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Abstract: This paper focuses on developing an approach and technology for actionable recommendations on the 

operation of components of an electric power network. The overall direction of this research is to model the 

major components of a Hybrid Renewable Energy System (HRES), including power generation, 

transmission/distribution, power storage, energy markets, and end customer demand (residential and 

commercial). First, we propose a conceptual diagram notation for power network topology, to allow the 

representation of an arbitrary complex power system. Second, we develop a formal mathematical model that 

describes the HRES optimization framework, consisting of the different network components, their respective 

costs, and associated constraints. Third, we implement the HRES optimization problem solution through a 

mixed-integer linear programming (MILP) model by leveraging IBM Optimization Programming Language 

(OPL) CPLEX Studio. Lastly, we demonstrate the model through an example of a simulated network, showing 

also the ability to support sensitivity / what-if analysis, to determine the behavior of the network under 

different configurations.  

1 INTRODUCTION 

We have seen in recent years a series of trends, which 

are significantly transforming the existing 

mechanisms for supplying energy to satisfy 

electricity demand. At the forefront, environmental 

concerns with climate change and other impacts are 

driving a surge in motivation to integrate renewable 

energy sources into the power grid. Political factors 

exacerbate the trend, as there is a significant push for 

reducing dependency of imported fossil fuels. 

Economic aspects take into consideration the 

financial viability of operating those solutions, as well 

as the need to maintain a reliable source of supply.  

This last factor represents a potential problem for 

the effective deployment of some of the most 

promising renewable sources, such as wind and solar. 

This stems from the uncertain nature of their 

generation, which could drive volatility of the energy 

supply, if we are to depend on these sources as a 

bigger share of our energy consumption. 

In this context, several complementary elements 

come in place to address these issues.  First, the 

establishment of smart grids, which expand the more 

traditional power grids, by using two-way flows of 

electricity and information to create an automated and 

distributed advanced energy delivery network.  

Figure 1 (U.S. Energy Information Administration, 

2014), depicts a typical network configuration for a 

power grid, for which we will expand later on, with a 

more detailed explanation of the different 

components’ role. Second, as a specialization of these 

smart grids, we see the development of what has been 

called Hybrid Renewable Energy Systems (HRES), 

or in other instances Integrated Renewable Energy 

Systems (IRES),  both of which denote an elaborated 

energy grid that rely on multiple sources - in general 

renewable ones such as solar, wind, and hydro, 

combined with more traditional sources such as 

diesel, and the placement of storage technology at key 

locations of the grid, to establish a reliable, cleaner 

and stable flow of supply.  



 

A key problem facing decision makers today is to 

find the most efficient way to operate such grids, 

which are becoming increasingly more complex, 

including different types of generation facilities, 

electricity storage equipment deployed throughout 

the network, transmission and distribution facilities, 

sources of demand scattered through a region, and 

markets for buying/selling energy and/or capacity. 

The question of electricity storage is a particularly 

important one, involving the different options of 

placing the right storage technology at key locations, 

to address multiple needs: balancing power supply, 

deriving from potential fuel shortages and the 

stochastic nature of renewable sources; deferring 

costly upgrades of the transmission/distribution 

infrastructure (by placing storage technology next to 

the end consumer location); allowing frequency 

regulation; and finally, creating opportunity for 

revenue generation through secondary markets. 

This paper places a closer focus on the problem of 

determining the optimal operation of the network in 

the short term, taking into account the components of 

power generation, distribution/transmission, storage 

placement, external markets, and consumption. The 

underlying decisions relate to the optimal flows and 

mode of operation of each component of the smart 

grid.  

As we discuss in Section 2, extensive research has 

been developed to support optimization of hybrid 

energy systems. However, there are several 

limitations that characterize most of the work. First, a 

significant portion of the research has been, due to the 

inherent complexity of such problems, focused on 

more specific aspects to be addressed (see for 

example (Katsigiannis et al., 2010), (Courtecuisse et 

al., 2010), (Yokohama and Wakui, 2009), and 

(Ekonomou, 2010).  Although these works provide 

valuable insights into different aspects of the grid, 

they do not convey an integrated view of the network, 

therefore, not addressing the issue of optimization of 

the grid as a whole. 

Second, the body of work that effectively 

addressed a more holistic and integrated view, 

including all the different aspects of the network (for 

example HOMER (Lambert et al., 2006) and other 

similar packages), was primarily driven by simulation 

engines, with the purpose of arriving as the best 

option among the simulated scenarios. Other similar 

research also recurred to different heuristics methods, 

rather the using optimization tools, based on 

mathematical programming. 

