
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Discerning Machine Learning Degradation via Ensemble
Classifier Mutual Agreement Analysis

Charles Smutz
csmutz@gmu.edu

Angelos Stavrou
astravrou@gmu.edu

Technical Report GMU-CS-TR-2015-11

Abstract

Machine learning classifiers are a crucial component
of modern malware and intrusion detection systems.
However, past studies have shown that classifier-based
detection systems are susceptible to evasion attacks in
practice. Improving the evasion resistance of learning
based systems is an open problem.

In this paper, we analyze the effects of mimicry at-
tacks on real-world classifiers. To counter such attacks,
we introduce a novel approach that not only exposes
attempts to evade the classifier, but also evaluates the
ability of the system to operate reliably. We advance
mutual agreement analysis for ensemble classifiers: dur-
ing the detection operation, when a sufficient number
of votes from individual classifiers disagree, the ensem-
ble classifier prediction is shown to be unreliable. This
method allows the detection of classifier evasion without
additional external information.

To evaluate our approach, we used thousands of both
malicious and benign PDF documents. Applying our
method to two recent evasion attack studies, we show
that most evasion scenarios are detected. Furthermore,
we show that our approach can be generalized to weaken
the effectiveness of the Gradient Descent and Kernel
Density Estimation attacks against Support Vector Ma-
chines (SVM) by creating an ensemble classifier using
many base SVMs. We discovered that feature bagging is
the most important property for enabling mutual agree-
ment based evasion detection.

1 Introduction

Machine learning techniques have emerged as one of
the primary detection techniques against a wide-range
of malfeasance and malicious activities in general in-
cluding intrusion detection systems [36, 40, 6], cluster-
ing of malware families [10, 24], detection of malicious

downloads [15, 38], detection of account misuse in so-
cial networks [51, 18], and detection of commonly ex-
ploited file formats such as Java archives [42] and docu-
ments [29, 44, 28]. Moreover, statistical or machine learn-
ing techniques have been used successfully for years to
identify SPAM [41, 14, 25].

One of the main weaknesses of systems that use ma-
chine learning classification in adversarial environments
is their susceptibility to evasion attacks. With evasion
attacks, we refer to the classes of attacks that take ad-
vantage of the knowledge of how the machine learning
system operates, and in many cases utilize access to the
training set and features to evade detection passively or
actively [19, 37, 52, 12, 11].

Mimicry attacks thwart detection by making the at-
tack data appear benign according to the model used by
the intrusion detection system. Often this is achieved
by hiding overtly malicious content through encoding
or encryption [48, 32] or minimizing the footprint of
malicious content through data misuse or code re-use
attacks [43, 21]. For instance, content aligning with a
benign observation is added to cover up or drown out
the malicious content. Often many detection systems
are evaded by exploiting differences in the detection sys-
tem and the systems being protected [20, 23]. Even if
operational details of defense systems are kept secret,
enough knowledge to conduct evasion can often be ob-
tained solely from external testing [22]. With all of these
potential evasion vectors, preventing detection evasion
remains an open problem.

Our approach is not to prevent all possible evasion
attacks, but to introduce a mechanism that provides de-
tection of poor classifier performance. We analyze the
use of introspection in an ensemble classifier to detect
when the classifier provides unreliable results at clas-
sification time. The use of ensemble classifier mutual
agreement analysis relies on the intuition that when in-
dividual classifiers in an ensemble vote for the same
prediction, the prediction is likely to be accurate. When
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sufficient number of the votes are in opposition, then the
classifier prediction is not trustworthy. In this state of
internal classifier disagreement, the detector returns the
outcome of “uncertain” instead of a prediction of benign
or malicious. In operation, the classification rate of the
detector is improved at the cost of a small portion of
the samples being labeled as uncertain, indicating that
the classifier is not fit to provide an accurate response.
This separation of accurate predictions from uncertain
predictions is possible because the majority of the mis-
classifications, including evasion attempts, have a classi-
fier voting score distribution distinct from the accurate
predictions. Our study indicates that feature bagging in
an ensemble classifier, or constructing many individual
classifiers with randomized subsets of the whole feature
set, is critical to providing this discriminatory power.

To evaluate our technique, we study evasion attacks
against PDFrate. PDFrate uses features derived from
document structure and metadata fed into a Random
Forest classifier to detect Trojan PDFs. PDFrate is used in
real world intrusion detection systems and can be evalu-
ated by the public through submissions to pdfrate.com.
There are many choices for malware detectors on which
to demonstrate mutual agreement analysis. PDFrate
was selected because it is publicly accessible, well doc-
umented, uses an ensemble classifier which returns the
raw voting score, and has been subjected to multiple
recently published mimicry attacks [30, 39].

Our evaluation includes application of mutual agree-
ment analysis to over 10,000 documents sourced from
VirusTotal [7] and hundreds of malicious documents in
nine unique evasion scenarios from two independent
evasion studies. Lastly, we seek to demonstrate that
we are able to defeat the Gradient Descent and Kernel
Density Estimation (GD-KDE) attack, which is highly
successful against a traditional Support Vector Machine
(SVM) classifier.

Our contributions are:

• A simple but effective method of detecting classifier
degradation in practice without resort to external
ground truth data

• Evaluation against two recent evasion attack studies

• Generalization of our approach by defeating the
GD-KDE attack against SVM classifiers using an en-
semble SVM classifier created using feature bagging

2 Related Work

Adversarial learning is an important contemporary re-
search topic [22]. Some studies have proposed methods
for creating effective classifier based intrusion detection
systems [19, 9, 47]. Many studies have addressed the im-
portance of data sanitization or adversarial influence at
training time [8, 16, 34, 27]. Yet others focus on evasion

of the deployed classifier [11, 30, 39]. We also focus on
evasion of a classifier during operation, but instead of
focusing on strategies for evasion, we propose a means
of detecting these evasion attempts.

Many studies have addressed the topic of using diver-
sity in ensemble classifiers to improve malware detection
rates [26, 54, 33, 53]. Few studies, however, study practi-
cal strategies for detection of evasion attempts against
these ensemble classifiers. Chinvale et al. proposed the
use of mutual agreement between independent SPAM
filters to optimize the re-train interval of the SPAM fil-
ters due to concept drift [14]. We use the same general
approach. Our work differs in that we focus on detection
of evasion on individual observations at test time. Our
prediction is influenced by our mutual agreement anal-
ysis. Instead of multiple classifiers using independent
data sets, we study the factors that make internal mutual
agreement analysis effective in an ensemble using the
same data sets across all classifiers in the ensemble. We
also evaluate the effectiveness of our approach on direct
evasion attacks.

