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Abstract

Hundreds of papers on job scheduling for distributed
systems are published every year and it becomes increas-
ingly difficult to classify them. Our analysis revealed
that half of these papers are barely cited. This techni-
cal report presents a general taxonomy for scheduling
problems and solutions in distributed systems. This tax-
onomy was used to classify and make publicly available
the classification of 100 scheduling problems and their
solutions. These 100 problems were further clustered
into eight groups based on the features of the taxon-
omy. The proposed taxonomy will facilitate researchers
to build on prior art, increase new research visibility, and
minimize redundant effort.

1 Introduction

In the last decade, cluster computing emerged as the
main platform for high performance, grid, and cloud
computing. Together, these three different, yet very sim-
ilar platforms, emerged as important sources of comput-
ing power. They all consist of distributed computers (or
nodes) connected through high speed networks.

Scheduling parallel jobs in distributed systems is an
NP-hard problem that has been attracting the atten-
tion of researchers for decades. Thousands of solutions
have been published; however, these solutions deal with
slightly different versions of a scheduling problem. In-
deed, there are many knobs that may be tuned in order
to clearly specify a scheduling problem of this nature.
To the best of our knowledge these knobs have not been
defined for general scheduling problems. In 1995, a very
important research in the area indicated the need for the
proper definition of scheduling problems:

At the very minimum, we wish that all papers
about job schedulers, either real or paper de-
sign, make clear their assumptions about the

workload, the permissible actions allowed by
the system, and the metric that is being opti-
mized. [1]

Unfortunately, twenty years later the situation has not
improved. So far, the many knobs needed to define a
scheduling problem have been tuned on an ad hoc in-
dividual basis. It is time for change. While hundreds
of papers on scheduling are published every year, it be-
comes increasingly difficult to easily identify scheduling
problems and classify new scheduling solutions. To the
best of our knowledge, a general taxonomy to define
job scheduling problems and solutions in distributed
systems does not exist. This technical report aims at
shedding light on this unstructured scenario by defining
a general taxonomy of scheduling problems and solu-
tions in distributed environments.

Early seminal work aimed at defining taxonomies to
classify scheduling problems and solutions exist. An
important work written in 1988 defines a taxonomy for
distributed job scheduling solutions [2]. Another inspir-
ing work defines a language to define general scheduling
problems [3]. In spite of the inspiring nature of these
seminal propositions, a general taxonomy that takes into
account the new generation of distributed systems and
scheduling solutions is required. It is time to think about
the properties that describe scheduling problems and
solutions considering the current scenario.

More recently, some researchers became concerned
again with this problem. They have defined taxonomies
for specific types of distributed platforms. However,
none try to cover a distributed system in general, as we
argue is the most appropriate solution. The authors of [4]
define a taxonomy of scheduling problems in grid com-
puting platforms. Smanchat and Viriyapant [5] extend
and complement the grid taxonomy in order to define
a new taxonomy of scheduling problems in cloud com-
puting. These taxonomies overlap in some aspects, es-
pecially those describing workload and solution, and at
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the same time, they are over-fitting models, not general
enough to be applied to any kind of distributed platform
known today. They consider properties that represent
very specific details of each resource platform. For ex-
ample, the grid taxonomy [4] only considers scheduling
problems that target multi-criteria decision analysis in-
volving cost. This excludes many scheduling problems
in which cost is not considered or in which the schedul-
ing goal considers one criterion, like minimization of
makespan, that is historically the most popular schedul-
ing criteria. Some properties are highly coupled with
grid environments such as the cost model flexibility, and
intra and interdependence among scheduling criteria.
The taxonomies of workflow scheduling techniques in
the cloud assume that resources are virtual machines,
which is not true for all distributed platforms, even for
the cloud 1. Some properties of the cloud taxonomy
are highly coupled with traditional cloud environments,
such as VM startup latency and provisioning model (on-
demand, reservation or spot).

It is also important to point out that the taxonomies
mentioned above fail to consider some properties that
are important to clearly define scheduling problems and
solutions. For instance, they do not define workload
composition in a complete fashion, neither resource shar-
ing or scaling. They also do not consider important
requirements such as data locality and failure model. Fi-
nally, they do not include properties that characterize the
quality of service required by the workload. We argue
that these and other features must be considered.

We concluded that prior work in scheduling tax-
onomies is not sufficiently generic or complete enough
for classifying scheduling problems and solutions in
distributed platforms. They either focus on specific re-
sources categories and not distributed resources in gen-
eral. We argue that a unified taxonomy is possible and,
in fact, needed, in opposition to many specific overlap-
ping taxonomies for each different type of distributed
platform. As a matter of fact, there are more common
features among these platforms than specific ones. More-
over, it is increasingly common to consider hybrid in-
frastructures, in which in-house resources are comple-
mented with resources from the cloud or grid platforms.
A unified taxonomy would cover all these cases. Finally
and most importantly, it is easier to maintain a single tax-
onomy over the years than to maintain many different,
overlapping ones.

For these reasons, we have defined our own taxonomy
to help classify existing (and future) scheduling prob-
lems and solutions. The taxonomy targets the schedul-
ing of parallel jobs in distributed systems. The solution
is clearly meaningless without the associated problem.

1Indeed, Metal as a Service (MaaS) has recently arisen as a new
cloud computing model in which virtualization is not used be-
cause the cloud user wants to deploy directly onto bare metal for
optimum performance. OpenStack, for instance, a popular open
source cloud platform is already considering this new model (see
https://wiki.openstack.org/wiki/Ironic).

The problem, however, can be useful alone for compar-
ison reasons. So, we organize the taxonomy in such
a way that the problem and the solution can be easily
separated. We propose the use of the taxonomy to (i)
instantiate different scheduling problems and (ii) classify
different scheduling solutions. The proposed taxonomy
is built upon existing work surveyed in Section 7.

The contributions of this technical report are four-fold:

1. A comprehensive taxonomy for classifying schedul-
ing problems and solutions. This taxonomy allows
a researcher to define what is claimed, i.e., which
portion of the scheduling problem space is being ad-
dressed and to define the properties of the schedul-
ing solution in a comprehensible fashion. This tax-
onomy provides a snapshot of the state-of-the-art
of parallel job scheduling in distributed systems;

2. An analysis of the impact of a subset of 1050 pa-
pers related to parallel job scheduling in distributed
systems from 2005 to 2015 (May, 1st);

3. A classification, using the taxonomy, of scheduling
problems and solutions of the top-100 papers in the
area, considering the number of citations per year.

4. An online scheduling archive, collaboratively con-
structed, in which classified scheduling problems
and solutions may be found and others may be
added.

We found that almost 22% of the papers related to
parallel job scheduling in distributed systems are never
cited. A Pareto behavior is somehow seen: 12% of the
papers in the area are responsible for 64% of all citations.
40% of the papers are cited at most twice in their entire
life. More than half of the papers are not cited more
than four times in their entire life. This is a sad indica-
tion that we are still crawling towards a real scientific
methodology. We hope that by classifying the papers
using well-known taxonomies, researchers will be able
to clearly indicate what kinds of problems and solutions
they are claiming. As a consequence, the classification
will allow new research to be built on top of the prior art
and it will be easier to know the state-of-the-art regard-
ing specific instantiations of scheduling problems.

Richard Hamming, in 1968, figured out what is the
central problem of Computer Science during his Turning
Award Lecture:

Perhaps the central problem we face in all of
computer science is how we are to get to the
situation where we build on top of the work of
others rather than redoing so much of it in a
trivially different way. Science is supposed to
be cumulative, not almost endless duplication
of the same kind of things. [6]

It is our belief that building an adequate taxonomy
constitutes a first step towards the direction pointed
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by Hamming. Without proper mechanisms to classify
work we are doomed to ignore what others have done.
Many other steps are still necessary. In particular, the
discipline to use the taxonomies from now on and the
need to maintain the taxonomies up-to-date.

An important action in this regard is to maintain an
archive of scheduling problems and solutions based on
the taxonomies. For that purpose, we created a web
site, the DSS Archive (Distributed Systems Scheduling)2.
We initially populated the site with the classification of
100 problems. The idea is to collaboratively increase
the number of papers cataloged. The site offers two
other services: (i) search for research papers that tackle
a specific scheduling problem and (ii) find the distance
between two scheduling problems.

The rest of this report is organized as follows. Sec-
tion 2 presents a background on scheduling theory and
a high-level definition of what is a scheduling problem.
Section 3 introduces a taxonomy for scheduling in dis-
tributed systems that contemplates both problems and
solutions. Section 4 summarizes the research method
and underlying review protocol while leaving the de-
tails to Appendix A. This review protocol was used to
collect 1050 papers related to scheduling parallel jobs in
distributed systems. The next section presents overall
statistics about these papers including popularity and
number of papers published per year during the last
decade. The taxonomy was used to classify one hun-
dred scheduling problems and respective solutions. The
results are summarized in Section 6; a list of these 100
problems can be found in Appendix B. Related work is
discussed in Section 7. The report concludes in Section 8
with a set of recommendations for future research on
scheduling in distributed systems.

2 Background on Scheduling The-
ory

This section provides a conceptual model of scheduling
problems and solutions in distributed computer systems.
Some definitions in this section are based on previous
work [7, 8]. We assume the reader is generally familiar
with scheduling. We do not consider in this report single-
node scheduling problems, which have been thoroughly
investigated in the field of operating systems.

Scheduling is the assignment of resources to consumers in
time. In general, every instance of a scheduling problem
must clearly specify three components:

• Workload: The workload defines the consumers of
the resources. In the context of this report a work-
load is composed of jobs, defined as a collection
of computational tasks. Thus, a job j has nj tasks

T j
1, . . . , T j

nj .

2bit.ly/dssarchive

• Resources: Resources, required to execute the work-
load, consist of a set of distributed nodes or comput-
ers, with one or more processing cores, connected by
a, typically high-speed, network. These resources
may be organized in computing clusters in a local
environment or in widely distributed and scalable
data centers [9]. Resources are assumed to be able
to execute any type of computational task and con-
sist of whole computing units, with main memory,
storage devices and access to networks. We assume
that nodes can only communicate by exchanging
messages through the network.

• Requirements: The scheduling requirements deter-
mine the scheduling goal and other requirements
that must be met by the solution. Typically, the
scheduling goal is to optimize one or a combination
of performance metrics related to the scheduling de-
cisions. Another important scheduling requirement
is the scheduling level. It determines the granular-
ity or the level of detail considered when making
a scheduling decision. We consider two levels of
scheduling decisions: job and task3.

In practice, the scheduling activity involves dynamic
components. Both workload and resources may vary
with time. In order to model these dynamic aspects, we
consider T ⊆ R+ to denote the set of time instants of
interest, which may be discrete or continuous. At any
time t ∈ T the workload is composed by a set Wt of
jobs. At any time t ∈ T the resources are composed by a
set Rt of interconnected computing nodes. The set Rt
may change with time because resources may fail, may
become unavailable for maintenance, or new resources
may become available. Nevertheless, there are static
properties of the workload and/or resources that do not
change over time.

LetW andR represent the static aspects of the work-
load and resources respectively; they are properly dis-
cussed in the next section. Let Q be the set of schedul-
ing requirements that must be satisfied, including the
scheduling goal pursued. We define a scheduling prob-
lem SP as a tuple (W ,R,Q). A scheduling problem
may be stated as the following optimization problem.