Finally, much of the work was more focused on 

micro-grids, rather than a largely distributed network 

see (Bernal-Augustin and Dufo-Lopez, 2009) or 

(Cormio et al., 2003)). Therefore the issue of 

optimizing distribution of energy, and the location of 

the different components (in which we focus in the 

present work) were not a part of those models. We 

describe related work in more detail on section 2. 

Addressing those limitations is exactly what we 

focus on the present research. In this paper, we 

propose and implement a decision guidance 

framework for optimal operation of power networks 

with renewable resources and storage. More 

specifically, the contributions of this paper are as 

follows. 

First, we propose a conceptual diagram notation 

for power network topology, to allow the 

representation of Hybrid Renewable Energy Systems 

(HRES). Second, we develop a formal mathematical 

model that describes the HRES optimization 

framework, consisting of the different network 

components, their respective costs, and associated 

constraints. Third, we implement the HRES 

optimization problem solution through a mixed-

integer linear programming (MILP) model by 

leveraging IBM Optimization Programming 

Language (OPL) and CPLEX Studio. Lastly, we 

demonstrate the model through an example of a 

simulated network, showing also the ability to support 

sensitivity and what-if analysis, to determine the 

behavior of the network under different 

configurations.  

There are several benefits to be achieved by the 

development of such a model. First, in a context of 

uncertain and possibly growing demand, by allowing 

the planning and simulation of placement of 

components (including storage solutions) in different 

key locations of the grid, we can make a realistic 

assessment of their best utilization, and consequently 

defer a potentially expensive upgrade of distribution 

lines. Second, we can minimize overall costs 

associated with regular operations due to a more 

efficient combination of power flows and usage of 

storage. Third, we can profitably leverage existing 

energy market, to be able to sell excess capacity in 

certain periods of time of low demand. And finally, 

as a clear trend exists for transitioning from fossil 

fuels to renewable sources, the model can support a 

realistic analysis of how best to perform this 

transition. 

The remainder of this paper is organized as 

following: Section 2 surveys related literature in 

place; Section 3 provides the framework and 

methodology to be utilized in the model, and how it 

translates a given topology and an actionable model 

for decision analysis; Section 4 presents the design of 



 

the formal mathematical model for the optimization.  

Section 5 discussed the implementation of the model 

through the use of IBM OPL CPLEX Studio. Section 

6 examines a case study, through a simplified 

prototype that was developed in order to demonstrate 

the feasibility of the model for a power utility using 

realistic assumptions and a small synthetic data set, to 

address different conditions of generation and 

transmission capacity against demand, fuel costs 

variation, etc. Section 7 provides our conclusions and 

directions for further development of this research. 

 

 

 
 

Figure 1: Distributed power system with storage 

technologies (Source: U.S. Energy Information 

Administration) 

 

2 RELATED WORK 

A significant body of research has been developed in 

the past few years to address the smart grid and the 

different aspects related to its planning and 

operations. The first group focuses on surveying 

existing work on the topic, rather than proposing new 

methods. (Fang et al., 2011) define the smart grid as 

an enhancement to the traditional power grid of the 

20th century, by leveraging two-way flows of 

electricity and information to create an automated and 

distributed advanced energy delivery network. They 

performed a survey of a large amount of work, 

classified into three major categories: Infrastructure 

System (i.e. the technologies underlying the Smart 

Grid for generation, information control and 

communications); Management System (dealing with 

management techniques for optimal operation of the 

grid); and Protection System (focusing mainly on 

security). Our present work falls mainly in the second 

category. 

On other surveys, (Baños et al., 2011), (Erdinc and 

Uzunoglu, 2012), (Chauhan and Saini, 2014), provide a 

comprehensive review of optimization and heuristic 

methods applied to individual renewable sources of 

energy, to achieve optimal sizing of components. 

Similarly, (Deshmukh and Deshmukh, 2008) provide a 

review of the mathematical modeling of the different 

components of an HRES. The methods covered 

include traditional methods such as Linear 

Programming (LP), Quadratic Programming (QP), 

Mixed Integer-Linear Programming (MILP), as well 

as heuristics and meta-heuristics approaches 

including Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), Artificial Neural Networks 

(ANN), and others. Although robust results were 

achieved in those areas, the research work was 

focused on optimizing the size of individual sources, 

and did not deal with the energy flows between 

components, involved on the operations of the 

combined network. 