The PDF classification problem has been studied ex-
tensively [17, 28, 31, 49]. Our empirical evaluation relies
directly on PDFrate [45] which is the preferred choice for
our study because it has been subjected to two separate
recent evasion studies [30, 39].

3 PDFrate

PDFrate is a machine learning based malware detec-
tor operating on PDF documents. The pdfrate.com
website allows user submissions and returns ratings
for these submitted files. PDFrate is useful for this
study because the underlying mechanisms are well doc-
umented [46, 45], it is openly available for online attacks,
and it provides considerable information about each sub-
mitted PDF. Because of this transparency, PDFrate has
been the target of practical adversarial learning stud-
ies. Having experienced independent evasion attempts
makes PDFrate especially suitable for this study.

PDFrate classifies PDF documents based on analysis
of their structural and metadata attributes. Risk fac-
tors for a malicious document include items such as
existence of Javascript objects or improperly formatted
timestamps. On the other hand, benign documents con-
tain inert content such as text content or font objects. The
basic structural and metadata information on which the
features are based is extracted using regular expressions
applied to the raw document. This small subset of struc-
tural information taken from the document is presented
to the user in the document scan report. From this base
information, features are extracted. Examples of features
include the number of Javascript objects and the relative
position of the end of file marker in the document. All
told, 202 features are used.

Random Forests is used as the classifier in PDFrate.
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Random Forests is an ensemble classification technique
using individual trees, each of which votes and con-
tributes to the final score. The number of tree (ntrees) is
one of the primary tunable parameters and is set at 1000.
The trees are constructed using a randomly selected sub-
set (bagging) of the training data. The features used
for splits at each node are also selected from a subset
of the features dictated by the other primary parame-
ter (mtry), which is set at 42. The original publications
indicated that tuning these parameters had only minor
affects on classification results and that Random Forests
performed better than alternative machine learners in-
cluding SVM. A discriminating characteristic of PDFrate
is that it provides a score or rating instead of a simple
benign/malicious determination. The score provided by
PDFrate is the portion of trees that voted for the positive
(malicious) class.

The PDFrate website also provides scores on three
unique training sets. The Contagio data set is taken
from a widely available dataset designated for re-
searchers [35]. It contains 10,000 documents, evenly split
between benign and malicious. The list of documents
in this set is provided such that this training set can
be replicated. The second data set was composed by
researchers at a university and is called the University
dataset. It contains a much larger number of documents,
over 100,000, but the exact composition of the training
set is not published. We use both of these training sets,
the Contagio and University data sets, and the classifiers
derived from them, in this study. There is another classi-
fier, driven by community voting on submission, but this
classifier has not been updated, presumably due to lack
of community feedback. Beyond a benign/malicious
score, some classifiers are built that seek to differenti-
ate between targeted and opportunistic or commodity
threats. We confine our study to the benign/malicious
classification problem.

For this study, we obtained access to the source code
of PDFrate and some PDF documents submitted to
pdfrate.com in evasion studies. These items are gen-
erally not available to the public.

4 Mimicus

Mimicus [2] is a framework for performing mimicry
attacks against PDFrate. It is the implementation of
what is described by Šrndić and Laskov as “the first
empirical security evaluation of a deployed learning-
based system” [39]. As an independent, comprehensive,
and openly available framework for attacks against the
online implementation of PDFrate, it is well suited as an
example of classifier evasion in our study.

Mimicus implements evasion attacks by modifying ex-
isting malicious documents to appear more like benign
documents. Mimicus adds markers for additional struc-
tural and metadata items to documents. These additions

do not involve adding actual content that is interpreted
by a standards-conforming PDF reader, but rather these
additions exploit a weakness in the feature extractor
of PDFrate. The extraneous PDF attributes are added
in slack, or unused space, immediately preceding the
document trailer (structure at the end of the document),
which is not prohibited by the PDF specification. Mimi-
cus enables a very simple attack scenario. The attacker
constructs a malicious document without concern for
PDFrate evasion. Mimicus adds extraneous data that is
skipped over by the reader being exploited but provides
decoy structural elements that implement the mimicry
attack against PDFrate. Differences between how mal-
ware is parsed by detection systems and the targeted
program is a common problem [23]. This approach pro-
vides considerable flexibility in the evasion attack as
the additional elements do not have to be valid. While
some features can be decremented, this mimicry attack
only adds fake elements to the document file–no existing
elements are removed or modified.

Mimicus operates by comparing a malicious docu-
ment to multiple different benign documents. The fea-
tures are adjusted to make the malicious document mir-
ror the feature vectors from the benign documents to
the degree possible. These adjustments are bounded by
the modification approach Mimicus uses. The candidate
mimicry feature vectors are run through a local PDFrate
replica to determine the scores. The best feature vector is
selected. That feature vector is used as the goal in modi-
fying the original malicious document by adding decoy
structural and metadata elements. Due to interrelated
features and other complications, it is not feasible to con-
struct a final mimicry malicious document that exactly
matches the target mimicry feature vector. The resulting
mimicry malicious document has a feature vector that
is somewhere between that of the original Trojan docu-
ment and that of a benign document. After the mimicry
document is created, it is submitted to pdfrate.com for
evaluation.

An important observation of the Mimicus study is that
the interdependency of PDFrate’s features make mimicry
attacks more difficult because modifying one feature
necessarily affects other features. It is generally accepted
that irrelevant or redundant features are not desirable
for machine learning methods. However, in the case of
PDFrate, this attribute appears to make evasion attacks
like those implemented by Mimicus more difficult by
making construction of a PDF matching a target feature
vector more difficult.

In order to perform this attack, a complete replica of
PDFrate is required for offline analysis (the source code
of PDFrate is not openly available). The most difficult
component to imitate, and the component comprising
the bulk of the code, is the feature extractor. This compo-
nent uses regular expressions to extract features based on
the structure and metadata of the document. 135 of the
202 features of PDFrate are publicly documented. Mim-
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icus implements these 135 features, or approximately
2/3 of the features of PDFrate. Of these 135 features,
Mimicus can influence 68, or approximately 1/3 of the
features used by PDFrate.