Optimize Q.goal
Subject to

Static features ofW
Static features ofR
Requirements inQ

A scheduling solution SS must always be associated
with a given scheduling problem. There may be more

3Each task consists of one or more (lightweight) processes that must
be scheduled at the computing node assigned to run the task. This
constitutes a third level of scheduling, i.e., process level. Process level
scheduling is related to the processes and threads execution at the
operating system level and is outside the scope of this report.
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than one solution to the same scheduling problem. These
solutions may be compared in terms of their perfor-
mance in solving the problem.

3 Taxonomy of scheduling in dis-
tributed systems

The taxonomy proposed here is organized into two parts,
one that characterizes a scheduling problem and another
that characterizes a scheduling solution.

The part of the taxonomy related to the problem con-
sists of 17 static features that fall into three groups: work-
load (W), resources (R) and scheduling requirements
(Q). We summarize the possible values of each static
feature in Figure 1.

3.1 Workload description

Seven features characterize the static aspect of the work-
loadW .

1. W1 - Job source. Defines if jobs come from multiple
users or a single user and if the workload consists
of multiple-jobs or a single-job. Reasonable combina-
tions are: single user/single-job, single-user/multi-job
and multi-user/multi-job. When the workload comes
from many users, scheduling is often performed
from the provider standpoint.

2. W2 - Job structure. Defines the allowed number
of tasks per job and the dependency relations and
communication needs among the tasks. First, this
feature defines if jobs are multi-task or single-task.
For multi-task jobs, one has to determine the homo-
geneity of the tasks. Tasks are homogeneous when
they require similar resource demands and are het-
erogeneous otherwise. The many tasks of a job may
have precedence constraints and communication
needs to be satisfied, in which case they are depen-
dent. Dependency between tasks often brings to the
scheduling problem the challenge of data locality,
since data transfers may come at a cost. When there
are neither precedence relations among the tasks nor
communication needs, tasks are independent. Based
on this discussion, the job structure may be: single-
task, independent homogeneous multi-task, independent
heterogeneous multi-task, dependent homogeneous multi-
task or dependent heterogeneous multi-task. The trivial
case of a workload that is both single-job and single-
task is not interesting and is not considered in this
report.

3. W3 - Job flexibility. Rigid jobs require a fixed quantity
of resources and cannot execute on fewer or more
resources. This quantity is defined by the user at job
submission time. There are, however, other classes
of jobs: moldable, malleable and evolving jobs [10].

When a moldable job starts, some entity, possibly, a
scheduler, decides on the quantity of resources to
provide the job at submission time. This quantity
cannot be reconfigured during the job execution.
Malleable jobs are moldable jobs whose computing
requirements can change during execution by the
scheduler or other system entity. Finally, evolving
jobs are similar to malleable jobs, but the user is the
one who decides, on the fly, about the quantity of
resources to assign to the job.

4. W4 - Arrival process. Determines the set of jobs con-
sidered by the scheduler when making scheduling
decisions. In an open workload model, jobs come to
the system at any time and leave the system after be-
ing executed, i.e., the number of jobs in the system
is not constant. In a closed workload, the number of
jobs to be scheduled is fixed.

5. W5 - Workload composition. This feature is deter-
mined by the programming model, which drives the
kinds of relationships that must hold between the
tasks of a job. Some examples include embarrass-
ingly parallel jobs, in which all tasks are indepen-
dent from one another, and MapReduce jobs, in
which all map tasks must finish before the reduce
tasks start execution. A workload may be formed
by jobs that follow the same programming model
or may be heterogeneous. A workload that consists
of jobs of the same programming model may be
classified as:

• Same model/homogeneous, when jobs are similar
in terms of structure, number of tasks and in
terms of demands required;

• Same model/same structure, when jobs are simi-
lar in terms of structure, number of tasks but
differ in terms of demands required;

• Same model/diverse, when jobs use the same pro-
gramming model but are different in terms of
structure, number of tasks, and demands re-
quired. For instance, a workload that consists
of many different MapReduce jobs is consid-
ered diverse because the number of maps and
reduces differ among jobs as well as the de-
mands of each task.

Dependence relations and communication patterns
do not exist if jobs are single-task. As a consequence,
when the workload consists of multiple jobs of a
single-task, the workload composition must be same
model/homogeneous or same model/same structure.

6. W6 - Quality of service. Jobs that form the work-
load may be associated to service level agreements
(SLAs). When SLAs are violated penalties may be
imposed. These jobs are SLOs aware, since they re-
quire service level objectives (SLOs) to be met. Jobs
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Figure 1: Summary of static features related to a scheduling problem.
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that are not associated to SLAs are considered best
effort jobs.

7. W7 - Real time. The workload may consist of real
time jobs or non real time jobs. For the former case,
we distinguish between real time jobs with hard dead-
lines and soft deadlines. We also consider whether
tasks are periodic or non-periodic. When the work-
load is hard or soft real time, it is necessarily SLOs
aware.

3.2 Resource description

We identified five static features that characterize dis-
tributed resources.

1. R1 - Resource heterogeneity. Individual nodes that
form the cluster may be heterogeneous or homoge-
neous. Homogeneous clusters consist of similar
nodes in terms of processing power, storage, and
networking capabilities. Heterogeneous clusters are
made up of nodes with different computing powers,
in terms of processing, storage, or communication
speeds.

2. R2 - Resource scaling. The scheduler can see the
resources it can use as a fixed or dynamic infrastruc-
ture in terms of processing capacity. Some infras-
tructures allow rapid capacity changes in response
to variations in the workload. The total capacity of
a fixed-capacity resource platform does not vary in
the short term. On the other hand, some distributed
systems allow dynamic scaling. Three common situa-
tions lead to dynamically scalable infrastructures:

• Shutdown resources: some nodes are turned off
in order to save energy. This temporarily re-
duces the online capacity of the infrastructure.
But the total capacity is rapidly restored by
turning on the machines;

• Outsourcing: it is possible to rapidly acquire
resources from other resource providers, such
as infrastructure as a service (IaaS) providers
or grid peers;

• DVFS: Dynamic Voltage and Frequency Scal-
ing has been recently explored by schedulers
that target energy savings. Modern proces-
sors and disks may work in different voltage
or power modes with a corresponding perfor-
mance trade-off [11]. When the resource nodes
respond to dynamic voltage changes, they are
energy conserving and such responses change
the overall capacity of the infrastructure.

Dynamic resource scaling allows the scheduler to
consider a wide spectrum of operating points that
imply in different energy consumption and different
costs for running the infrastructure.

3. R3 - Sharing. Sharing determines how a job’s per-
formance may be influenced by other jobs. When
a job runs in a fully dedicated node, the job is iso-
lated and cannot influence the performance of other
jobs. Another possibility is to have each job running
on a dedicated virtual machine (VM) on top of a
physical node. Virtualization technology enables
resource sharing among different user processes
inside the same physical node with minimum in-
terference [12]. In the case of dedicated VMs, phys-
ical resources may still be shared among different
jobs running on other VMs on the same physical re-
source. It is also possible to have many jobs sharing
the same virtual machine. In this case, resources are
shared VMs. Another possibility is to use dedicated
containers that isolate processes from one another,
such as Linux control groups [13]. The fourth possi-
bility is to have resources shared without virtualiza-
tion or other technique, which we call OS sharing. In
this case, the tasks of different jobs run on the same
physical node coordinated by the operating system.
When the workload is single-job, there is only one
job running and, consequently, there is no resource
sharing among jobs. Thus, in this case, resources
are necessarily dedicated;

4. R4 - Geographical coverage. A cluster may be classi-
fied into local or wide depending on the geographi-
cally coverage of its nodes. The topology and band-
width connecting them is an important attribute for
wide-area clusters.

5. R5 - Federation. A federation is the union of several
smaller parts that perform a common action as in
grid computing [14, 15, 16]. Federated resources are
shared among different administrative domains in
a coordinated fashion. Different domains may not
only lead to different resources configurations, but
also impose different usage rules. Federation brings
new challenges to scheduling in terms of security,
geographical issues, and the opportunistic usage of
idle resources. When all the nodes are under the
control of the same entity, they are non-federated. A
federated cloud is an association of cloud providers
for the deployment and management of multiple
cloud computing services to match business needs.

3.3 Scheduling requirements

As discussed above, the solution of a scheduling prob-
lem requires that a set of requirements Q, listed below,
be satisfied.

1. Q1 - Scheduling goal. The goal of a scheduling solu-
tion is to maximize or minimize the value of a met-
ric of interest. Typical examples include minimize
makespan, maximize resource utilization, maximize
throughput, meet deadlines, and minimize energy
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consumption. Sometimes there may be a need to
optimize several, and often times conflicting, met-
rics. For example, users may want to minimize
individual job completion times while providers
may want to maximize resource utilization. Trade-
offs such as this are often dealt by means of utility
functions [17, 18], which allow for multi-criteria op-
timization.

2. Q2 - Scheduling level. Determines whether jobs
and/or tasks are being scheduled:

• Job-level only scheduling: decides which job
will run next. Jobs not selected to run may be
placed in a waiting queue or may be rejected
to be resubmitted.

• Task-level only scheduling: decides which task
of a given job will run and in which node;

• Job and task level scheduling: the solution con-
siders both job and task level scheduling deci-
sions.

Figure 2 illustrates the operation of the two schedul-
ing levels. First, submitted jobs are selected by an
admission controller, which is a job-level scheduler
that uses a scheduling policy PJ . This scheduler
determines the jobs that will gain access to the re-
sources next. The admitted jobs become the active
jobs or the active workload. The task-level sched-
uler sees only the active workload and assigns tasks
to resources according to a task-level policy PT .
Both job and task-level policies may be informed by
the state of resources in order to make better deci-
sions. These levels are not mutually exclusive and
may be used together.

3. Q3 - Data locality. Some scheduling policies consider
the effect of data locality, which can be classified
as: cluster affinity, rack affinity, node affinity and core
affinity. With no affinity, schedules are made inde-
pendently for each task of a job, regardless of data
transfer requirements. Cluster affinity is important
for clusters that cover a wide geographical area to
ensure that a task is executed by a node within a
subset of nodes that has most of the data and bi-
naries required to run the task (e.g., [19, 20]). With
rack affinity, the scheduler tries to schedule tasks
at processors in the rack where the input data is
stored (e.g., [21, 22]). Node affinity means that tasks
should run in any of the processor cores of a given
node (e.g., [23, 24]). Finally, with core affinity tasks
must be scheduled at a specific processor core to
benefit from cache state.

4. Q4 - Failure model. A scheduling solution may be
failure-aware or non failure-aware. In the first case,
the scheduling solution considers that a cluster’s
nominal capacity may change over time due to node
failures; thus, task reassignments may be required.

5. Q5 - Adaptability. A solution to a scheduling prob-
lem, given by the policies (PJ ,PT), is adaptable if at
least one of these policies is allowed to change in
response to variations in the workload or resources.

3.4 Similarity between two scheduling
problems

A well defined taxonomy for scheduling problems al-
lows us to systematically compute the similarity, and
consequently the dissimilarity, between two problems.
The similarity can be determined based on the values of
each static feature of two given problems and is defined
in the interval [0, 1]. Values near 1 indicate that the two
problems are very similar and values near 0 mean that
the two problems are very different. The similarity S1,2
between two problems SP1 and SP2 is defined through
the following simple matching coefficient:

S1,2 =
# matching features

# features

=
1

|W|+ |R|+ |Q|×(
∑

f∈W
sm1,2( f ) + ∑

f∈R
sm1,2( f ) + ∑

f∈Q
sm1,2( f )

)
where sm1,2( f ) is one if scheduling problems SP1

and SP2 share the same feature f and zero otherwise.
The sum of the cardinalities of W , R and Q indicates
the total number of features that describe a problem.
The dissimilarity between the two problems is given by
1− S1,2.