As many of the optimization models deal with 

multi-objective optimization, conventional methods 

can be used through unification of the objectives into 

one consolidated function, or through a Pareto-

optimal set, in which a set of non-dominated solutions 

are selected. Alternatively, less traditional methods 

are proposed (Katsigiannis et al., 2010), in which a 

Multi-Objective Genetic Algorithm is utilized to 

minimize the system long term Cost of Energy (COE) 

as well as the amount of emission of CO2 – 

equivalents, derived through an Life-cycle approach 

(i.e. taking into account emission beyond the 

production of energy). This model also, however, is 

designed to address the optimal combination to be 

utilized among the different components, and does 

not address the design of a flexible network, from an 

operational perspective, as we do in this work. 

Several models have been developed to explore 

other alternative methodologies, with the intent of 

deflecting the inherent difficulty of traditional 

optimization models due to the complexity of the 

model, and multiple local optimal solutions. (Mahor 

et al., 2009)  provide a review of multiple papers that 

attempt to overcome the problem through the use of 

Particle Swarm optimization (PSO), but those papers 

focus on the so called ‘Economic Dispatch’ problem, 

focus on planning the output of given set of 

generating units. For this problem, the network flows 

did not play a role.   (Courtecuisse et al., 2010) 

proposed a methodology for designing a fuzzy logic 

based supervision model for an HRES, based on the 

guidance of maximizing the usage of Wind Power, 



 

and minimizing the use of non-renewable power, by 

designing a supervisor system that controls the power 

generation of each component, as well as the 

frequency. This paper, however, does not attempt to 

optimize the functioning of the HRES for cost, 

environmental impact, or other objectives. 

Much work was devoted with focus on the 

demand side, ranging from prediction models based 

on Artificial Neural networks, (Yokohama et al., 

2009) and (Ekonomou, 2010), to mechanisms for 

Demand Side Management (DSM) Demand 

Regulation (DR) to counter the constraints on the 

energy supply in the context of multi-objective 

optimization of a mixed renewable system (Moura 

and de Almeida, 2010). Although this work can be 

helpful in complementing our solution, from the 

perspective of addressing the load and consumption 

projections, it does not address our area of focus. 

Other research focused on simulating the HRES 

model (Bernal-Agustin and Dufo-Lopez, 2009), and 

on developing optimization strategy to minimize Net 

Present Cost (investment costs plus the discounted 

present value of all future costs) or the ‘Levelized’ 

Cost of Energy (total cost of the entire hybrid system 

divided by the energy supplied by the same). 

Although the concept is useful to solve these complex 

and non-linearized problems, it focuses on stand-

alone hybrid system only, not on distributed 

networks. 

Several papers focused on optimization of hybrid 

models through Linear Programming approaches  

(Cormio et al., 2003), where the model described the 

energy system as a network of flows, by combining 

the use of multiple sources (renewable and non-

renewable) to the demand for energy services, 

through a given planning horizon. The objective 

function to be minimized encompassed all fixed and 

variable costs (investment and operations), subject to 

a series of constraints, related to the demand, sources, 

environmental impacts, etc. The model builds on a 

comprehensive modeling of the different 

elements/components for generation and 

consumption. However, it does not support a modular 

approach for adding components located in different 

parts of the network, with considerations of 

distribution flows among possibly segregated 

regions.  

In the realm of software solution packages, many 

comprehensive models were also developed, one of 

the best known being HOMER (Lambert et al., 2006), 

which provides a robust framework for planning and 

simulating an HRES model for a micro-grid, and 

driving the identification of the optimal model 

through the simulation of discrete number of 

scenarios. A good number of packages were 

developed in the same vein. HOMER (as well as other 

similar packages), offers a user-friendly framework 

that allows the flexibility to incorporate the elements 

as required, by establishing options for each 

component, amount, and sizing, together with the 

determination of patterns for the grid load, and 

external factors such as wind, sunlight, etc. that affect 

the behavior of the components. Their framework, 

however, does not address the problem which is the 

focus of our research,  in some respects: first, it is 

based on a simulation approach to arrive at the 

‘optimal’ combination, among pre-selected discrete 

set of options, as opposed to relying on true 

optimization techniques for addressing a larger 

universe of combinations; second, it solves the 

problem for micro-grid planning, i.e. it does not 

address a larger energy distribution network, in which 

the location of the components play a role on the 

optimized operation. 