One of the most remarkable findings of the Mimi-
cus study is that the offline replica of PDFrate provides
nearly identical results as those from pdfrate.com de-
spite using only 2/3 of the pdfrate.com feature set and
using a fully independent implementation. In the orig-
inal PDFrate study, Smutz and Stavrou demonstrated
that classification error decreases as the number of fea-
tures used by PDFrate increases. With a randomly se-
lected subset of the 202 features, classification error
dropped rapidly until at least 20 features were used
and continued to drop with diminishing improvements.
Above 130 features, no improvement to classifier accu-
racy was observed. It is possible that the additional
features add no discriminatory power because the exist-
ing features are already adequate for classification or the
additional features are redundant. Having access to the
PDFrate implementation, we were able to inspect these
features unknown to Šrndić and Laskov. The majority
of these features were based on relatively rare structural
items Not surprisingly, these features were ranked low:
none of these features was ranked in the top 20 and only
14 of these 67 features were ranked in the top 100 (out of
202) features. Due to experimental results in the PDFrate
and Mimicus studies, as well as our own observations,
we simplify our study by not performing any compar-
isons of results based on these two divergent feature
sets (or feature extractor implementations). We consider
them functionally equivalent as they provide extremely
similar results.

All Mimicus attacks assume knowledge of the feature
set used by PDFrate. There is no attempt to develop an
independent or surrogate feature set as is the case with
both the training data and the classifier used by PDFrate.
It follows that for a mimicry attack to be successful, at
least knowledge of the type of features is necessary. Also,
since this attack leverages a difference between normal
PDF readers and the PDFrate feature extractor, knowl-
edge of how to exploit this difference is also necessary.
Hence, all Mimicus attack scenarios are labeled with an
“F” indicating that the attacker used knowledge of the
features.

Relying on the common basis of the feature extrac-
tion, the Mimicus attacks demonstrate various levels of
knowledge used by the attacker. In situations where the
training data and classifier are known by the attacker,
replicas that are very close to the original are used. In
other situations, a reasonable replacement is used. The
labels “T” and “C” are used to denote attacker knowl-
edge of training data and classifier, respectively. Hence,
an attack scenario with the label “FTC” denotes attacker
knowledge of all three major facets of PDFrate.

The training set used by the Contagio classifier of
PDFrate is publicly documented and is readily avail-

able to researchers. Hence, in attack scenarios where the
training data is known by the attacker, the same data set
is used by PDFrate and Mimicus. For scenarios where
the attacker has no knowledge of the training set, Šrndić
and Laskov compiled a surrogate training set with ma-
licious documents sourced from VirusTotal and benign
documents sourced from the Internet. In addition, they
selected 100 malicious documents from within the Con-
tagio training set for the baseline attack documents. We
use the same Contagio and baseline attack datasets as
those used in the Mimicus study.

Lastly, to complete the offline PDFrate replica, Šrndić
and Laskov used a Random Forests classifier when
knowledge of the classifier was known, and a Support
Vector Machine classifier to simulate the case of the naive
attacker. The Mimicus study shows that when all three
particulars of PDFrate are spoofed, the result is nearly
identical scores from the PDFrate online and the Mim-
icus offline classifier, despite various implementation
differences.

Mimicus also implements a GD-KDE attack which
seeks to attack the SVM surrogate classifier directly. This
attack does not apply to Random Forests classifiers, and
therefore does not directly apply to PDFrate. We discuss
this attack further in Section 11.

5 Reverse Mimicry

Maiorca et al. also study evasion against PDFrate and
other PDF document classifiers [30]. They style their
attack a “Reverse Mimicry”. Instead of adding content
to a malicious document to make it appear benign (as
Mimicus does), they embed malicious content into a
benign PDF, taking care to modify as little as possible.
The Reverse Mimicry attack is useful for our evaluation
because it implements an independent evasion attack
against PDFrate.

Three different evasion scenarios are implemented by
Maiorca et al. In the EXEembed scenario, a malicious
executable is implanted in an existing benign PDF docu-
ment. The malware is executed when the document is
opened. These documents utilize CVE-2010-1240. In the
PDFembed scenario, a malicious PDF is embedded into
a benign PDF. These embedded documents are rendered
automatically when the document is opened. For evalu-
ation, Maiorca et al. embedded a document implement-
ing CVE-2009-4324 into existing benign PDF documents.
Lastly, in the JSinject scenario, malicious Javascript, the
same used in the PDFembed embedded document, is
injected directly into the root benign document.

In order to evade detection, the Reverse Mimicry at-
tacks focus on changing the document structure as little
as possible. For example, in the EXEembed attack, a new
logical version of the PDF is constructed with few new
structural elements, but all the content from the original
PDF is left in the file. A compliant reader will not dis-
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play the content associated with the previous version of
the document, but the artifacts will be analyzed by the
feature extractor of PDFrate and similar detectors.

In addition to minimizing the structural artifacts of
the malcode injection, Maiorca et al. make use of PDF
encoding, especially stream compression, to hide the
inserted content. For example, in the PDFembed attack,
the malicious document is embedded in a compressed
PDF stream. Detection tools, such as PDFrate, that do
not decompress the PDF streams are not able to extract
features from the embedded malicious PDF.

The Reverse Mimicry attack provides a strong com-
plement to the evasion attempts of Mimicus. Mimicus
uses addition of decoy objects that would not be pro-
cessed by a normal PDF reader but are parsed by the
simple regular expression based processing of PDFrate.
The Reverse Mimicry attacks, on the other hand, use
valid PDF constructs to minimize and hide malicious in-
dicators. Mimicus operates by adding camouflage while
the Reverse Mimicry attack seeks to make the malicious
elements stealthy.

6 Mutual Agreement Analysis

Our goal is to show that an ensemble classifier provides
information useful for determining the trustworthiness
of the classifier on a given observation. We use the mu-
tual agreement of individual classifier results to indicate
when the ensemble classifier is suitable for use on a given
sample. If the votes concord, then the result falls within
the space adequately covered by the strength of the fea-
tures and training data of the classifier. If the individual
votes do not agree, then the resulting classification is sus-
pect. The level of classifier mutual agreement is quan-
tified in a score which is compared to a threshold for
determining which observations are labeled uncertain.