3.5 Features of scheduling solutions

According to [2], the scheduling solution SS is used
to efficiently and effectively manage the access to and
use of the set of resource by its various consumers. We
extend their ideas to define a taxonomy for scheduling
solutions in distributed systems. A scheduling solution
SS may be characterized according to:

1. S1 - Optimality. A scheduling solution may be opti-
mal or sub-optimal. Optimal solutions are achieved
through mathematical programming [22, 25]. Sub-
optimal solutions may apply different techniques
including mathematical programming (e.g., [26, 27]),
multi-agent systems (e.g., [28]), economic-based [29, 30]
and combinatorial search (e.g., [21, 23, 31]).

2. S2 - Operation. A scheduler may be online or of-
fline. An offline scheduler makes scheduling deci-
sions based on a complete knowledge of the entire
workload and infrastructure. On the other hand,
an online scheduler does not know the future and
scheduling decisions are made in response to events
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Figure 2: Components of scheduling process.

(e.g., job arrivals and departures, task completions,
and node failures).

3. S3 - Topology distribution. This feature character-
izes the location of the components that participate
in the scheduling decision making process. At a
high level, these components may be physically dis-
tributed or non-distributed. Distributed components
may be:

(a) Centralized or decentralized. The scheduling
solution is decentralized when more than one
component of the scheduler has the authority
to make scheduling decisions (e.g., [20, 32]).
Alternatively, when the authority to make
scheduling decisions is centralized in one com-
ponent, the scheduler is said to be centralized
(e.g., [21, 23, 33]).

(b) Regarding tasks assignments, physically dis-
tributed schedulers may apply the pull-based
model or the push-based model [34]. In the pull-
based model, resources pull tasks from a task
repository associated with the global scheduler.
In the push-based model, the global scheduler
pushes tasks towards the workers, depending
on the workers’ preferences and capacities.

There are, thus, five possibilities concerning topol-
ogy distribution: non distributed, distributed central-
ized pull-based, distributed centralized push-based, dis-
tributed decentralized pull-based and distributed decen-
tralized push-based.

4. S4 - Flexibility. A scheduler may be rigid or flexible.
Flexible schedulers accept schedule changes on the
fly and may be characterized by the following non
exclusive behaviors:

(a) Migratory: This property defines if the sched-
uler is migration aware or non migration-aware.

Migration-aware schedulers may migrate a
running task from one processor to other pro-
cessor. Non migration-aware schedulers do
not migrate running tasks;

(b) Preemptive: Tasks may be temporarily inter-
rupted and later resumed by preemptive sched-
ulers. Non-preemptive schedulers do not inter-
rupt tasks already running.

A rigid scheduler does not admit changes on the
schedule once tasks start to run. Thus, running tasks
may not migrate or be preempted. Therefore, re-
garding flexibility, a scheduler may be rigid, flexible
migratory-aware non-preemptive, flexible non migratory-
aware preemptive, flexible migratory-aware preemptive
or flexible non migratory-aware non-preemptive. The
latter case represents flexible solutions that use
other techniques different from migration and pre-
emption. It is reasonable to establish that offline
schedulers are necessarily rigid.

We summarize the static features of a scheduling solu-
tion SS in Figure 3.

4 Review Protocol

The following research questions served as the basis for
our analysis of parallel job scheduling in distributed
systems.

1. RQ1: How to define a scheduling problem in the
context of parallel job scheduling in distributed plat-
forms?

2. RQ2: How to classify scheduling solutions in the
context of parallel job scheduling in distributed plat-
forms?
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Figure 3: Summary of static features related to a scheduling solution.

3. RQ3: What are the most popular scheduling prob-
lems being investigated in the past ten years in the
context of parallel job scheduling in distributed plat-
forms?

4. RQ4: What are the most popular classes of schedul-
ing solutions proposed in the past ten years in the
context of parallel job scheduling in distributed plat-
forms?

The first two questions are answered by the taxonomy
proposed above. Questions RQ3 and RQ4 are answered
in Section 6. To answer these questions, we collected
papers about job scheduling in distributed systems. We
read these papers and classified their scheduling prob-
lems and solutions using the taxonomy proposed here.

The methodology we used to collect the papers fol-
lowed the general guidelines for performing system-
atic literature reviews in software engineering proposed
by the Software Engineering Group at University of
Keele [35]. The process includes the identification of
the research questions (presented above) and a review
protocol to be followed (see details on the protocol in
Appendix A).

The following sources were considered: ACM Digital
Library, IEEExplorer, ScienceDirect and SpringerLink.
We searched for papers whose titles contain terms that
satisfied the following criteria:

(scheduling ∨ schedule ∨ allocation ∨ scheduler) and
(cloud ∨ grid ∨ cluster ∨ “data center”) and (job ∨ appli-
cation ∨ DAG ∨MapReduce ∨ hadoop ∨ task ∨ work-
flow)

We also collected a second set of papers using the fol-
lowing search strategy: highly cited papers (i.e., more
than 8 citations per year since publication), obtained
from Google scholar 4, not found during the previous
search, and that satisfy the following relaxed search cri-
teria: (scheduling ∨ schedule ∨ allocation ∨ scheduler)

4https://scholar.google.com

and (cloud ∨ grid ∨ cluster ∨ “data center” ∨ job ∨
application ∨ DAG ∨ MapReduce ∨ hadoop ∨ task ∨
workflow). We call these papers the set of GS papers.

Papers to be collected must satisfy the above criteria
and must have been published from January 1st, 2005 to
May, 1st, 2015.

We manually collected 1, 050 papers, of which 52 are
GS papers as defined above. The data collection occurred
in two moments: April, 28th to May, 1st and June, 15th,
2015 5. The following information was gathered from
each paper: year of publication, title, authors, source of
publication, number of citations. Information regarding
number of citations was collected manually from Google
Scholar.

The average number of citations per year of each pa-
per (CPYpaper) is computed according to the following
formula. The numerator, NCpaper, is the total number
of citations received by the paper and the denominator,
YNC−Ypaper is an indication of the number of years since
publication estimated as the difference between the year
the number of citations was collected (i.e., 2015) and the
year the paper was published.

CPYpaper =
NCpaper

YNC −Ypaper
(1)

We sort all the papers in descending order of num-
ber of citations per year and read the most cited papers
in order to classify the scheduling problems and solu-
tions according to our taxonomy until 100 problems are
classified.

We recognize that the number of citations of a paper
is not constant throughout the years but the same metric
was applied to all papers. We treated all papers the
same with respect to Equation 1 regardless of the month

5At first, we have not considered the search term “workflow”, but
after reading some papers we realized that it would be very important
to include this word. Papers collected in June, 15th include this term.
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of their publication during the year even though we
recognize that this may cause some slight variability.

Another aspect worth considering in our survey pro-
tocol is our choice of keywords. This choice restricts us
to papers that explicitly match the search criteria in their
the titles. Of course, it is possible that some very rele-
vant papers were left out from this process. One such
example is the paper that presents the LATE scheduler
for MapReduce applications [36]. Although our search
criteria are very strict and may miss a few papers, it guar-
antees that the papers found are actually very relevant to
the topic. This is especially important for the automated
analysis we conducted and report in Section 5.

During the classification process of 100 problems we
analyzed the 123 most cited papers and 25% (i.e., 31
papers) of them were considered out of scope. Papers
considered out of scope were related to VM placement
or scheduling of parallel jobs in one multi-processor
computer; or they are reduced versions of other papers
that present the same problems/solutions. From these 31
papers that are out of scope, 18 papers were GS papers.
The error rate of the non GS papers is thus 16%. Since the
great majority of the 1, 050 papers satisfy all the search
criteria, we can consider that this is approximately the
error rate of the set of all papers analyzed.

5 General statistics on Scheduling
Papers

This section presents general statistics related to the set
of 1, 050 papers. Most of these papers are related to grid
scheduling, followed by papers related to cloud and
clusters as can be seen in the second column of Table 1.
The category indicated by “Unknown” in the table (and
all the figures that follow) represents GS papers whose
titles do not explicitly indicate the resource category
considered.

Table 1: Frequencies of resource categories
Resource cat-
egories

All papers Popular
papers

Top-7

Cloud 27.0% 30.5% 3
Cluster 17.1% 17.6% 2
Data center 1.6% 4.6% 1
Grid 50.9% 28.2% 0
Unknown 3.4% 19.1% 1

Figure 4 presents the resource categories of the papers
through the years. As the figure shows, the number
of papers published per year increases over time. In
fact, a regression analysis indicates a linear increase with
an adjusted R2 equal to 0.83. We predict with 95% of
confidence that the number of papers published with
titles that fit our search terms in 2015 is between 130 and
166. The increase in the number of papers reinforces the

Figure 4: Number of papers published through the years
and categories of resources.

Figure 5: Box-plots of citations grouped by resource
category.

importance of a well defined taxonomy to allow for new
research in scheduling to be built on top of the prior art.

An analysis of the figure and underlying data also
shows that the number of grid-related papers peaked in
2008 and started to decrease linearly with an adjusted
R2 of 0.86 (the 95% CI of the slope is [−19.0,−6.5]). The
number of grid papers in 2015 is comparatively very low.
The figure clearly demonstrates the emergence of the
cloud computing paradigm starting in 2009. Since then,
the number of papers related to clouds has increased
linearly with an adjusted R2 of 0.96 (the 95% CI of the
slope is [11.2, 19.0]). The rate of increase of cloud pa-
pers is greater than the overall increase rate of papers of
all resource categories. In fact, since 2013, the number
of papers related to scheduling in cloud environments
exceeds the number of papers related to scheduling in
all other distributed environments. We predict with
95% confidence that the number of papers published in
2015 related to scheduling in cloud computing will be
between 80 and 115.

We now analyze the popularity of job scheduling pa-
pers in distributed systems. The results are shown in
Fig. 5, which presents box-plots of the number of cita-
tions grouped by resources categories.

As expected, the largest average citation number is for
the “Unknown” category, which refer to GS papers. The
two most cited papers are both related to clusters, they
are the Hadoop Fair Scheduler [21] and Quincy [22]. It
is clear from the box-plots that, on average, the number
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Figure 6: Box-plots of citations per year grouped by year.

of citations each paper receives is very low. On average,
papers are not cited more than 5 times (median) in total.
21.5% of the papers have no citations at all. 9.15% of
the papers are cited once and 9.05% are cited twice. The
proportions of papers cited three, four and five times are
4.5%, 4.6% and 3.8%, respectively. Less than half of the
papers (47.4%) are cited more than five times and most
of the papers (52.6%) received at most five citations.

The number of papers that are rarely cited is increas-
ing over the years. Again, a regression analysis indicates
a linear increase with an adjusted R2 of 0.8. The slope
of this linear function is 9.7, on average greater than
the slope of the linear function that considers all the
papers (8.3). However, the 95% confidence intervals of
the slopes overlap6 and it is not possible to state with
95% confidence that one exceeds the other. However,
there is a clear trend that more and more papers will be
published and, among them, even more papers will be
barely cited.

Once more, this situation reinforces the need for a tax-
onomy so that researchers can easily identify, among
the huge number of scheduling papers, those that are
relevant to their specific research. Addressing this prob-
lem will improve the overall quality of the research in
the area and will increase the number of citations to
previously published papers.