 

3 TOPOLOGY 

REPRESENTATION FOR 

POWER NETWORKS 

3.1 Electric Power System and 
Components 

As discussed in Section 1, Figure 1 represents a 

typical deployment of power storage across an 

electric power system, depicting the delineation of the 

main components of an electric network, how they 

interconnect to satisfy demand for end use, and how 

they can leverage storage technology as part of the 

solution to optimize different aspects of delivery, and 

to balance potential sources of instability. 

Starting with generation, as we mentioned before, 

fossil-fuel generation plants represent the more 

traditional source of generation, with a 

stable/predictable supply, but also a major cause of 

carbon emissions (as other pollutants), and for that 

reason being a less attractive source. Renewable 

sources on the other hand, such as wind and solar, are 

an attractive alternative to eliminate/reduce 

emissions, but in general are less stable as a source, 

therefore requiring mechanism for balancing supply. 

From the point of view of transmission and 

distribution, we usually see the placement of 

substations upstream (i.e. close to the 

generation/supply source), which distributes electric 

power to other substations downstream (i.e. near end 



 

consumers). Although this subsystem can be 

considered stable and predictable, the concern is 

normally scalability, as the demand grows with time, 

driving the need to upgrade lines and substation, 

which can represent considerable expense. 

As for the end demand, we have residential, 

commercial and industrial customers, with 

considerable variability throughout the day, as well as 

seasonal and other effects, driving stochastic 

behavior. Here again, storage mechanisms can be 

used to attenuate the effects on this variability.  

Electricity storage can be deployed throughout an 

electric power system—functioning as generation, 

transmission, distribution, or end-use assets — an 

advantage when it comes to providing local solutions 

to a variety of issues. Sometimes, placing the right 

storage technology at a key location can alleviate a 

supply shortage situation, relieve congestion, defer 

transmission additions or substation upgrades, or 

postpone the need for new capacity.  

Different types of storage technology are 

depicted, and can attend different functions based on 

the nature of the technology and the physical location 

of the solution. Pump hydro storage, for example, is a 

mature and well proven technology based on 

pumping water from a low to a high reservoir, through 

a turbine powered by the grid, and then releasing the 

water back to the lower reservoir, releasing energy, 

when needed. Their downside is the cost, and the 

potential environmental impact they may create. 

Batteries on the other hand, can provide a possible 

solution to compensate for variability of a renewable 

source, such as the wind-battery example depicted. 

Such an integrated wind-storage system could create 

a stable supply of energy, but at the same time, 

increase significantly the cost of the solution. Similar 

structure is also proposed for a combined solar-

battery solution. On its most basic level, a battery is a 

device consisting of one or more electrochemical 

cells that convert stored chemical energy into 

electrical energy. Advances in technology and 

materials have greatly increased the reliability and 

output of modern battery systems, and economies of 

scale have dramatically reduced the associated cost, 

allowing them to be applied to larger energy 

generation solution at an acceptable cost, and a much 

longer lifespan.  

A flywheel is a rotating mechanical device that is 

used to store rotational energy. It is able to capture 

energy from intermittent energy sources over time, 

and deliver a continuous supply of uninterrupted 

power to the grid. Flywheels also are able to respond 

to grid signals instantly, delivering frequency 

regulation and electricity quality improvements. 

Other storage solutions can operate on the end 

users side, helping address the demand variability, 

therefore stabilizing the load in the short term, and 

avoiding transmission infrastructure upgrades in the 

long term. Some of these solutions include the 

thermal storage situated in a commercial campus. 

Thermal energy storage is very economical, and is 

usually placed at the site of electricity consumption. 

Thermal storage lowers a building's electricity costs 

by shifting the time of day when the building runs its 

cooling system. Other consumption level solutions 

may involve the use of batteries to regulate demand 

on a residential neighborhood. 

3.2 Conceptual Diagram for Power 
Network Topology 

Based on the prior picture, we generate a topology 

diagram, which maps every physical facility in the 

picture to a corresponding component in the diagram 

below, as follows. In the diagram, orange circles 

represent generators. Blue circles represent 

aggregators. Yellow circles represent market. Green 

circles represent storage (for the purpose of this 

exercise, we don’t differentiate between different 

storage technologies). Purple circles represent 

transmissions. Lines represent power flows and the 

small ovals represent the power flow identifiers. Red 

rectangles represent demand (both residential and 

commercial). 

 

 

 

 

 

 

 

 



 

Figure 2: Topology Diagram 

 

 

This diagram can serve as the basis for 

establishing the formal model in the next section, as 

well as the case study subsequently, as it provides a 

modular view for the different components to be 

assembled in distinct forms to provide extensibility to 

reflect different network configurations. 