An ensemble classifier operates by obtaining the re-
sult of many independent classifiers and combining the
results to make a composite result. Typically, the result is
combined by voting, where each independent classifier
gets an equal vote. The votes are summed to generate
a score. Traditionally, if the score is over 50% the obser-
vation is labeled malicious and otherwise the result is
benign.

We seek to identify poor classification results by divid-
ing the voting scores into sections where the individual
classifiers agree or disagree. Hence, instead of splitting
the vote result space in simple halves, we split it into
4 quadrants. In the 0 - 25% region, the majority of the
votes agree that the result is negative (benign). Similarly,
in the 75 to 100% region, the majority of the votes agree
that the result is positive (malicious). However, if the
score is between 25% and 75%, the individual classifiers
disagree. To support comparison with simple ensemble
voting predictions, this area can be split into the other
two quadrants: Uncertain (Benign) from 25 - 50% and

Table 1: Ensemble Classifier Outcomes
Voting Score Outcome

[0,25] Benign
(25,50) Uncertain (Benign)
[50,75) (Malicious)

[75, 100 ] Malicious
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Figure 1: Mutual Agreement Based on Vote

Uncertain (Malicious) from 50 - 75%. These classification
outcomes are demonstrated in Table 1.

To be more precise about this concept, we introduce
a metric to quantify the agreement between individual
votes in an ensemble classifier:

A = |v− .5| ∗ 2

Where A is the ensemble classifier agreement rate
and v is the portion of votes for either of the classes.
This function is demonstrated in Figure 1, which also
shows the classifier outcomes resulting from a 50% mu-
tual agreement threshold. The end and middle points
drive the general shape of this function. It follows that
if the classifier vote ratio is either 0 or 1, then the clas-
sifier has full agreement on the result and the mutual
agreement should be 1 (or 100%). If the classifier is
split with .5 of the votes for each class, then the mutual
agreement should be at the minimum of 0 (or 0%). As
long as a single threshold is used, it is not important
what shape is used for the lines between these end and
middle points–any continuous curve would allow the
selection of a given threshold on the classifier vote scores.
The function need not follow the distribution of scores,
for example. We choose a linear function because it is
straightforward.

The threshold for agreement, naturally set at 50%, is
the boundary above which the classifier is said to be in
a state of ensemble agreement and the resulting classi-
fication should be considered valid. Below this mutual
agreement rating, the classification is specious. This
indicates that the classifier results are volatile due to fac-
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tors such as inexpressive features or inadequate training
data. We use the boundary of 50% throughout most of
this paper. However, similar to the threshold of votes for
classification which is usually and naturally set at 50%,
this value can be adjusted by the operator. Decreasing
this threshold decreases the number of observations in
the disagreement or uncertain classification zone. Tun-
ing of this threshold is discussed in detail in Section 10.

This mutual agreement rating can alternatively be de-
scribed as the percentage of votes that remain after op-
posed votes are removed. For example, given a vote of
80% for the positive class, the 20% negative votes cancel
out an additional 20% of the total votes. After 40% of the
votes are removed, 60% of the votes remain. Hence, the
mutual agreement rating is 60%.

This approach rectifies the perverse situation where a
tie or near-tie in voting results in a classification that is
generally considered the same as one where all votes are
cast for the same class. For example, an outcome where
49% of the votes are cast for the positive class results in
a mutual agreement score of 0.02 or 2%.

We have found that the mutual agreement metric is
useful for evaluating the samples on which the classifier
performs poorly. Moreover, we will show that the mu-
tual agreement based prediction of uncertain is useful
for elucidating those observations that are most likely
to be classified incorrectly. We will further show the ef-
fectiveness of mutual agreement analysis at identifying
observations that would evade detection due to both
concept drift and direct evasion.

7 Evaluation on Virustotal Data

We measured the mutual agreement of PDFrate scores
for Virustotal submissions during the year following
the latest re-training of the University classifier (Octo-
ber 2013). From a corpus of PDF documents organized
by initial upload to Virustotal, we randomly select 500
benign and 500 malicious documents per month. We
consider any sample that has a detection by 3 or more
AV engines as malicious and any that has less as benign.

Table 2 contains the two PDFrate classifier outcomes
for the malicious samples, and Table 3 for the benign
samples. We present monthly results for the University
classifier, but for brevity, only present the year total for
the Contagio classifier. These tables present the num-
ber of documents that receive classifier ratings of benign,
uncertain, or malicious. We keep the convention of show-
ing the split in the middle of the uncertain region based
on a 50% score, allowing better comparison to standard
classifier predictions and better showing the distribution
of the scores. Generally, these tables demonstrate that
the classifiers cast the majority of their votes for the cor-
rect class, malicious and benign respectively. The counts
drop off rapidly through the uncertain outcomes and
the incorrect class is a rare outcome. The distribution

Table 2: Counts of known Malicious documents from
VirusTotal for each PDFrate prediction.

University Classifier
Benign Malicious

Date Uncertain
201311 7 4 11 478
201312 2 0 2 496
201401 2 1 20 477
201402 10 6 16 468
201403 2 20 19 459
201404 9 10 19 462
201405 3 4 4 489
201406 20 9 22 449
201407 11 2 8 479
201408 20 18 22 440
201409 2 25 14 459
201410 7 21 5 467
total 95 120 162 5623

Contagio Classifier
total 841 1246 667 3246

Table 3: Counts of known Benign documents from Virus-
Total for each PDFrate prediction.

University Classifier
Benign Malicious

Date Uncertain
201311 479 19 0 2
201312 494 5 1 0
201401 483 14 3 0
201402 480 19 1 0
201403 493 6 1 0
201404 492 5 2 1
201405 490 9 0 1
201406 483 17 0 0
201407 485 14 0 1
201408 482 18 0 0
201409 491 9 0 0
201410 483 17 0 0
total 5835 152 8 5

Contagio Classifier
total 5638 280 72 10

of ensemble classifier voting scores for the University
classifier is shown for the malicious PDFs in Figure 2
and for the benign PDFs in Figure 3.

The primary observation is that using mutual agree-
ment to add an additional outcome or prediction of
uncertain dramatically decreases classifier error. This
comes at the expense of a small number of observations
receiving a prediction of uncertain. Table 4 compares
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Figure 2: Scores for VirusTotal Malicious Documents.