Figure 6 depicts the popularity of papers according to
the number of citations computed by Equation (1).

On average, the rate of citations per year does not
exceed one (median), which means that half the papers
are cited at most once a year. More specifically, 21.5% of
the papers were never cited, 29.0% of them are cited at
most once per year, 15.2% of the papers were cited more
than once and at most twice per year, 8.5% of the papers
were cited more than twice and at most three times per
year, and 3.9% of the papers were cited more than three
times and at most four times per year. The remaining
21.9% of the papers were cited more than four times per
year.

6These intervals are [6.1, 13.3] for the less popular papers and
[5.4, 11.2] for all papers.

We performed a Kruskal Wallis Test, followed by pair-
wise Wilcoxon Rank Tests7 to determine if the number
of citations per year changes according to the year the
paper was published. We excluded papers from 2015
since we do not have a full year worth of papers. Our
analysis showed that the average number of citations
per year is statistically the same for all papers published
from 2005 to 2013. Additionally, we can say with 95%
of confidence that the papers published in 2014 have a
lower number of citations per year than those published
previously. We did a similar analysis excluding the most
popular papers and we obtained the same results.

Figures 5 and 6 show that some papers are outliers
being far more cited than the average. More precisely, we
considered a popular paper as an outlier whose number
of citations per year is greater than the third quartile plus
1.5× IQR where IQR is the interquartile range. That
implies that 131 papers are outliers (i.e., 12.5% of all
the papers). Together, these well-cited 131 papers are
responsible for 64.0% of all citations.

Figure 7 presents the number of popular papers pub-
lished throughout the years as well as the categories of
resources considered by these papers. It is not visually
clear anymore the decreasing number of grid papers and
the increasing number of cloud computing papers. The
proportion of papers for each resource category consid-
ered by the most popular papers is presented in the third
column of Table 1. Even among the most cited papers,
there are outliers. The average number of citations per
year for the top-7 cited papers exceeds 33.5. The fourth
column of Table 1 shows a breakdown of these papers
by resource category.

Figure 7: Number of popular papers published through
the years and categories of resources considered.

6 The top-100 scheduling problems
and solutions

This section presents features of 100 scheduling prob-
lems and solutions extracted from 92 papers that, among
the papers we collected, are the most cited per year

7We used these non-parametric versions of ANOVA and t-test be-
cause the data are not normally distributed.
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over the last ten years. These problems are listed in Ap-
pendix B. The taxonomy presented previously is used to
characterize the scheduling problems and solutions. Ta-
ble 2 presents the distribution of problems per resource
category. Together, computational grids and cloud com-
puting, both outsourced infrastructures, surpass cluster
environments in terms of number of problems studied
considering each category.

Table 2: Resource categories considered by the top-100
problems.

Resource category Number Frequency
Cluster 39 38.6%
Grid 33 32.7%
Cloud 29 28.7%

After classifying 100 scheduling problems we realized
that the period we considered is fortunately very rich in
four aspects because it includes:

1. key years regarding research related to scheduling
on computational grids, including the golden years
and the decreasing popularity of this resource cate-
gory;

2. the year in which MapReduce programming was
introduced and the subsequent surge in MapRe-
duce scheduling research (13% of the problems are
related to MapReduce jobs);

3. the advent of cloud computing, which unveiled new
scheduling problems on virtualized distributed in-
frastructures; and

4. the era of huge data centers and the increasing con-
cern to reduce their energy costs (this was addressed
by 16% of the problems).

Figure 8 shows the distribution of scheduling prob-
lems related to each resource category from 2005 to 2015.
The most productive period in terms of research impact
was from 2009 to 2012, which contribute with 60.4% of
the published problems classified. In terms of source,
35% of the problems were published by IEEE and 32%
by Elsevier. From these publishers, the journals that
contributed the most papers were Elsevier’s Future Gen-
eration Computer Systems Journal with 15% and IEEE
Transactions on Parallel and Distributed Systems with
5%.

We analyze now the most frequent values for each
feature. In general, most of the problems (71%) consider
workloads composed of multiple rigid jobs from multi-
ple users. The job arrival process may be closed or open;
there is no typical value. Workflow jobs (dependent het-
erogeneous multi-task) are the most typical types of jobs
appearing in 51% of the problems. The second most typ-
ical kind of job is single-task (20%), followed by bags of

Figure 8: Distribution of top100 scheduling problems
through the years and categories of resources consid-
ered.

tasks jobs (independent heterogeneous multi-task) (14%).
Regarding the composition of the workload, three values
are more common, but no typical value covers the ma-
jority of the problems: heterogeneous jobs (38%), same
model/diverse (36%) and same model/same structure
(25%). A vast majority (82%) of the problems do not re-
quire service level guarantees and 95% of the problems
have a non real time workload.

Heterogeneous resources are considered by 76% of the
problems. Indeed, heterogeneity is usually considered in
both resources and workloads, which makes scheduling
problems more challenging. Regarding resource scal-
ing, outsourcing appears in 52% of the problems (those
related to grids and cloud) and 35% of the problems con-
sider a static set of resources. The resources are typically
dedicated to a given job (34%) or VMs are dedicated
to run the jobs (49%). There is no consensus about the
geographical coverage of the resources; they are local
in 55% of the problems. Non-federated environments
are more common and appear in 65% of the problems.
Data locality is not a requirement in 79% of the prob-
lems and 76% of them are non failure aware. Regarding
the scheduling goal, makespan is still the most impor-
tant scheduling criterion: 60% of the problems minimize
makespan and possibly other metrics of interest. Finally,
almost all problems do not require adaptable scheduling
solutions but do require job and task level scheduling.

Regarding the solutions, there is no much varia-
tion among the groups. Only four solutions are opti-
mum [22, 25, 37, 38]. Most of the solutions (85%) use a
combinatorial search method to find sub-optimal sched-
ules. A wide variety of optimization techniques and dif-
ferent new heuristics are applied in general. Biologically
inspired methods are very often used, such as particle
swarm [39, 40], ant colony optimization [41, 42] as well
as improvements on traditional algorithms such as List
based scheduling [43, 44] or min-min/min-max [41, 33,
19]. Genetic algorithms are also common [45, 46, 47].
Some other sub-optimal solutions are found by means
of mathematical programming [30, 20, 48] or multi-
agent systems [49, 40]. Finally others use both math-
ematical programming and combinatorial search solu-
tions [50, 26, 27]. A very large number (79%) of the solu-
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tions are online and, surprisingly, 90% of them are rigid.
Indeed, offline solutions are always rigid, but online
solutions have the opportunity to correct wrong schedul-
ing decisions on the fly, which it is still being done with
parsimony by 10% of the solutions. Thirty five percent
of the solutions are not distributed, and half of the solu-
tions are distributed centralized push-based; 15% of the
solutions are decentralized and are more concentrated
on grid-related papers.

In order to study these one hundred problems, we
applied a hierarchical clustering mechanism to extract
the features of typical groups of problems. Eight groups
were identified, the results and analysis of each group
are presented in Subsection 6.1. In Subsection 6.2 we
present a validation study that illustrates the confidence
we have in the classification presented here and points
to some features that are often not mentioned by the
authors of the classified papers.

6.1 Groups of problems (and their solu-
tions)

We carried out an agglomerative hierarchical clustering
analysis to identify meaningful subgroups of schedul-
ing problems studied in the past decade. These groups
are formed in a hierarchical fashion, based on the sim-
ilarities of each of the features8 from the 100 problems
classified using our taxonomy. We used the distance
metric presented in subsection 3.4. It is up to the an-
alyst to decide the number of groups to identify. We
conducted an analysis to determine a good balance be-
tween cluster separation (based on inter-cluster distance)
and cluster definition (based on intra-cluster distance).
We concluded that eight groups provided the best clus-
tering in terms of group uniformity. Table 3 presents
quantitative information about each group as well as the
labels chosen to identify the groups, based on their most
popular features.

Figure 9 illustrates the characteristics of each group.
The graph uses the numbers in Figure 1 to identify the
values of each category. For instance, value 1 for Source
indicates “Single-user/single-job” and value 2 for Hetero-
geneity indicates “heterogeneous” resources. The darkest
lines and points indicate where most of the values of the
groups are concentrated. Similarly, the more transparent
the points and lines, the less frequent that value appears
in the group.

A great majority of scheduling problems consider
rigid jobs, scheduling is done at both job and task level
and the solution is not adaptable.

8We excluded the scheduling goal from the features because it does
not have previously determined values. However, we could find some
patterns regarding scheduling goals inside the groups.

6.1.1 Group 1: Failure and data locality aware
scheduling of workflow jobs in clusters

The first group consists of eleven scheduling problems.
Table 4 shows detailed information on the features of
these problems. Some representative problems of this
group are the Hadoop Fair Scheduler [21], Quincy [22]
and Flex [51]. The problems in this group consider work-
loads with multiple jobs that can arrive at any time from
many users. The jobs are multi-task and the tasks are
dependent and usually heterogeneous. Typically, the
workload is composed of diverse rigid jobs of the same
model. Indeed, 55% of the problems in this group con-
sider MapReduce jobs. Finally, the workload does not
require service level guarantees and is not real time. Typ-
ically, these problems consider resources that cover a
local geographic area, are non federated, and are static.
These are typical features of clusters, and, as a matter
of fact, most of the problems (82%) consider a cluster
as the resource category. Resources are often heteroge-
neous. Variations regarding resource scaling come from
the GreenHadoop [23], which shuts down machines
to save energy, and Purlieus [52], which considers an
outsourced cloud environment. Resources are typically
shared at the operating system level. A common fea-
ture to almost all problems is that they require some
kind of affinity. Only three problems do not require the
exploration of data locality [53, 54, 55]. Finally, all the
problems require failure-aware solutions.

The solutions proposed for these problems are on-
line schedulers with the following properties: (i) they
are sub-optimal and apply a combinatorial search solu-
tion; (ii) they follow a distributed centralized push-based
architecture; and (iii) they are rigid (no migration nor
preemption).