The topology diagram can be used for two 

interrelated decision  problems: 

1. Operational (short term) – for every 

hourly interval, determine the optimal power 

flows across multiple components to satisfy 

projected demand during a given time horizon, 

while optimizing an objective function (e.g. cost 

to be minimized, or a combination of other 

factors, such as emissions). A decision to be 

made at the beginning of each hourly interval, 

as a rolling time horizon. 

2. Planning/Investment (mid to long 

term) – based on expected demand growth, 

decide on preferred investments on the network 

to improve its functions. This problem normally 

involves decision on policy, when evaluating 

larger scales networks. 

This paper focuses on problem 1 – although it can 

support the analysis on problem 2, by allowing  

 

 

 

us to perform what-if analysis on the operations under 

each option being evaluated. 

In the next section, we will proceed to a formal 

description of the model, addressing the key 

considerations for each component, as well as the 

main variables involved. 

4 FORMAL MODEL 

4.1 HRES Optimization Framework 

 

We define an optimization framework as a tuple: 

 

HRES: 

(𝑇, 𝐹, 𝐴, 𝐴𝐼𝐹, 𝐴𝑂𝐹, 𝐶𝑀𝑃, 𝐶𝐼𝐹, 𝐶𝑂𝐹, 𝐷𝑆, 𝐺𝑆, 𝐵𝑆, 𝑇𝑆) 

 

Where: 

 

 T = {1,2,3 … 𝑁}  is the Time Horizon with 

fixed intervals 1, 2,…, N 

 IntervalLength is the duration of each time 

interval 



 

 F  is the set of flow ids between the 

components of the network 

 A is the set of aggregator ids 

 AIF: 𝐴 → 2𝐹is an Aggregator Input Flow 

function that, for each aggregator 𝑎 ∈

𝐴, gives a set of its input flows AIF(a) 

 AOF: 𝐴 → 2𝐹  is an Aggregator Output 

Flow function that, for each aggregator 

𝑎 ∈ 𝐴, gives a set of its output flows 

AOF(a) 

 CMP is the set of component ids, including 

generators, transmission/distribution, 

batteries, demand sources 

 CIF: 𝐶𝑀𝑃 → 𝐹 ∪ {𝛬} , where  Λ ∉ 𝐹, is a 

function that, for every component 𝑐 𝜖𝐶𝑀𝑃, 

gives: 

 

(1) 𝑖𝑡𝑠 𝑖𝑛𝑝𝑢𝑡 𝑓𝑙𝑜𝑤 𝐶𝐼𝐹(𝑐)  ∈ 𝐹 

OR 

(2) 𝐶𝐼𝐹(𝑐) =  

 Λ 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑡ℎ𝑎𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑐 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑎𝑣𝑒 𝑎𝑛 𝑖𝑛𝑝𝑢𝑡𝑓𝑙𝑜𝑤 

 

 COF: 𝐶𝑀𝑃 → 𝐹 ∪ {𝛬} , where  Λ ∉ 𝐹, is a 

function that, for every component 𝑐 𝜖𝐶𝑀𝑃, 

gives: 

 

(1) 𝑖𝑡𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑙𝑜𝑤 𝐶𝑂𝐹(𝑐)  ∈ 𝐹 

OR 

(2) 𝐶𝑂𝐹(𝑐) = 

 Λ 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑡ℎ𝑎𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑐 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 

 ℎ𝑎𝑣𝑒 𝑎𝑛 𝑖𝑛𝑝𝑢𝑡𝑓𝑙𝑜𝑤 

 

 DS = (D, dF), is the Demand Structure 

tuple, where: 

D ⊆ CMP  is a set of demand source IDs; 

We require that demand source IDs  do not 

have output flows, i.e.   (∀𝑑 ∈

𝐷)  𝐶𝑂𝐹(𝑑) =  𝛬 

dF:  𝐷 × 𝑇 → ℝ+is the demand function 

that, for each demand source d and time 

interval t, gives the predicted demand 

dF[d,t] in kw. 