Table 4: Comparison of classifier performance using con-
ventional vote threshold and mutual agreement derived
Uncertain Rate (UR).

University Classifier
FPR FNR UR

Conventional 0.22% 3.57% -
Mutual Agreement 0.08% 1.58% 3.68%

Contagio Classifier
FPR FNR UR

Conventional 1.37% 34.8% -
Mutual Agreement 0.17% 14.0% 18.9%

the predictions of a traditional classifier with that using
mutual agreement analysis. Classification error and un-
certain rates are presented. For the University classifier,
the false positive rate (FPR) drops from 0.22% to 0.08%
and the false negative rate (FNR) drops from 3.57% to
1.58%. The trade-off is that 3.68% of the incoming obser-
vations are classified as uncertain. Of the observations
labeled uncertain, 34% would be misclassifications with
a traditional vote threshold. For the Contagio classi-
fier, 54% of the uncertains would be classification errors.
Note that we report the Uncertain Rate (UR) using the
count of all observations as the denominator, while we
use the conventional definition for FPR and FNR which
use the count of the benign and malicious observations
as the denominator.

One would typically expect the portion of classifier
errors in the uncertain outcome to be under 50%, at
least when counts of benign and malcious samples are
equal. Even the most uncertain classifier, a random
guess, should yield the correct prediction half the time.
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Figure 3: Scores for VirusTotal Benign Documents.

So even uncertain predictions should be correct about
50% of the time. Hence, 50% should be the normal up-
per bound for the classification error rate inside the un-
certain outcome. The Contagio classifier exceeds this
slightly because of it has an irregular score distribution.

If we are usually throwing away more correct classi-
fications than incorrect, then what advantage does en-
semble classifier internal agreement analysis provide?
The uncertain range comprises a relatively small portion
of the ensemble classifier scores but it captures a large
portion of the misclassifications. Hence, by returning
a result of uncertain for 3.7% of input, our classifier is
able to increase accuracy from 98.1% to 99.2% on the
remaining inputs. This additional measure of classifier
confidence comes with no external validation of ground
truth.

With the known classes of the samples labeled, it is
clear that the University classifier is superior to the Con-
tagio classifier. This is expected as the Contagio classifier
contains over an order of magnitude fewer documents
and was compiled nearly 3 years before the University
classifier. Without any external knowledge, the mutual
agreement analysis derived Uncertain Rates of 3.68%
for the University classifier and 18.9% for the Contagio
classifier gives us an objective measure of the relative
confidence of these classifiers. These measures are very
close to the ground truth misclassification rates of 1.9%
and 18.1% respectively. The ability to estimate classifier
error with no knowledge of ground truth makes the mu-
tual analysis derived Uncertain Rate extremely valuable.

One surprising observation from this data is the lack
of a steep decrease in classification accuracy through-
out the year following the training of the classifier. It
might be anticipated that the classifier would need to
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be retrained frequently to remain accuracy. We suspect
that the low drift in the malicious documents over time
was due to a lack of active evasion attempts against
PDFrate. While polymorphism may be used to attempt
to defeat signatures, rapid changes to the features used
by PDFrate do not appear to occur in Virustotal sub-
missions. We also tried to correlate exploits over time
with classifier error and could discern no strong correla-
tions between new software vulnerabilities and classifier
evasion. In fact, the most common exploit found in the
samples labeled uncertain was CVE-2010-0188, a very
old, if not prolific, exploit. This exploit was the most
common exploit reported in our VirusTotal submission
data set. Our labeling of exploits was limited to the anal-
ysis provided by the cumulative detections of the AV
engines in VirusTotal, which may introduce a bias in this
analysis. To the degree our ability to correctly identify
the exploits used in documents was not biased, it ap-
pears that new exploits are not associated with PDFrate
evasion. It also appears that the various techniques used
to defeat signature matching are generally orthogonal to
the attributes that PDFrate uses for classification. This
implies that PDFrate and signature matching techniques
complement each other well.

We also analyzed the classification of individual trees
in the Random Forest to see if some trees consistently
performed better than others. Again, we could find no
notable patterns: some trees were effective at some sce-
narios while performing poorly on others. In keeping
with the stochastic nature of the generation of these trees,
we could not glean any attributes correlated with eva-
sion resistance in individual trees.

It is also noteworthy that the false negative rate is
higher than the false positive rate and the contribution
to the uncertain outcome is also higher from the ma-
licious samples than the benign samples. This has a
few implications. First, it seems that the classification
PDFrate provides is more volatile for malicious samples
than benign–possibly due to less variation in benign
samples. We presented equal quantities of benign and
malicious documents, but most environments are heav-
ily skewed to benign observations. Hence, classification
error and uncertain rates will drop in a typical, mostly
benign, environment.

Despite covering half of the possible voting score
range (using a 50% mutual agreement threshold), the
uncertain result occurs relatively infrequently in prac-
tice because the bulk of the scores reside at the ends of
the spectrum. Removing the observations with high en-
semble classifier disagreement allows the classification
error to drop dramatically. Mutual agreement analysis
permits a higher degree of confidence in the outcome of
a classifier without additional external information.

Table 5: Count of documents by PDFrate prediction for
each Mimicus evasion attack.

Benign Malicious
Scenario Uncertain
Baseline Attack 0 0 0 100
F mimicry 2 70 26 2
FC mimicry 7 78 15 0
FT mimicry 10 64 26 0
FTC mimicry 33 62 5 0
F gdkde 7 92 1 0
FT gdkde 4 95 0 1
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Figure 4: Score Distribution for F Mimicry Attack.

8 Evaluation on Mimicus Attacks

To demonstrate the utility of mutual agreement analy-
sis in identifying observations that evade detection, we
reproduced the work of Šrndić and Laskov and applied
mutual agreement analysis to these evasion attempts.
We used the Mimicus framework to generate PDF docu-
ments that implement various evasion attack scenarios.
We used the same data sets as the Šrndić and Laskov
publication and submitted the resulting documents to
pdfrate.com to obtain scores. Because we use the same
attack data, our results are based on 100 samples per
attack type. We were able to achieve results that closely
mirrored those documented in the Mimicus study.