6.1.2 Group 2: Scheduling of single-task jobs in het-
erogeneous dedicated clusters

The second group consists of seven scheduling prob-
lems (see Table 5 for their features). Some representative
problems of this group are SCINT and FCFS-Backfill-
XInt [56]9, as well as GAS [57]. The problems in this
group usually consider that the workload has multiple
rigid jobs that can arrive at any time from many users.
All the problems consider single-task jobs. Typically, the
workload consists of jobs of the same model that can be
homogeneous or follow the same structure. Additionally,
the workload does not require service level guarantees
and is not real time. All the problems in this group con-
sider heterogeneous resources that are non-federated
and cover a local area; typical characteristics of clusters.
There is no typical value related to scaling, but 68% of
them apply DVFS or shut down machines to save energy.
In terms of sharing, resources are usually dedicated to
run a given job. None of the problems require the ex-

9Both problems are presented in the same paper.
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Table 3: Quantitative information about the groups identified.
Grp. Size Freq. Group names
1 11 10.9% Failure and data locality aware scheduling of workflow jobs in clusters
2 7 6.9% Scheduling of single-task jobs in heterogeneous dedicated clusters
3 10 9.9% Scheduling of workflow jobs in homogeneous shared clusters
4 16 15.8% Scheduling of workflow jobs in dedicated clusters
5 6 5.9% QoS-driven scheduling of hard real time jobs in homogeneous clusters
6 25 24.8% Scheduling of single-task and bag of tasks jobs in grids
7 13 12.9% Scheduling of heterogeneous multi-task jobs in federated resources
8 13 12.9% Scheduling of single-user workflow jobs in cloud environments

Figure 9: The eight groups of problems.
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Table 4: Features of group 1 - Failure and data locality aware scheduling of workflow jobs in clusters.
Feature Value Number Frequency
Source Multi-user/Multi-job 11 100%
Job structure (In)Dependent heterogeneous multi-task 1 9%
Job structure Dependent heterogeneous multi-task 7 64%
Job structure Dependent homogeneous multi-task 1 9%
Job structure Independent heterogeneous multi-task 1 9%
Job structure Single-task 1 9%
Job flexibility Rigid 10 91%
Job flexibility Malleable 1 9%
Arrival process Open 11 100%
Composition Heterogeneous 1 9%
Composition Same model/diverse 9 82%
Composition Same model/same structure 1 9%
Quality of service Best effort 8 73%
Quality of service SLOs aware 3 27%
Real time No real time 10 91%
Real time Hard real time 1 9%
Heterogeneity Heterogeneous 7 64%
Heterogeneity Homogeneous 4 34%
Scaling Outsource 1 9%
Scaling Shutdown machines 1 9%
Scaling Static 9 82%
Sharing Dedicated VMs 3 27%
Sharing Dedicated 2 18%
Sharing OS sharing 6 55%
Geographical coverage Local 10 91%
Geographical coverage Wide 1 9%
Federation Non federated 11 100%
Data locality No affinity 3 27.3%
Data locality Cluster affinity 1 9%
Data locality Node/rack affinity 2 18.2%
Data locality Rack affinity 2 18.2%
Data locality Node affinity 3 27.3%
Failure model Failure aware 11 100%
Adaptability Fixed 11 100%
Level Job and task level 11 100%
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ploration of data locality nor failure awareness. Energy
savings seems to be important to this class of problems,
appearing as part of the scheduling goal in 57% of the
problems.

The solutions proposed for these problems are all sub-
optimal and use combinatorial search solutions. These
solutions typically have the following properties: (i) they
are online schedulers; (ii) they are non distributed; and
(iii) they generate rigid schedules.

6.1.3 Group 3: Scheduling of workflow jobs in ho-
mogeneous shared clusters

The third group consists of ten scheduling problems
(see details on features in Table 6). Some representative
problems of this group are ARIA [58], BFS [29], Pred [59]
and Min/Max [33]. Most of the problems consider that
the workload has multiple jobs that can arrive at any
time from many users. The jobs typically consist of many
tasks with dependency relations. Typically, the workload
is composed of diverse rigid jobs of the same model.
Indeed, 70% of the problems in this group explicitly
identify jobs as MapReduce jobs or workflow jobs in
the title of the papers. The workloads usually do not
require service level guarantees and are not real time.
Apart from [33] and [60], all other problems consider
homogeneous resources. All these problems consider
non-federated resources covering a local geographic area.
In terms of scaling, resources are mainly static. Again,
these are common features of clusters, and, as a matter
of fact, most of the problems (60%) identify a cluster
as the resource category (the other 40% are related to
cloud environments). Resources are typically shared at
the operating system level or they are shared through
virtualization technology. Only two problems explore
data locality, both at the node level [61, 62]. Finally, the
problems in this group do not require a failure aware
scheduling solution.

The solutions proposed for these problems are online
schedulers that typically have the following properties:
(i) they are sub-optimal and use a combinatorial search
solution; (ii) they follow a distributed centralized push-
based architecture; and (iii) they are rigid (no migration
nor preemption).

6.1.4 Group 4: Scheduling of workflow jobs in dedi-
cated clusters

The fourth group consists of sixteen scheduling prob-
lems (see Table 7 for their features). Some representa-
tive problems of this group are the Probabilistic Back-
filling [31], XInt [26], CPGA/TDGA [45], LDCP [63] and
PALS/PATC [43]. There is no typical value for the work-
load source, which may come from multiple users that
submit multiple jobs, or may be a single job from a single
user. These problems consider a fixed set of jobs to sched-
ule, which characterizes the arrival process as closed.

The jobs are usually dependent heterogeneous multi-
task, typically modeled by DAGs, which leads to hetero-
geneous workloads. In terms of flexibility, most of the
problems consider rigid jobs, although malleable [64] 10

and moldable [31, 65] jobs are also seen. The workloads
of these problems do not require service level guarantees
and are not real time. There is no typical value regard-
ing heterogeneity, almost half of the problems consider
heterogeneous resources and a little over half consider
homogeneous resources. All the problems in this group
consider resources that are dedicated to run a job, cover
a local geographic area and are non federated. Most of
the problems consider a static resource infrastructure,
but some problems consider a dynamic infrastructure
in which resources have DVFS [44, 43, 66]. 81.3% of
the problems consider a cluster as the resource category.
Makespan is an important metric to optimize in most
of the problems in this group (69%). Finally, almost all
problems in this group are non failure aware and do not
explore data locality.

The solutions proposed for these problems are non
distributed, offline, rigid and sub-optimal, applying a
combinatorial search solution.

6.1.5 Group 5: QoS-driven scheduling of hard real
time jobs in homogeneous clusters

The fifth group consists of six scheduling problems (see
feature details in Table 8). Some representative problems
of this group are TTS [27], GMCE/GMP [67] and BIP [25].
These problems consider that the workload has multiple
jobs that can arrive at any time from many users. The
jobs are typically multi-task, and in most of them, tasks
are heterogeneous and independent. Typically, the work-
load is composed of diverse rigid jobs of the same model.
The workload to be scheduled requires a certain level of
service, since it is typically real time, except from the two
problems presented in [68]. Although the workloads of
these problems are not explicitly real time, they require
some level of quality of service and consider meeting
job deadlines as the scheduling goal. Typically, these
problems consider homogeneous resources that cover a
local geographic area and are non federated. Regarding
resource sharing, half of the problems consider dedi-
cated physical resources, and two problems consider
dedicated VMs. Most of the problems pursue the mini-
mization of some sort of cost, which may be related to
energy costs or total execution cost. The only problem
that does not explicitly tries to minimize some kind of
cost is TTS [27], whose goal is to maximize throughput
and meet deadlines. There is no typical value regarding
scaling, but half the problems consider dynamic scal-
ing with DVFS. Most of the problems do not require the
exploration of data locality and do not require failure
awareness. Finally, it is interesting to note that although

10Two problems are presented in [64]
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Table 5: Features of group 2 - Scheduling of single-task jobs in heterogeneous dedicated clusters.
Feature Value Number Frequency
Source Multi-user/Multi-job 6 86%
Source Single-user/Multi-job 1 14%
Job structure Single-task 7 100%
Job flexibility Rigid 7 100%
Arrival process Closed 1 14%
Arrival process Open 6 86%
Composition Same model/homogeneous 2 29%
Composition Same model/same structure 5 71%
Quality of service Best effort 6 86%
Quality of service SLOs aware 1 14%
Real time No real time 6 86%
Real time Soft real time 1 14%
Heterogeneity Heterogeneous 7 100%
Scaling Outsource 1 14.2%
Scaling Dynamic/DVFS 2 28.6%
Scaling Shutdown machines 2 28.6%
Scaling Static 2 28.6%
Sharing OS sharing 1 14%
Sharing Dedicated 6 86%
Geographical coverage Local 7 100%
Federation Non federated 7 100%
Data locality No affinity 7 100%
Failure model Non failure aware 7 100%
Adaptability Fixed 7 100%
Level Job and task level 7 100%
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Table 6: Features of group 3 - Scheduling of workflow jobs in homogeneous shared clusters.
Feature Value Number Frequency
Source Multi-user/Multi-job 9 90%
Source Single-user/Single-job 1 10%
Job structure Dependent heterogeneous multi-task 4 40%
Job structure Dependent homogeneous multi-task 3 30%
Job structure Independent homogeneous multi-task 2 20%
Job structure Independent heterogeneous multi-task 1 10%
Job flexibility Rigid 10 100%
Arrival process Closed 2 20%
Arrival process Open 8 80%
Composition Heterogeneous 1 10%
Composition Same model/diverse 7 70%
Composition Same model/same structure 2 20%
Quality of service Best effort 9 90%
Quality of service SLOs aware 1 10%
Real time No real time 10 100%
Heterogeneity Heterogeneous 2 20%
Heterogeneity Homogeneous 8 80%
Scaling Outsource 1 10%
Scaling Static 9 90%
Sharing Shared VMs 1 10%
Sharing Dedicated VMs 1 10%
Sharing Dedicated 2 20%
Sharing OS sharing 6 60%
Geographical coverage Local 10 100%
Federation Non federated 10 100%
Data locality No affinity 8 80%
Data locality Node affinity 2 20%
Failure model Non failure aware 10 100%
Adaptability Fixed 10 100%
Level Job and task level 10 100%
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Table 7: Features of group 4 - Scheduling of workflow jobs in dedicated clusters.
Feature Value Number Frequency
Source Multi-user/Multi-job 7 44%
Source Single-user/Multi-job 1 6%
Source Single-user/Single-job 8 50%
Job structure (In)dependent heterogeneous multi-task 1 6%
Job structure Dependent heterogeneous multi-task 14 88%
Job structure Independent heterogeneous multi-task 1 6%
Job flexibility Rigid 12 75%
Job flexibility Malleable 2 12.5%
Job flexibility Moldable 2 12.5%
Arrival process Closed 15 94%
Arrival process Open 1 6%
Composition Heterogeneous 14 87.5%
Composition Same model/diverse 2 12.5%
Quality of service Best effort 15 94%
Quality of service SLOs aware 1 6%
Real time No real time 16 100%
Heterogeneity Heterogeneous 7 44%
Heterogeneity Homogeneous 9 56%
Scaling Dynamic/DVFS 4 25%
Scaling Static 12 75%
Sharing Dedicated 16 100%
Geographical coverage Local 16 100%
Federation Non federated 16 100%
Data locality No affinity 15 94%
Data locality Core affinity 1 6%
Failure model Failure aware 1 6%
Failure model Non failure aware 15 94%
Adaptability Fixed 16 100%
Level Job and task level 16 100%
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all the 100 problems require job and task level schedul-
ing, the problems in this group present more sophisti-
cated job level scheduling, which perform admission
control actions.

The solutions proposed for these problems are online
schedulers that typically have the following properties:
(i) they are sub-optimal and use a combinatorial search
solution; (ii) they follow a distributed centralized push-
based architecture; and (iii) they generate rigid sched-
ules.

6.1.6 Group 6: Scheduling of single-task and bag of
tasks jobs in grids

The sixth group is the largest with twenty five
scheduling problems (see Table 9 for details on fea-
tures). Some representative problems in this group
are min/max/suff(CTT) [19], FDPSO [39], BACO [41],
ACO [69] and StorageAffinity [70]. Most of the prob-
lems consider that the workload has multiple jobs
from many users. But some problems consider the
scheduling of a single-job from a single-user (e.g.,
min/max/suff(CTT) [19] and Swarm-opt [50]). 80% of
the jobs consist of a single task or many independent het-
erogeneous tasks, or bag of tasks applications. Typically,
the workload consists of an open arrival process of jobs
of the same model, which may be diverse or of the same
structure. Finally, the workload does not require service
level guarantees and is not real time. All the problems
in this group consider that resources are heterogeneous,
outsourced and cover a wide area. Except from one prob-
lem, all other problems consider federated resources. As
a matter of fact, these are the main characteristics of
computational grids 11 [16]. This group contains one of
the two problems among the 100 problems that requires
adaptability [73]. Indeed, heterogeneous federated and
widely distributed resources make up a very dynamic
environment that can benefit from adaptation. Resource
sharing occurs mainly through virtualization in the form
of dedicated VMs that run the jobs. Some problems re-
quire the exploration of data locality at the cluster level,
but most of them do not have data locality requirements.
Most of the problems in this group do not require failure
awareness. Finally, makespan is the metric or one of the
metrics to be optimized in 68% of the problems in this
group.