 GS = (G, fPr, gCap, gEff) is the Generators 

Structure tuple, where: 

o G ⊆ CMP is the set of generator ids; 

we require that generators do not have 

input flows, i.e.  

o (∀𝑔 ∈ 𝐺)  𝐶𝐼𝐹(𝑔) =  𝛬 

o 𝑓𝑃𝑟:  𝐺 × 𝑇 → ℝ+is the price function 

that for each generator g and time 

interval t, gives the expected fuel price 

fPr[g,t] in $/Btu 

o 𝑔𝐶𝑎𝑝:  𝐺 → ℝ+is a function that gives 

for each generator g, the maximal 

capacity of generation gCap(g)  in kw 

o 𝑔𝐸𝑓𝑓: 𝐺 → ℝ+is the function that 

gives for each generator g, the 

efficiency gEff(g) in Btu/kw. 

 𝑇𝑆 =

 (𝑇𝐷, 𝐿𝑅, 𝑇𝑀𝐶, 𝑡𝐶𝑎𝑝) 𝑖𝑠 𝑡ℎ𝑒 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛/

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑡𝑢𝑝𝑙𝑒, 𝑤ℎ𝑒𝑟𝑒:  

o TD ⊆ CMP is the set of 

Transmission/𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ids 

o 𝐿𝑅: 𝑇𝐷 → [0,1] is the Loss Ratio 

of each Transmission/

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 id 

o TMC: 𝑇𝐷 → ℝ+is the annual 

maintenance cost for each 

Transmission/𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 id 

o 𝑡𝐶𝑎𝑝:  T𝐷 → ℝ+is the maximal 

capacity of transmission in kw for 



 

each Transmission/𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

id 

 

 BS = (B, NBC, BLC, BMC, bcF, BIE, M, 

bmP, ppC) is the Battery Structure tuple, 

where: 

o B ⊆ CMP is the set of Battery ids 

o NBC: 𝐵 → ℝ+is the new battery 

cost (for replacing each battery id) 

o BLC: 𝐵 → ℝ+is the Battery 

Lifecycle Parameter, for each 

battery id 

o BMC:B → ℝ+is the annual 

maintenance cost for each Battery 

id 

o bcF: 𝐵 × 𝑇 → ℝ+is the battery 

capacity function that for each 

battery b and time interval t, gives 

the expected energy storage 

capacity bcF(b,t) in kwh 

o BIE: B  → ℝ+is the battery initial 

energy level at t = 0 

o M is set of market ids being served 

by batteries 

o bmP: B × M → 𝑏𝑚𝑃[𝑏, 𝑚] are all 

battery-market pairs, for ∀𝑏 ∈ 𝐵 

and ∀𝑚 ∈ 𝑀 

o ppC: B  𝑀 → ℝ+ is the price that 

each market is willing to pay for 

committed capacity (in $/kw) 

 

4.2 HRES Optimization Problem 

The formal HRES Optimization is stated as: 

 

Min
(𝑘𝑤,𝑏𝐸,𝑐𝐹𝑙,𝑑𝐹𝐿,𝑐2𝑚𝐹𝐿,𝑐𝐶) 

𝑅𝑒𝑣𝐴𝑑𝑗𝐶𝑜𝑠𝑡

= 𝑔𝐶 + 𝑡𝐶 + 𝑏𝐶 − 𝑚𝑅 

 

 

Subject to Ca, Cg, Ctd, 

Cd, Cb 

 

Where the decision variables, objective and 

constraints are given below: 

 

Decision Variables: 

 

 kw is the matrix of elements kw[f,t], where for 

every flow f ∊ F and every time interval t 𝜖 𝑇, 

kw[f,t]  gives the the amount of kilowatts 

transferred between two components 

 bE is the amount of energy stored in a battery at 

a time interval t 

 cFL is the Boolean value (charge flag) that 

indicates if a battery is being charged at a time 

interval t 

 dFL is the Boolean value (discharge flag) that 

indicates if a battery is being discharged at a 

time interval t. 

 c2mFL is the Boolean value (commit to market 

flag) that indicates if a battery’s capacity is 

committed to a market at a time interval t 

 cC is the committed capacity of a battery to a 

market at a time interval t 

 

Objective Function:  

 

𝑅𝑒𝑣𝐴𝑑𝑗𝐶𝑜𝑠𝑡 = 𝑔𝐶 + 𝑡𝐶 + 𝑏𝐶 − 𝑚𝑅 

 

where: 

 RevAdjCost is the overall cost through the time 

horizon reduced by market revenue  

 gC is the cost associated with operating the 

power generators during the time horizon (see 

section 4.4) 

 tC  is cost of maintaining the 

Transmission/Distribution stations during the 

time horizon (see section 4.5) 

 bC is the cost of operating the batteries, as well 

as the associated battery depreciation cost, 



 

based on usage through the time horizon (see 

section 4.7.1) 

 mR is the revenue associated with committing 

batteries to market throughout the time horizon 

(see section 4.7.2) 