We present the results of classification using mutual
agreement from the various attack scenarios in Table 5.
Note that since all these documents are malicious, the
correct classification is malicious. A rating of benign
indicates successful evasion.

The distribution of PDFrate voting scores for the doc-
uments in each non-GD-KDE scenario is demonstrated
in Figures 4 through 7. The GD-KDE attacks will be
addressed specifically in Section 11.

In reproducing these results, some noteworthy obser-
vations are reaffirmed. First, knowledge of the target
learning based detector’s features (F), training data (T),
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Figure 5: Score Distribution for FT Mimicry Attack.
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Figure 6: Score Distribution for FC Mimicry Attack.

and classifier (C) are ranked. For an attacker, knowledge
of the feature set is foundational and the most impor-
tant when launching an evasion attack. Knowledge of
the training set is next, and knowledge of the classifier
follows closely. When combined, knowledge of all three
components of the detector push many of the observa-
tions from the outcome of uncertain into a the domain
of true evasion. Without knowledge of all three compo-
nents, the vast majority of evasion attempts fall into the
region of classifier disagreement.

Direct evasion attacks of this type are only possible
with a good deal of knowledge of the classifier. If the
details of the malware detector are kept secret, then eva-
sion is much more difficult. However, if a detection
system is to be deployed widely, attacker knowledge
of the system is assumed. Of the three parts of a clas-
sifier based detector, it seems that the training data is
the most likely to be customized on a per deployment
basis. Many deployments will want to customize the
training to match the samples seen in that environment.
Also, the training data should be updated over time to
account for natural drift. It is also feasible that the exact
composition of a given deployment’s training set could
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Figure 7: Score Distribution for FTC Mimicry Attack.

be kept secret from attackers. Indeed, pdfrate.com has
multiple detectors using the same features and classifier
parameters, but using different trainings sets.

In addition to evaluation against the Contagio dataset,
the mimicry attack data was tested against classifiers
trained with the University dataset. Throughout our
study the University classifier was shown to be superior.
Figure 8 shows the distribution of scores from applying
the FTC attack scenario data to the University classifier.
This results in what is an alternate FC attack scenario
because the training set is unknown to the attacker. The
results are very similar between the two classifiers. In
both cases only 7 of the 100 evasion attempts are classi-
fied as benign. Carefully comparing Figure 6 and Fig-
ure 8 yields the observation that the University classifier
provides a tighter cluster of scores near the center of
the disagreement region. The results from the Contagio
classifier are similar to that of the University classifier be-
cause the Mimicus evasion attempts use Contagio data
for both baseline benign and attack data.

When at least one attribute of the detector is kept
from the attacker, then most of the Mimicus evasion at-
tempts fall within the disagreement region. This means
that most of the evasion attempts are flagged as observa-
tions for which the classifier provides an uncertain result.
Hence, if mutual agreement analysis is performed, then
only a small fraction of the evasion attempts, 7% for the
FC scenario, are succesful.

9 Reverse Mimicry Evaluation

We also applied mutual agreement analysis to the Re-
verse Mimicry attack proposed by Maiorca et al. Since
the exact procedures required to reproduce these attacks
are not known, we located the submissions made to
pdfrate.com matching the description of these attacks
for our evaluation. We are fairly confident that we were
able to locate the Maiorca et al. submissions based on
both the description of the attacks and analysis of server
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Figure 8: Score Distribution for FC Mimicry Attack us-
ing University classier.

Table 6: Average PDFrate score from original Maiorca
et al. publication and PDFrate submissions for each
Evasion Attack using the Contagio classifier

EXEembed PDFembed JSinject
Maiorca et
al. Paper

7.1% 0.8% 14.8%

PDFrate
Subset

17.0% 3.3% 31.4%

All
PDFrate

17.0% 3.0% 31.6%

logs which showed an abnormally large number of PDF
submissions from a single Internet address associated
with their research institution.

Surprisingly, commodity AV signatures were quite
useful in locating and separating these samples. The
vast majority of the EXEembed samples are detected
by Kasperky AV as “HEUR:Backdoor.Win32.Generic”.
The PDFembed and JSinject samples are both detected
as “Exploit.JS.Pdfka.fbg” but are differentiated by the
existence of the exact same PDF file embedded in the
PDFembed samples. In all, we were able to locate about
400-500 unique samples of each attack type. To remain
consistent with the Mimicus attack evaluation, we took
a 100 sample random subset of each evasion attack for
our evaluation.

While we were able to reproduce the qualitative re-
sults of Maiorca et al, we did have some variance in re-
sults. Table 6 shows our results compared to the Maiorca
et al. publication for the Contagio classifier. We were not
able to determine the exact cause of this variance. Never-
theless, the results are qualitatively very similar. PDFrate
is effectively evaded if a traditional 50% score is used for
the benign/malicious threshold. PDFrate is most effec-
tively evaded by the PDFembed attack followed by the
EXEembed and JSinject attacks. The University classifier
was re-trained following the Maiorca et al. submissions.

Table 7: Count of documents by PDFrate prediction for
each Reverse Mimicry evasion attack.

Contagio Classifier
Benign Malicious

Scenario Uncertain
EXEembed 77 22 1 0
PDFembed 93 7 0 0
JSinject 30 67 3 0
total 200 96 4 0

University Classifier
Benign Malicious

Scenario Uncertain
EXEembed 0 4 16 80
PDFembed 81 19 0 0
JSinject 0 22 55 23
total 81 45 71 103

We used the newer version of the University classifier
for our study so our results are not directly comparable
with the University classifier results reported in their
publication.

In Table 7 we present the results of applying mu-
tual agreement analysis to the Reverse Mimicry attacks
against both the Contagio and University classifiers.
Here the University classifier demonstrates that it is
much superior to the Contagio classifier. 67% of the
Reverse Mimicry attacks are successful evasions (con-
sidered benign) against the Contagio classifier in spite
of mutual agreement analysis. The University classifier
fares much better, only being evaded by the PDFembed
scenario.

The only complete evasions against the University
classifier are achieved by the PDFembed attack. This
attack is so successful because a complete malicious
PDF is embedded in an otherwise benign document.
This embedded document resides in a compressed data
stream, which means that the structural features cannot
be observed by PDFrate’s feature extractor. This is in
contrast to the other scenarios, EXEembed and JSinject,
where despite efforts at minimization, some indicators
of malfeasance are exposed.