The solutions proposed for these problems are online
schedulers and typically have the following properties:
(i) they are sub-optimal and apply a combinatorial search
solution or multi-agent system; (ii) they follow a dis-
tributed centralized push-based architecture; and (iii)
they are rigid (no migration nor preemption).

11Some problems in this group define the infrastructure as a kind of
federated cloud [50, 71, 72], which, in our view, is a resource category
very similar to computational grids.

6.1.7 Group 7: Scheduling of heterogeneous multi-
task jobs in federated resources

The seventh group consists of thirteen scheduling prob-
lems (see Table 10 for their features). Some repre-
sentative problems in this group are the DMDP [30],
DCLS/AMMS(EL) [20], SAT/PSOE [37], and MOTS [32].
The problems in this group usually consider that the
workload has multiple rigid jobs that can arrive at any
time from many users. All the problems consider work-
loads composed by many dependent heterogeneous
tasks, often modeled as DAGs, which leads to heteroge-
neous workload compositions. Additionally, the work-
loads do not require service level guarantees and are not
real time. All the problems in this group consider that
resources are heterogeneous and most of them consider
outsourced, federated, and widely distributed resources,
which are the typical characteristics of grids and feder-
ated clouds. Resources are typically shared as dedicated
VMs. Most problems do not require the exploration of
data locality and are not failure-aware. Minimization of
the makespan is part of the scheduling criteria in 85% of
the problems. One problem in this group requires adapt-
ability in order to deal with federated and heterogeneous
resources [42].

The solutions proposed for these problems are often
online schedulers with the following properties: (i) they
are sub-optimal and use a combinatorial search solution;
(ii) they follow a distributed centralized or decentralized
push-based architecture; and (iii) they generate rigid
schedules, although preemption is applied in 31% of the
solutions.

6.1.8 Group 8: Scheduling of single-user workflow
jobs in cloud environments

The eighth group consists of thirteen scheduling prob-
lems (Table 11 shows their features). The investigation of
these problems is mainly concentrated in the period that
ranges from 2011 to 2014. Cloud computing platforms
appeared in other groups, but this is the group in which
cloud infrastructures are more prevalent (seen in 69%).
It is worth mentioning that in some papers an environ-
ment very similar to a cloud environment is referred
to as utility grid (e.g. [74, 75, 40]). Some representative
problems of this group are VOO [76], HybridGA [77],
HCOC [78] and PSO [79]. These problems consider that
the workload is fixed as single rigid jobs that come from
a single user. The job is always a workflow, which is a de-
pendent heterogeneous multi-task job. The workload is
not real time and typically does not require service level
guarantees. The problems in this group consider a het-
erogeneous environment in which physical outsourced
resources are shared as dedicated VMs. These features
are as expected for a group that represents scheduling
in cloud environments because the scheduler is usually
able to acquire different flavors of virtual machines from
the cloud providers. Two distinct approaches are seen
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Table 8: Features of group 5 - QoS-driven scheduling of hard real time jobs in homogeneous clusters.
Feature Value Number Frequency
Source Multi-user/Multi-job 6 100%
Job structure (In)Dependent heterogeneous multi-task 1 17%
Job structure Dependent homogeneous multi-task 1 17%
Job structure Independent heterogeneous multi-task 4 67%
Job flexibility Rigid 5 83%
Job flexibility Malleable 1 17%
Arrival process Open 6 100%
Composition Heterogeneous 1 17%
Composition Same model/diverse 5 83%
Quality of service SLOs aware 6 100%
Real time Hard real time 4 67%
Real time No real time 2 33%
Heterogeneity Heterogeneous 2 33%
Heterogeneity Homogeneous 4 67%
Scaling Outsource 1 17%
Scaling Dynamic/DVFS 3 50%
Scaling Static 2 33%
Sharing Dedicated VMs 2 33%
Sharing Dedicated 3 50%
Sharing OS sharing 1 17%
Geographical coverage Local 4 67%
Geographical coverage Wide 2 33%
Federation Non federated 6 100%
Data locality No affinity 5 83%
Data locality Cluster affinity 1 17%
Failure model Non failure aware 6 100%
Adaptability Fixed 6 100%
Level Job and task level 6 100%
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Table 9: Features of group 6 - Scheduling of single-task and bag of tasks jobs in grids.
Feature Value Number Frequency
Source Multi-user/Multi-job 20 80%
Source Single-user/Single-job 4 16%
Source Single-user/Multi-job 1 4%
Job structure Dependent heterogeneous multi-task 2 8%
Job structure Independent heterogeneous multi-task 8 32%
Job structure Dependent homogeneous multi-task 1 4%
Job structure Independent homogeneous multi-task 2 8%
Job structure Single-task 12 48%
Job flexibility Rigid 25 100%
Arrival process Closed 10 40%
Arrival process Open 15 60%
Composition Heterogeneous 1 4%
Composition Same model/diverse 12 48%
Composition Same model/same structure 12 48%
Quality of service Best effort 24 96%
Quality of service SLOs aware 1 4%
Real time No real time 25 100%
Heterogeneity Heterogeneous 25 100%
Scaling Outsource 25 100%
Sharing Dedicated VMs 18 72%
Sharing Dedicated 5 20%
Sharing OS sharing 2 8%
Geographical coverage Wide 25 100%
Federation Non federated 1 4%
Federation Federated 24 96%
Data locality No affinity 18 72%
Data locality Cluster affinity 5 20%
Data locality Node affinity 2 8%
Failure model Failure aware 9 36%
Failure model Non failure aware 16 64%
Adaptability Fixed 24 96%
Adaptability Adaptable 1 4%
Level Job and task level 25 100%
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Table 10: Features of group 7 - Scheduling of heterogeneous multi-task jobs in federated resources.
Feature Value Number Frequency
Source Multi-user/Multi-job 13 100%
Job structure (In)Dependent heterogeneous multi-task 1 8%
Job structure Dependent heterogeneous multi-task 12 92%
Job flexibility Rigid 12 92%
Job flexibility Moldable 1 7%
Arrival process Open 10 77%
Arrival process Closed 3 23%
Composition Heterogeneous 12 92%
Composition Same model/diverse 1 8%
Quality of service Best effort 11 85%
Quality of service SLOs aware 2 15%
Real time No real time 13 100%
Heterogeneity Heterogeneous 13 100%
Scaling Outsource 11 84.6%
Scaling Outsource and shutdown machines 1 7.7%
Scaling Static 1 7.7%
Sharing Dedicated VMs 12 92%
Sharing OS sharing 1 8%
Geographical coverage Local 2 15%
Geographical coverage Wide 11 85%
Federation Federated 10 77%
Federation Non federated 3 23%
Data locality No affinity 10 77%
Data locality Cluster affinity 3 23%
Failure model Failure aware 3 23%
Failure model Non failure aware 10 77%
Adaptability Fixed 12 92%
Adaptability Adaptable 1 8%
Level Job and task level 13 100%
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regarding geographical coverage of the resources. In
one approach, there are different cloud providers widely
spread and the scheduler may acquire resources from
all of them [76, 75, 74]. In the other approach, there
is a single cloud provider from which resources are ac-
quired [80, 81]. Regardless of the approach, the resources
are typically non-federated because acquired resources
can be used as needed. Almost all the problems pursue
the minimization of cost. Besides, they are all concerned
with decreasing the makespan or with meeting jobs dead-
lines. None of the problems require the exploration of
data locality and most of them do not pursue failure
awareness.

The solutions proposed for these problems are all
sub-optimal and use combinatorial search solutions that
typically generate rigid schedules. These solutions are
mainly online (61%) and they may be non distributed or
may follow a distributed centralized push-based archi-
tecture (46%).

6.2 Classification confidence

The process of classifying one hundred problems was not
always easy. We did it based on the papers that describe
the problems and the solutions. Unfortunately, some
features are not explicitly mentioned. In these cases, the
confidence level of the inferred value may not be high.
Sometimes, even though the feature is not mentioned,
it is possible to infer its value with high confidence by
reading the paper, especially the evaluation results and
the scenarios tested. However, in other occasions, their
values are inferred with medium confidence. We iden-
tify these situations in order to know the features that
are neglected the most by the authors when describing
their problems and solutions. Figure 10 presents the
confidence achieved when classifying each feature of the
scheduling problems and solutions.

Sharing is the characteristic less mentioned in the pa-
pers. This is an important feature to be considered
when describing a scheduling problem because it di-
rectly affects the solution. A solution for resources that
are shared among many jobs at the operating system
level may possibly be different from the solution when
resources are dedicated to run tasks of the same job with-
out sharing.

Surprisingly, the second characteristic that was some-
times a factor of low confidence is the source of the work-
loads. Some papers do not mention users, or customers,
or clients and many do not clearly define the context
in which the scheduler’s solution will be used and the
jobs are submitted. The other feature that is hardly men-
tioned is the arrival process of the jobs. Although we
could infer their values, the feature is usually neglected.
Finally, the topology distribution of the solutions is not
mentioned in many papers, in which cases we usually
considered the solution as not distributed.

We hope that from now on all the papers that propose

solutions to scheduling problems in distributed systems
use the taxonomy we propose. By so doing, the process
of classification is facilitated and consequently it will eas-
ier for researchers to find similar problems and solutions
to the ones they are investigating.

7 Related work

Parallel job scheduling in distributed systems has been
a fertile research ground for some decades. Thus, the
number of papers with solutions and surveys related to
the area is enormous. We consider here two classes of
related work: seminal work that inspired the taxonomy
proposed in this report and surveys that aim at exploring
the state-of-the-art on scheduling in distributed systems.
We position our taxonomy proposal in relation to other
related taxonomies and we emphasize the aspects that
make our survey unique in relation to other related sur-
veys.

7.1 Inspirational taxonomies

Our taxonomy is logically organized into two parts: one
describes scheduling problems and the other describes
scheduling solutions. The scheduling problem taxon-
omy is mainly inspired on the scheduling problem the-
ory presented in [3] and reviewed in some books [8, 7].
According to the theory, scheduling problems should be
defined in terms of: (i) the processing environment α, (ii)
the tasks β, and (iii) the optimality criterion γ. Our three
groups, respectively, resources (R), workload (W) and
requirements (Q) come from that idea. Although the
α|β|γ notation for deterministic scheduling problems
has existed for decades, it is difficult and unnatural to
apply it to scheduling problems in modern distributed
systems because the notation misses important features
to fully characterize scheduling problems in these sys-
tems. Workload structure, source, resource sharing, scal-
ing, scheduling level and the adaptability requirement
are a few examples of features that cannot be modeled
by that notation.