Constraints: 

 

 Ca = Aggregators’ constraints (see section 4.3) 

 

 Cg = Generators’ constraints (see section 4.4) 

 

 Ctd = Transmission/Distribution constraints (see 

section 4.5) 

 

 Cd = Demand constraints (see section 4.6) 

 

 Cb = Batteries’ constraints (see section 4.7.3) 

 

4.3 Aggregators 

Power Aggregators consolidate power flows 

originated from m different sources, and redistribute 

the same flows into n different destinations. We 

assume no operational costs to be incurred with power 

aggregators.  

 

The main constraint for each Aggregator is given 

by: 

 

 

Ca: ∑ 𝑘𝑤[𝑓, 𝑡]𝑓 𝜖 𝐴𝐼𝐹(𝑎)  = ∑ 𝑘𝑤[𝑓, 𝑡]𝑓 ∈𝐴𝑂𝐹(𝑎)                

(∀𝑎𝜖 𝐴, 𝑡𝜖 𝑇)  
 

4.4 Generators 

We assume only output flows from the Power 
Generators. The cost of operating each power 
generator (GenId0 is given by the fuel cost (Dollars 
per BTU), the generator efficiency (BTU per kWh), 
and the amount of output flow during the given time 
interval: 
 

GenCost[𝑔,t] =  fPR[𝑔,t] * gEff [𝑔] * kw[f, t] * 
IntervalLength 

(  ∀𝑔𝜖 𝐺, 𝑡 𝜖 𝑇, 𝑓 𝜖 𝐴𝑂𝐹(𝑔)) 
Total operating cost for all generators across the 

whole time horizon is given by the sum of GenCost 
across Generator Ids and time intervals t, i.e. 

gC = ∑ GenCost[𝑔, t]𝑡𝜖 𝑇,g  𝜖 𝐺  
 
 The only constraint for the output flow is given 

by the generator’s maximal capacity: 

 
Cg:  kw[f,t]  ≤  gCap[𝑔]   

(∀𝑔𝜖 𝐺, 𝑡𝜖 𝑇, 𝑓 𝜖 𝐶𝑂𝐹(𝑔)) 

 

4.5 Transmission/Distribution 

The total cost associated with 

transmission/distribution is given by the sum of the 

known maintenance costs for each distribution station 

through the time horizon, i.e.  
 
tC = ∑ 𝑇𝑀𝐶[𝑡𝑑] 𝑡𝑑 𝜖 𝑇𝐷  
 
A fixed loss ratio is assumed to be known for each 

transmission/distribution station. Therefore, it carries 
a constraint of a given relationship between output 
and input flows based on the loss ratio:  

 

     Ca1:  kw [f1, t] = (1.0 - LR[𝑡𝑑]) * kw[f2,t] 

 

(∀𝑡 𝜖 𝑇, 𝑡𝑑 𝜖 𝑇𝐷, 𝑓1𝜖 𝐶𝑂𝐹(𝑡𝑑), 𝑓2𝜖  𝐶𝐼𝐹(𝑡𝑑)) 

 

 

A second constraint is given by the maximal 

transmission capacity for the station: 

 
   Ca2 kw [f,t]  ≤  tCap[𝑡𝑑] 
 (∀𝑡 𝜖 𝑇, 𝑡𝑑 𝜖 𝑇𝐷, 𝑓𝜖 𝐶𝐼𝐹(𝑡𝑑)) 

 

4.6 Demand 

Given our assumption that all end demand is satisfied, 
and only input flows of electric power are applicable, 
the main constraint is that the sum of input flows 
equals total demand for any end demand point for any 
time interval t:  
 

        Cd: kw[f,t] = dF[𝑑,t] 
 
(∀𝑡 𝜖 𝑇, 𝑑 𝜖 𝐷, 𝑓𝜖 𝐶𝐼𝐹(𝑑)) 
 
 For the same reason, revenue from end demand 

is not considered in the cost / Revenue optimization 
(as it is unchanged for a given demand load). 