To remedy the feature extractor evasion due to com-
pression, these streams could be decompressed prior to
analysis by PDFrate. However, this stream decompres-
sion is not useful for PDFrate style detections except in
the case that the PDF document acts as a container for
an embedded attack. Another, more direct approach to
dealing with the embedded PDF document is simply to
extract it and analyze it separately. Decompressing these
objects is done by all PDF readers and some utilities
allow these embedded objects to be exported. Indeed,
many malware analysis and detection systems extract
and perform analysis of PDF stream data [5, 1, 3]. This
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paradigm of embedded object extraction is not impor-
tant solely for PDFs in PDFs, but for other file formats
embedded inside PDFs or PDFs embedded in other file
formats and containers. PDFrate will be equally inef-
fective at detecting a PDF embedded in an email, zip
archive, or Word document if not extracted. We retrieved
the embedded PDF using pdf-parser [50], but many PDF
utilities can perform this operation. In all the PDFem-
bed attacks, the embedded document was identical. The
Contagio and University classifiers both easily detect
this document with high confidence once it is extracted,
returning scores of 97.6% and 100% respectively.

In the Reverse Mimicry evasion attempts, classifier
internal mutual agreement analysis is able to label many
of the otherwise false negatives as uncertain, prevent-
ing full evasion. However, in the case of the Contagio
classifier, which is poorly suited to detecting these at-
tacks, full evasion, or labeling a malicious sample as
benign, is possible. This indicates that there is indeed a
limit to which measuring mutual agreement can help an
ineffective classifier.

When the stronger University classifier is used, mu-
tual agreement flags most of the evasion attempts that
would otherwise be successful. Furthermore, when the
embedded PDF is addressed through extraction, and
therefore detected, no evasion attempts are successful.

10 Mutual Agreement Threshold
Tuning

For all of our evaluations, we used a 50% mutual agree-
ment threshold, which splits the classifier voting score
region into four equal sized quadrants. We also studied
the impact of adjusting this threshold on our evaluation
data. In Table 8 we present the University classifier out-
comes applied to the VirusTotal and the FC Mimicus
attacks.

The exact mutual agreement threshold chosen strikes
a balance between improvement in classification error
and the number of classifier predictions thrown out as
uncertain. Operators who wish to have a lower amount
of uncertain outcomes may choose a lower threshold.
For example, if 30% is selected as a threshold, the uncer-
tain region comprises ensemble classifier voting scores
between 35 and 65% instead of 25 and 75% with a 50%
threshold. The number of uncertain outcomes drops
from 3.68% to 1.88% with the misclassification rates ris-
ing accordingly. The number of successful evasion at-
tempts rises from 7% to 12%. The optimal setting for
this threshold depends on the preferences of the opera-
tor. The sensitivity of uncertain detection is adjusted by
tuning the mutual agreement threshold.

Table 8: University classifier performance as mutual
agreement threshold is adjusted.

VirusTotal Data
Threshold FPR FNR UR
0% 0.22% 3.57% 0.0%
10% 0.17% 3.32% 0.50%
20% 0.13% 3.03% 0.92%
30% 0.13% 2.13% 1.88%
40% 0.12% 1.78% 2.73%
50% 0.08% 1.58% 3.68%
60% 0.05% 1.25% 5.20%
70% 0.03% 1.03% 10.8%
80% 0.02% 0.75% 22.6%
90% 0.02% 0.32% 31.0%
100% 0.0% 0.05% 54.2%

Mimicus FC Attack
Mutual Uncertain
Agreement Score
Threshold Region FNR UR
0% - 84% 0%
10% (45,55%) 69% 23%
20% (40,60%) 31% 65%
30% (35,65%) 12% 84%
40% (30,70%) 7% 92%
50% (25,75%) 7% 92%
60% (20,80%) 7% 93%
70% (15,85%) 6% 94%
80% (10,90%) 0% 100%
90% (5,95%) 0% 100%
100% (0,100%) 0% 100%

11 SVM Counter-Evasion

In addition to demonstrating evasion against PDFrate,
the Mimicus attack framework implements a Gradient
Descent and Kernel Density Estimation attack against
the classifier. This attack operates by exploiting the
known decision boundary of a differentiable classi-
fier [11].

We reproduced the GD-KDE evasion attacks of Mimi-
cus and confirm that they are indeed extremely effective.
Using the e1071 package of R [4] which relies on lib-
SVM [13] we calculated the average SVM probability
of 8.9% malicious (or 91.1% benign) for both GD-KDE
scenarios, putting these attacks squarely within the eva-
sion region. Šrndić and Laskov use the scaled distance
from the SVM decision boundary to provide the same
qualitative result. The GD-KDE attacks demonstrate that
introspection of a single classifier such as SVM cannot
be relied upon to detect evasions.

While effective against an SVM classifier, the results
on PDFrate’s RandomForest classifier using the GD-KDE
attack are roughly comparable to the conventional coun-
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Table 9: Number of documents per GD-KDE attack
where Ensemble SVM classifier provides correct predic-
tion as fraction of Features used in bagging is varied.

Feature Subset
Attack 5% 7.5% 10% 12.5%

Baseline Malicious 100 99 98 98
Baseline Benign 2 41 93 94

F gdkde 100 100 99 5
FT gdkde 99 100 92 1

Table 10: Number of documents per GD-KDE attack
where Ensemble SVM classifier provides correct pre-
diction as fraction of Training Data used in bagging is
varied.

Training Data Subset
Attack 12.5% 25% 50% 100%

Baseline Malicious 86 87 92 98
Baseline Benign 100 100 100 100

F gdkde 0 0 0 0
FT gdkde 0 0 0 0

terparts (see Table 5). It is is not practical to wage a sim-
ilar type of attack against RandomForests because the
RandomForests has an extremely complex and stochastic
decision boundary.

