware app detection and family identification. We first discuss
the techniques that solely aim to detect malicious Android
apps. We then cover signature-based and machine learning-
based techniques that aim to identify the family of such apps.

A variety of techniques have been developed to identify An-
droid malware, without attempting to specifically identify the
family of malware. Some techniques detect Android malware
by focusing on specific risk factors. RiskRanker [24] ranks
apps as either high-risk, medium-risk, or low-risk in order
to identify malware. Peng et al. [28] perform risk ranking
and scoring by leveraging probabilistic generative models to
identify malware apps.

Other techniques utilize virtualization to aid in the detection
of Android malware. DroidScope [40] is a virtualization-based
malware analysis engine that utilizes different dynamic analy-
ses to monitor malware. CopperDroid [34] is an approach for
reconstructing Android-malware behaviors through virtualiza-
tion and a focus on system calls.

Machine learning has been used for simply distinguishing
between benign and malcious Android apps. CHABADA [23]
compares app descriptions and behaviors through machine
learning and information retrieval to distinguish benign and
malware apps. MUDFLOW [19], which we compared with
RevealDroid in Section 5, is another detection technique that
trains on apps and attains higher accuracy than CHABADA.

Certain techniques leverage Android-app permissions to
identify malware apps. Kirin [21] certifies an Android app
against a set of rules to determine if the app may perform
malicious behavior. DroidRanger [45] attempts to identify
malware based on the permissions and behaviors of an app.
Drebin [17] is designed to detect Android malware directly on
an Android device, in part, by using permission information.

A variety of other techniques use different mechanisms for
detecting Android malware. DroidAnalytics [43] provides an
automated workflow for the collection and signature genera-
tion of Android malware by analyzing apps at the opcode level.
AsDroid [26] detects stealthy behaviors of possibly malicious
apps characterized by mismatches between program behavior
and the user interface. Poeplau et al. [29] construct a static
analysis tool for identifying unsafe and malicious dynamic
code loading.

Besides not identifying malware families, all of these ap-
proaches are evaluated on an outdated set of malware—many
of these approaches are evaluated on malware no older than
2012.

Several approaches focus on identifying specific malware
families. Apposcopy [22] provides a language to specify mal-
ware signatures and a static analysis to identify apps matching
those signatures. Given that Apposcopy is signature-based, se-
curity engineers must manually construct malware signatures,
which is a time-consuming and error-prone task.

A few approaches automatically identify the family of An-
droid malware. Dendroid [35] utilizes text-mining techniques
and control-flow features to identify families of malicious
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apps. DroidSIFT [42] employs extracted dependency graphs
to determine whether an app is benign or malicious, and the
family of a malicious app.

The two approaches that automatically identify the family
of Android malware—Dendroid and DroidSIFT—are limited,
when compared to RevealDroid, in two key ways: (1) they
use a highly outdated malware dataset; and (2) they perform
a highly limited assessment for obfuscation resiliency, or no
such assessment at all. Both approaches are evaluated on a
limited number of malware families and apps, and use malware
datasets that are antiquated, dating back to 2011. On the
other hand, we evaluate RevealDroid on a dataset consisting
of thousands of additional malware apps discovered up until
early 2014.

Both techniques have limited obfuscation resiliency, and
rely on representations (e.g., control-flow features or constant
strings) that can be thwarted by malware using control-flow
transformations. Dendroid is not evaluated for its ability to ad-
dress obfuscations; DroidSIFT is only assessed using unstated
obfuscations applied to a small number of apps from a single
malware family.

7 Conclusion
This paper has introduced RevealDroid, a machine learning-
based approach for Android malware detection and family
identification that is accurate, efficient, and obfuscation re-
silient. We have compared RevealDroid with a state-of-the-
art Android malware detection approach, showcasing Reveal-
Droid’s superior accuracy and efficiency, even under obfusca-
tion. We further compared RevealDroid to a state-of-the-art
family identification approach, demonstrating significantly
higher accuracy, especially in the face of obfuscations.

In the future, we intend to explore feature characteristics of
emerging malware apps—such as those that infect an Android
device’s Master Boot Record [9] and stealthily utilizing de-
vices to mine cryptocurrency services [3]—in order to detect
and identify the families of those malware. Additionally, we
further intend to explore lightweight feature-extraction mecha-
nisms to classify malware that leverages native code, dynamic
class loading, or reflection.

To enable replication of our results and improvement over
RevealDroid, we make our RevealDroid prototype and data
available online at [7].
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