The part of our taxonomy related to the description of
scheduling solutions is mainly based on the taxonomy
proposed by Casavant and Kuhl [2]. They defined a tax-
onomy to characterize scheduling solutions in general-
purpose distributed computing systems. The main rea-
son we think a revision of that taxonomy is important is
that current applications and the environments in which
they run became significantly more complex over the
last thirty years. We expanded the Casavant and Kuhl
taxonomy as follows:

• We introduced the notion of pull and push-based
assignments, which is indeed more important when
the resources set is big, and scalability issues are
involved;
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Table 11: Features of group 8 - Scheduling of single-user workflow jobs in cloud environments.
Feature Value Number Frequency
Source Single-user/Multi-job 1 8%
Source Single-user/Single-job 12 92%
Job structure Dependent heterogeneous multi-task 13 100%
Job flexibility Rigid 13 100%
Arrival process Closed 13 100%
Composition Heterogeneous 8 61.5%
Composition Same model/same structure 5 38.5%
Quality of service Best effort 8 61.5%
Quality of service SLOs aware 5 38.5%
Real time No real time 13 100%
Heterogeneity Heterogeneous 13 100%
Scaling Dynamic/DVFS 1 8%
Scaling Outsource 12 92%
Sharing Dedicated VMs 13 100%
Geographical coverage Local 6 46%
Geographical coverage Wide 5 54%
Federation Non federated 11 85%
Federation Federated 2 15%
Data locality No affinity 13 100%
Failure model Failure aware 1 8%
Failure model Non failure aware 12 92%
Adaptability Fixed 13 100%
Level Job and task level 13 100%

Figure 10: Classification confidence.
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• Casavant and Kuhl considered more general tech-
niques (e.g., (i) solution space enumeration and
search, (ii) graph theoretic, (iii) mathematical pro-
gramming, and (iv) queuing theoretic) for sub-
optimal solutions. We replaced techniques (ii) and
(iv) by multi-agent systems and economic based so-
lutions. While queuing and graph theory are still
useful, they are generally more appropriate to mod-
eling the workload and resources, and the model
may be used as part of a heuristic;

• We added one-time assignment and dynamic as-
signment as part of the taxonomy (see our flexi-
bility feature). Casavant and Kuhl defined these
as flat characteristics 12 not related to any specific
branch of the taxonomy. We argue, however, that
this is an important solution feature and we fur-
ther subdivide it into different leaves to account for
preemption, migration and other types of dynamic
assignment;

• We also added adaptive and non-adaptive features
(see our adaptability requirement). Casavant and
Kuhl defined them as flat characteristics. We, how-
ever, consider this as a requirement of the schedul-
ing problem, not a feature of the solution;

• For the sake of simplicity, we do not distinguish
between sub-optimal and approximate solutions;

7.2 Related taxonomies

Many different yet sometimes overlapping taxonomies
were proposed in the last ten years, each targeting a
specific category of distributed platforms. There are
taxonomies for scheduling in data grids [82, 83], com-
putational grids [4, 84], cloud computing [5, 85] and
utility-driven clusters [86]. All these taxonomies share
the same problem: they are not general neither complete
enough to characterize scheduling problems and solu-
tions in distributed systems. To the best of our knowl-
edge, a taxonomy that is broad and can be applied to
any scheduling problem in distributed systems does not
exist. Besides, they were proposed with the aim of sur-
veying the state-of-the-art, and, unfortunately, they have
not been used by researchers to describe their scheduling
problems. At least, none of the papers classified used
any kind of taxonomy to clearly define the scheduling
problem being addressed.

Taxonomies for scheduling problems and solutions in
computational grids were presented in [4]. They define
five taxonomies: workflow model, scheduling criteria,
scheduling process, resource model, and task model.

12The other flat characteristics are not part of our taxonomy. They
are: (i) load balancing, which we consider as a possible requirement
of the scheduler; (ii) bidding, which is an economic-based technique
to construct the schedule; and (iii) probabilistic, which is related to
the quality of the solution and is already covered by the optimality
feature.

These taxonomies do not explicitly separate problem
and solution. It is important to separate problem from
solution [8] because a taxonomy may be used to discover
similar problems and to compare solutions to similar
problems. It is worth mentioning that the taxonomies
in [4] rely on the concept of a market of resources. Con-
sequently, one of the optimization criteria is fixed: cost
minimization. These five taxonomies cover a variety of
dimensions, some of which are easy to generalize and
are similar to some features in our taxonomies, such as
criteria and workflow multiplicity, dynamism, resource
diversity, migration, and workload component model.
Even though many of the dimensions defined in [4] are
relevant for describing scheduling problems and solu-
tions for general distributed systems, they are not pre-
pared to be used in the general context of any distributed
platform.

Smanchat and Viriyapant [5] extended and comple-
mented the grid taxonomies [4] for the cloud. The three
taxonomies they proposed cover a variety of dimensions,
all strongly related to the cloud environment. Two prop-
erties of their taxonomies are similar to scheduling cri-
teria and task execution capacity we define in our tax-
onomy. Their taxonomies do not model scheduling re-
quirements, except for scheduling goal. The scheduling
solution is also not characterized by their taxonomies, ex-
cept for the scheduling generation property, that defines
how the scheduling decision is generated.

A taxonomy of market-based resource management
systems for utility-driven cluster computing was pro-
posed in [86] for scheduling solutions in which users
assign utility to their jobs requests. The general goal is
to maximize user’s utility satisfaction. The authors or-
ganize the taxonomy into five sub-taxonomies. Among
them, the resource model and the job model are quite
related to our taxonomy of scheduling problems, but less
detailed than ours. In spite of the similarities, the taxon-
omy proposed in [86] is not comprehensive enough to
properly define scheduling problems and solutions.

Other taxonomies were presented but they do not
cover the entire spectrum of scheduling problems. For
example, [85] presented short taxonomies for inter-cloud
and application brokering systems. These taxonomies
characterize who owns the infrastructure, how the inter-
cloud is constructed, who is responsible for applica-
tion scheduling and the type of applications, the single
similarity with our taxonomy. A taxonomy related to
grids was presented in [84] for scheduling solutions only,
classified as best-effort or QoS-constrained. Best effort
in [84] refers to solutions that target makespan mini-
mization without considering other goals or constraints
while QoS constraint based scheduling aims at minimiz-
ing makespan under QoS constraints such as budgets
or deadlines. We use similar terms, but with different
meanings, to characterize the workload, not the solution.
Moreover, the taxonomy in [84] characterizes solutions
as heuristic and meta-heuristic based. Our taxonomy
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covers an extended set of solution types with a higher
level of specificity.

The authors in [87] defined a taxonomy of tools for
dynamic task scheduling for high performance cluster
computing. That taxonomy can assist tool designers
and developers and is similar to the solution part of our
taxonomy and to Casavant and Kuhl’s taxonomy. The
taxonomy in [87] encompasses four scheduling tool at-
tributes, three of them similar to some of our features:
(1) target system, which indicates resource heterogeneity
and/or geographical coverage; (2) control model, which
somehow resembles our distribution mode features; and
(3) scheduling strategy, which is similar to policy oper-
ation. Despite some similarities, the taxonomy in [87]
does not target the definition of scheduling problems or
their solutions and is not readily usable for that.

Finally, a taxonomy for scheduling data-intensive ap-
plications in data grids is presented in [82, 83]. When
data-intensive applications are being scheduled, it is rea-
sonable to have a data management entity responsible
for data transfers and data replication, which may be
coupled or not to the scheduler. The requirements of the
operation mode of this data management entity is not ex-
plicitly modeled by our taxonomy. A specific taxonomy
must be used as a complement when necessary. How-
ever, our taxonomy indicates data-intensive operations
by means of the data locality feature, which is important
to characterize problems that require the exploration of
data locality [21, 22, 23, 51].

7.3 Surveys on scheduling

This section discusses survey papers in the parallel job
scheduling domain. However, none of them consider
general distributed systems or classify the problems be-
ing addressed. Most of them address the solutions or
consider a limited category of resources (e.g., grids or
clouds).

In a status survey report on parallel job scheduling,
the authors discuss the performance of the main schedul-
ing approaches used in parallel supercomputers, clus-
ters, and grids but not the definition of scheduling prob-
lems [88]. Research papers and commercial solutions are
considered and described. No classification scheme is
used neither a systematic review protocol.

Important concepts on grid computing scheduling
problems and solutions using heuristic and meta-
heuristic approaches are described in [89]. They consider
different grid models and for each model they identify
the problem instance, which usually consists of work-
load and resources models. Different models to repre-
sent the workload and the resources are presented for
each grid model. The goal of identifying typical prob-
lems and models is similar to our goal in this technical
report, however they consider only grids and they do
not define a clear taxonomy to be used. In that paper, the
authors enumerate some differences between schedul-

ing in general distributed systems and in grids. These
differences are described below and are covered by our
taxonomy.

1. Resources in a grid can join or leave the grid in
an unpredictable way and there may be local poli-
cies that regulate resource usage. We use federated
resources to model this feature. By defining that re-
sources are federated, we indicate that resources are
not under the control of the scheduler. Besides, we
allow for shared resources to indicate that resources
are not dedicated to run a single job;

2. High heterogeneity of jobs and resources. We can
define resources as heterogeneous. Considering the
workload, we have several features to identify work-
load heterogeneity, including heterogeneous jobs;

3. High heterogeneity of interconnection networks
and the large scale of a grid. Resources that cover
a wide geographical area are typically connected
through the Internet using different interconnection
networks.

4. The existence of local schedulers. We allow for two
levels of scheduling: task and job level;

5. Security: we allow for resources to be shared
through virtualization (dedicated VMs). It is reason-
able to consider virtualization as a useful technique
for coordinated and secure sharing of resources in
grid computing. Security requirements may always
be considered as a scheduling goal as in [42, 69, 53].

A survey on resource allocation in high performance
distributed computing systems [90] considers generic
distributed platforms, including cluster, grid, and cloud
computing infrastructures. However, a formal, general
taxonomy is not defined in [90]. Cluster, grid and cloud
platforms are described in terms of some attributes,
which somehow resemble some static features of our
taxonomy and the taxonomies proposed in [86]. How-
ever, a different set of attributes is used to categorize
each type of platform (cluster, grids, cloud). This is
different from our work, in which the same taxonomy
is used regardless of the resource platform. Moreover,
their classification scheme conflates attributes related to
scheduling solutions with those that characterize the re-
sources and workload. Actually, there is no effort in [90]
to characterize the specific scheduling problems being
addressed and their focus is mostly on the solutions. Our
work gives equal importance to problems and solutions.

Finally, other related surveys exist, each considering
specific aspects of the scheduling solution. In [91], for
instance, we find a literature review of scheduling solu-
tions based on swarm intelligence and in [92] we find a
survey on cloud workflow scheduling solutions.
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8 Conclusions

This technical report proposes a taxonomy for parallel
job scheduling in distributed systems. The taxonomy is
organized into two parts: one that models the schedul-
ing problem, considering the workload, the resources
and the scheduling requirements; and other that models
the scheduling solution. The taxonomy may be applied
to any kind of distributed platform, including clusters,
cloud computing infrastructures, and grids.

We then used a well-defined protocol to collect pa-
pers in which scheduling problems and solutions are
described. 1050 papers were manually collected and an
impact analysis was performed. We found that 12.5%
of the papers are responsible for 64.0% of all citations
and, unfortunately, almost one quarter of the papers
are never cited. On average, papers are not cited more
than 5 times during their whole life. These numbers
confirm our hypothesis that research in this area rarely
builds on prior art. Many features can be used to define
a scheduling problem in this area. Changing the value of
one feature may change the problem in a significant way.
We classified 100 problems using our taxonomy and we
found that most of the problems and their solutions are
unique.