We sought to determine the extent to which we could
make an SVM classifier more evasion resistant by en-
abling mutual agreement based uncertainty detection.
We implemented a simple SVM based ensemble classi-
fier using 100 independent SVM classifiers with the score
being the simple sum of the votes of individual classi-
fiers. To determine the attributes important to building
subordinate classifiers useful for mutual agreement anal-
ysis, we varied the subset of features and training data
used in constructing each of the individual SVMs. We
performed a full grid search, but the most salient results
are reported in Table 9 which shows feature bagging and
Table 10 which shows bagging on training data. These
tables demonstrate the portion of classifier outcomes
that match the correct result (desired result for evasion
attempts is malicious or uncertain). The application of
random bagging to the many independent SVMs makes
a GD-KDE style attack infeasible as there is no longer a
single predictable decision boundary to attack.

It appears that bagging of training data is not particu-
larly important in building an ensemble classifier where
mutual agreement analysis is useful. To our amazement,
we found no situation where anything but the full train-
ing set provided the best results. However, bagging
of features is critical to constructing a classifier where
mutual agreement analysis is able to identify uncertain
predictions. It seems that the individual classifiers based
on subsets of the complete feature set are much harder
to evade collectively than a single classifier using all

Table 11: Count of documents by PDFrate prediction
using optimal SVM ensemble classifier for each GD-KDE
evasion attack.

Benign Malicious
Attack Uncertain
Baseline Malicious 0 0 2 98
Baseline Benign 93 7 0 0
F gdkde 3 97 0 0
FT gdkde 8 91 1 0

the features. While a single classifier can be evaded by
successfully mimicking a subset of the features, it ap-
pears that a combination of multiple classifiers based
on a small number of features requires a more complete
mimicry across the full feature set.

The results also indicate that careful tuning of the por-
tion of features used in bagging is critical. There seems
to be a trade-off between the ability to correctly clas-
sify malicious observations (including evasion attempts)
by using fewer features in each classifier, and benign
observations by using more features. The use of fewer
features results in a more complex classifier with smaller
divisions while more features moves closer to standard
SVM which has a single hyperplane divider. This result
might be explained by suggesting that the features used
in PDFrate provide better extrapolation for benign sam-
ples but that malicious samples have higher variation
in PDFrate’s features requiring more similar training
samples for successful classification. This explanation is
consistent with the results in Section 7 where PDFrate
fared better on the benign samples over time.

Table 11 shows the outcomes of the optimal SVM en-
semble classifier applied to the GD-KDE attacks and
baseline benign and malicious samples. The result is that
while the evasion attempts are successful in dropping
the scores out of the malicious range, the vast majority
of the evasion attempts fall in the uncertain range. Only
8% of the evasion attempts are fully successful in the
best scenario while only 4.5% of the known data is in
the uncertain region. These results are comparable to re-
sults obtained using PDFrate’s Random Forest classifier
where GD-KDE attacks are not possible.

12 Discussion and Future Work

Mutual agreement analysis provides a method to iden-
tify when a learning based detector is providing poor
results, whether the cause is poor feature selection or
inadequate training. Indeed, mutual agreement analysis
can detect many evasion attempts using only classifier in-
trospection. This ability to detect evasion is not absolute,
however, and is limited by the quality of the base clas-
sifier. Mutual agreement analysis makes evasion more
difficult, requiring mimicry across a greater portion of
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the feature set, but it is still possible.

Despite limitations, mutual agreement analysis was
shown to make PDFrate able to detect most misclassi-
fications in practice, whether caused by drift or direct
evasion attempts. The addition of the uncertain out-
come allows operators to know when their classifier is
performing poorly, and to take action if desired. This
should give operators confidence to deploy machine
learning based detectors even when many aspects of the
system are publicly known. As was shown in Section 8,
local customization of the training data may be enough
for an otherwise public detection system to be resilient
against targeted evasion attempts. It might be advisable
for operational systems to hide the exact scores returned
from their classifiers as these scores assist attackers in
knowing if changes they make hurt or help their evasion
attempts. This information could weaken the benefit
provided by a secret training set [22].

We can detect evasion, but we cannot fully prevent
evasion, nor determine ground truth of uncertain ob-
servations. In most cases, a result of uncertain would
require additional analysis and would result in either
updates to the classifier or reliance on other detection
methods. Since the uncertain results represent a small
portion of the total observations, mutual agreement anal-
ysis may serve as a selector for expensive manual or
automated analysis not practical on the larger data set.

Mutual agreement analysis is useful in evaluating ma-
chine learning detectors. A concise metric is the Uncer-
tain Rate, or portion of observations for which a classifier
is poorly suited to provide a prediction. The effective-
ness of analysis using the mutual agreement score distri-
bution and variance could be studied in the future. The
classifier score distributions shown in Figure 2 and Fig-
ure 3 seem to indicate that regression could be used to
predict the amount of successful evasions. The difficulty
in this type of analysis, however, is separating the arcs
for the benign and malicious data when external ground
truth is not provided.

We found that feature bagging is the most important
factor enabling mutual agreement based evasion detec-
tion. Our study also confirms previous findings that a
large number of features may make evasion more diffi-
cult even if classification rates are not improved. Also,
interrelated features may be helpful in preventing direct
evasion by making construction of a malicious docu-
ment that matches a target feature vector more difficult.
Mutual agreement analysis should be applicable to any
ensemble classifier. As we were able to convert SVM into
an ensemble classifier supporting mutual agreement, so
too should any classifier be able to be adapted to per-
form mutual agreement as long as feature bagging is
possible.

13 Conclusions

We introduced a new technique to detect malware classi-
fier performance degradation. To that end, we employ
ensemble classifier mutual agreement analysis to evalu-
ate the quality of classification rates by determining the
samples on which the ensemble classifier prediction is
unreliable. We applied our approach on 12,000 VirusTo-
tal submissions, where we show that mutual agreement
analysis improves the PDFrate false positive rate from
.22% to .08% and the false negative rate from 3.57% to
1.58% by labeling 3.68% of the input samples as uncer-
tain. In both the Mimicus and Reverse Mimicry evasion
attacks, the majority of the evasion attacks are assigned
the outcome of uncertain. While mimicry attacks are
still possible, they must be much higher fidelity to be
successful.

We believe that mutual agreement analysis can be ap-
plied generally. We show that even single classifiers
can achieve mutual agreement based evasion detection
through construction of an ensemble classifier using fea-
ture bagging. The Gradient Descent and Kernel Density
Estimation employed with great success against Support
Vector Machines is foiled by this approach. Ensemble
classifier mutual agreement analysis provides a critical
mechanism to evaluate the accuracy of machine learning
based detectors without using external validation.
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