Following the impact analysis, we applied the taxon-
omy to classify one hundred problems and solutions.
Based on this classification we carried out a hierarchical
clustering analysis and found eight groups of problems
that were investigated during the last ten years: (i) fail-
ure and data locality aware scheduling of workflow jobs
in clusters, (ii) scheduling of single-task jobs in hetero-
geneous dedicated clusters, (iii) scheduling of workflow
jobs in homogeneous shared clusters, (iv) scheduling
of workflow jobs in dedicated clusters, (v) QoS-driven
scheduling of hard real time jobs in homogeneous clus-
ters, (vi) scheduling of single-task and bag of tasks jobs in
grids, (vii) scheduling of heterogeneous multi-task jobs
in federated resources, and (viii) scheduling of single-
user workflow jobs in cloud environments.

The main challenge we dealt with during the design of
the taxonomy was to identify features that were general
enough to be included in the taxonomy and features that
were too specific and should thus be excluded. As a re-
sult, we ended up with a general taxonomy; complemen-
tary taxonomies must be used if specific features need
to be defined. Different resource models may lead to dif-
ferent complementary features. These complementary
features may be borrowed by the specific taxonomies
that already exist. As future work we will look into
the organization of complementary taxonomies for very
specific situations.

Drozdowski considers that devising a taxonomy for
scheduling is a challenge and gives some recommenda-
tions [8], which are covered by our taxonomy. First, it
pursues generality when describing the problem. We are
quite confident about this aspect, especially after the clas-

sification of one hundred different problems. Second, a
taxonomy must allow different scheduling levels, which
we do model by the feature level in Q. Third, a taxon-
omy must be specific when defining target applications.
Indeed, we have a whole set of features (W) to describe
the workload to be scheduled. The taxonomy allows the
classification of different job structures and workload
compositions, giving the flexibility to model very dif-
ferent kinds of applications and workloads. Fourth, a
taxonomy must be specific when describing the prob-
lem, taking into account the area of application of the
scheduling algorithm and availability of input data. All
the features that describe the resources and the workload
characterize the area of application of the scheduling
algorithm. Fifth, a taxonomy must consider commu-
nication aspects, which are implicit by the geographic
coverage of the resources. Finally, the taxonomy must
separate problem and solution, which was an important
requirement we have pursued since the beginning of the
taxonomy design.

Lastly, we published an online archive in which 100
problems and solutions are classified using the taxon-
omy. Our goal is to collaboratively maintain this archive,
which allows researchers to submit a classification of a
scheduling problem/solution. We hope that researchers
will use the taxonomy and collaborate with the archive
by submitting classifications of old and new scheduling
problems. If authors use the taxonomy to classify their
own work, the archive will be not only updated but also
reliable. It is already possible to obtain a CSV file with all
archived classifications and manipulate the data using
statistical software. The archive also allows for the auto-
matic selection of problems with certain feature values,
which can be an important tool for those who want to
know the state-of-the-art in a given scheduling niche.
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A The Review Protocol

Our survey follows the general guidelines for perform-
ing systematic literature reviews in software engineer-
ing proposed by the Software Engineering Group at the
University of Keele [35]. The process includes the identi-
fication of the research questions and a review protocol.
The following research questions served as the basis for
the systematic literature review.

1. RQ1: How to define a scheduling problem in the
context of parallel job scheduling in distributed plat-
forms?

2. RQ2: How to classify scheduling solutions in the
context of parallel job scheduling in distributed plat-
forms?

3. RQ3: What are the most popular scheduling prob-
lems being investigated in the past ten years in the
context of parallel job scheduling in distributed plat-
forms?

4. RQ4: What are the most popular classes of schedul-
ing solutions proposed in the past ten years in the
context of parallel job scheduling in distributed plat-
forms?

A.1 Strategy

Our search strategy looked for the following terms in
the paper title: (scheduling ∨ schedule ∨ allocation ∨
scheduler) and (cloud ∨ grid ∨ cluster ∨ “data center”)
and (job ∨ application ∨ DAG ∨MapReduce ∨ hadoop
∨ task ∨ workflow). The repositories considered for this
part of the search were the ACM digital library, Springer-
Link, IEEExplorer, and ScienceDirect.

We also collected a second set of papers using the fol-
lowing search strategy: highly cited papers (i.e., more
than 8 citations per year since publication), obtained
from Google scholar, not found during the previous
search, and that satisfy the following relaxed search
terms: (scheduling ∨ schedule ∨ allocation ∨ sched-
uler) and (cloud ∨ grid ∨ cluster ∨ “data center” ∨ job
∨ application ∨ DAG ∨MapReduce ∨ hadoop ∨ task ∨
workflow). We call these papers the set of GS papers.

Papers to be collected must satisfy the one of the above
criteria and must have been published from January 1st,
2005 to May, 1st, 2015.
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A.2 Exclusion criteria

Some papers that match the search strategy may be ex-
cluded. We consider two different exclusion criteria:
exclusion by keywords in the title and exclusion by con-
tent.

A.2.1 Exclusion by key words in the title

Papers whose title contain one of the following terms
were excluded: comparison, smart grid, job-shop, man-
ufacturing, simulation, mobile, and architecture. These
papers are not related to the subject of interest or present
comparisons or evaluations of solutions presented in
other papers.

A.2.2 Exclusion by content

The following exclusion criteria were applied after the
papers were read.

• If the scheduling solution was published in more
than one venue, we used the most complete version
of the work;

• Papers describing related surveys and/or tax-
onomies were excluded13;

• Papers that do not investigate scheduling of parallel
jobs in distributed environments were excluded for
not matching our review interests.

A.3 Study selection process

Five steps were used to obtain the information needed
to answer our research questions.

A.3.1 Step 1: Paper collection

Perform a manual search using the search strategy above.
The following items were collected for each paper: year
of publication, authors, title, source of publication, link
to the paper, and number of citations (collected manually
from Google Scholar).

A.3.2 Step 2: Paper exclusion by keywords

Exclude the papers that satisfy at least one of the ex-
clusion criteria by keywords in the title as described in
subsection A.2.1.

A.3.3 Step 3: Computation of citations per year

Compute the number of citations per year for each pa-
per, CPYpaper, by dividing the total number of citations,
NCpaper, the paper received since its publication up to

13These papers were considered as related work.

the day the data was collected by the number of years
since its publication:

CPYpaper =
NCpaper

2015.33−Ypaper
. (2)

The number of years since publication in the denomina-
tor of Equation 2 is computed as the difference between
2015.33 (to represent the data collection date of May 1,
2015) and the year the paper was published.

A.3.4 Step 4: Impact Analysis

Perform a statistical analysis of the remaining set of pa-
pers to identify the main resource categories considered
for scheduling and assess the impact of these papers.

A.3.5 Step 5: Classification of 100 problems

Sort all the papers in descending order of number of
citations per year. Read the most cited papers in order to
classify the scheduling problems and solutions accord-
ing to our taxonomy. Reading the papers may lead to the
exclusion of some of them due to the exclusion criteria by
content (Subsection A.2.2). Continue reading until 100
problems are classified. The number of papers included
in this step cannot be anticipated because it depends on
the number of problems investigated in each paper and
the number of papers excluded by content.

It is important to mark features that are not classified
with confidence in each paper in order to identify fea-
tures of scheduling problems and solutions that are not
properly defined by the authors (see Section 6.2). Extract
the following additional information from each paper
classified: the source (i.e., the conference or journal) and
the name of the first author.

These five steps produce three deliverables: (i) the
impact analysis of the papers collected (excluding some
papers by applying exclusion criteria presented in A.2.1);
(ii) 100 scheduling problems and solutions classified ac-
cording to our taxonomy; and (iii) information to per-
form an analysis of the features of problems and solu-
tions that are currently identified with less confidence.

A.4 Data extraction strategy

The data extracted from each paper during the paper
collection (step 1) was used for an impact analysis. Some
questions of interest are:

• How many papers of interest per year were pub-
lished over these 10 years?

• Is the number of papers published in this area stable
over the years?

• What is the fraction of papers explicitly related to
clusters, grids, clouds, and data centers?
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• Grouping data by year, what is the fraction of pa-
pers explicitly related to clusters, grids, clouds, and
data centers?

– Do these relations change with time? Are there
significant differences related to the main re-
source platform considered over the years?

• How does the number of citations per year change
over time?

• What is the fraction of papers that explicitly address
MapReduce applications or Hadoop?

• What is the average popularity of papers in this
area?

• Is the popularity of the papers in this area stable
over the years?

After the 100 problems are classified applying the tax-
onomy, a clustering analysis must be carried out to deter-
mine what are the most common scheduling problems
being investigated in the past 10 years in the context of
job scheduling in distributed computing systems.

A.5 Dissemination strategy

The results of such a study must be published in a rep-
utable journal in order to have high impact.

B List of top-100 problems

1. HFS [21];

2. QFP [22];

3. Swarm-Opt [50];

4. GMCE/GMP [67];

5. ACO/GA/PSO [93];

6. ARIA [58];

7. XInt [26];

8. GreenHadoop [23];

9. DMDP [30];

10. IC-PCP/IC-PDPD2 [94];

11. ACS [42];

12. BIP [25];

13. HybridGA [77];

14. PB [31, 95];

15. SS-EDF/PShare [68];

16. DCLS/AMMS-(EL) [20];

17. PALS/PATC [43];

18. BACO [41];

19. Min/Max [33];

20. Min/Max/Suff [67];

21. Purlieus [52];

22. CPGA/TDGA [45];

23. BEF [44];

24. EPTS [44];

25. AFCFS/LJFS [96];

26. FDPSO [39];

27. PCP [75];

28. HCOC [78];

29. HAS [24];

30. TTS [27];

31. ALS-GA [46];

32. MQMW [97];

33. BFS [29];

34. DT-STGA [98];

35. STT [99];

36. FCFS-Backfill-XInt [56];

37. SCINT [56];

38. GA [74];

39. CRO [100];

40. SAT/PSOE [37];

41. FLEX [51];

42. PSO [79];

43. VOO [76];

44. Pred [59];

45. Selective [73];

46. HLBA [101];

47. RAS [54];

48. SAMR [102];

49. Cloud-DLS [103];

50. GreFar [48];
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51. LDCP [63];

52. MOTS [32];

53. JDS-BC [104];

54. OSLS [28];

55. ONA [105];

56. MinCTT/MaxCTT [106];

57. LARTS [107];

58. HCS [108];

59. BMT/BMEMT [80];

60. GAS [57];

61. DO-AS [109];

62. StorageAffinity [70];

63. BAR [61];

64. RDPSO [40];

65. MWGS [110];

66. EAD/PEBD [66];

67. QSufferage [111];

68. HCPFD [112];

69. PN [113];

70. IABC [60];

71. ILA [62];

72. DS [114];

73. cMA+LMCTS/LTH [115];

74. XGE [116];

75. DCP-G [117];

76. ACO [69];

77. RSA/RSC/ASJ [65];

78. FMS [65];

79. CLOUDRB [72];

80. LS/invo-cont [118];

81. LAJS [119];

82. SIL [120];

83. MDQ [120];

84. SALAF [55];

85. HGS-Sched [47];

86. (Ltos,*)/(Stol,*) [71];

87. (U,*) [71];

88. AEES [49];

89. AROMA [81];

90. BalancedPools [121];

91. SQEE/SQHP/PBP-SQ [122];

92. DRCD [53];

93. IDEA [123];

94. MPL/LBal S [124];

95. RESSCHED [125];

96. RESSCHEDDL [125];

97. DLT/EDF [126];

98. LS APF/LS P [127];

99. OPT [127];

100. LS/LS CSP [127];

101. LS/LS CSP-OPT [127];
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