 

4.7 Energy Storage / Batteries 

4.7.1 Batteries Cost  

Cost of operating each battery for any time interval is 
given by adding the maintenance cost for the battery, 
and its depreciation cost. The depreciation is given by 
the cost of battery replacement (NBC), the cumulative 



 

charge and discharge at the end of the period (cCD) 
and a known battery lifecycle parameter (BLC):  

 

bDep[𝑏] =   

 
𝑁𝐵𝐶[𝑏]  ∗  𝑐𝐶𝐷[𝑏][𝑡 + 1]

𝐵𝐿𝐶[𝑏] 
 

 

 
  (∀𝑡 𝜖 𝑇, 𝑏 𝜖 𝐵) 
 

The accumulated amount (absolute value) that 

charges and discharges through a battery at the end of 

each time interval (t+1), is given by: 

 

cCD[𝑏,t+1] = cCD[𝑏,t] + (kw[f1,t] + kw[f2,t]) * 

IntervalLength 

 

(∀𝑡 𝜖 𝑇, 𝑏 𝜖 𝐵, 𝑓1 𝜖 𝐶𝐼𝐹(𝑏), 𝑓2𝜖 𝐶𝑂𝐹(𝑏)) 

 

where 

 

cCD[𝑏][0] = 0 

 

 

For the overall Battery Costs: 

 

batCost[𝑏] = BMC[𝑏] + bDep[𝑏]; 

 

bC = ∑ 𝑏𝑎𝑡𝐶𝑜𝑠𝑡[𝑏] 𝑏 ∈𝐵  

 

 

4.7.2 Batteries/ Market Revenue 

If a battery is committed to a market for a given time 

interval t, additional revenue is generated, given by 

the price per capacity for that market and the 

committed capacity for the time interval (cC): 

 

 

ActualMarketRev [𝑏𝑚𝑃[𝑏, 𝑚] ][t] = 

                ppc[𝑚][t]  * cC[𝑏][t]   

 

In this model, for sake of simplicity, the capacity 

is treated as constant over the time horizon. Note that 

during the time intervals where the battery is 

committed to a market, the net flow of energy is zero, 

i.e. the energy at the end of the period is equal to that 

at the beginning of the same period. 

 

The total market revenue (mR) is given by:  

 
mR = ∑ 𝐴𝑐𝑡𝑢𝑎𝑙𝑀𝑎𝑟𝑘𝑒𝑡𝑅𝑒𝑉[𝑏](𝑡]𝑡 𝜖 𝑇,𝑏 𝜖 𝐵  

4.7.3 Batteries/Markets Constraints 

 

At any time interval, as the following battery 

states are mutually exclusive: 

 Charged – only input flows going into the 

battery. 

 Discharged – only output flows going to 

subsequent components in the network. 

 Committed to a market (i.e. using existing 

unused capacity at any time interval to sell it to 

an external market and provide revenue).   

 

Additionally, any battery can be committed to no 

more than one market at any given time interval. 

 

This translates into the following constraints, 

(∀𝑡 𝜖 𝑇, 𝑏 𝜖 𝐵, 𝑓1 𝜖 𝐶𝐼𝐹(𝑏), 𝑓2𝜖 𝐶𝑂𝐹(𝑏)) : 

 

Bc1: cFL[𝑏][t] + dFL[𝑏][t]  + 

∑ 𝑐2𝑚𝐹𝐿[𝑏𝑚𝑃[𝑏, 𝑚] ][𝑡]𝑀𝑗  ≤ 1 

 
Bc2: cFL[𝑏][t] =  1 iff kw[f1, 𝑡])> 0  (0 

otherwise) 
 
Bc3: dFL[𝑏][t]  =  1 iff kw[f2, 𝑡] > 0  (0 

otherwise) 
 

Regarding the amount of energy stored in the 

battery at any point in time, it starts with a given 

amount, ends the time horizon with the same amount, 

and oscillates throughout the time horizon based on 

charges and discharges of the battery: 

 

Bc4: bE[𝑏][1] = bE[𝐵𝑖][ 𝑁 + 1 ] = BIE[𝑏] 

 

bE[𝑏][𝑡 + 1] = bE[𝑏][ 𝑡] + kw[f1, 𝑡] – kw[f2, 𝑡]) 

* IntervalLength 

5 IMPLEMENTATION AS MILP 

A simple version of this model was developed using 

IBM OPL CPLEX Studio. 

The model is run under a set of simplifying 

assumptions (we will later address how some of these 

assumptions could be eliminated going forward, as 

the model is flexible to reflect a broader set of 

configurations): 

 This prototype is built for always 

satisfying the customer demand, at the 

established consumer rates. In other words, 

the pricing structure does not get affected by 

the decisions made in the model, nor there is 

an option to satisfy partial or selective 

demand. 



 

 Demand in the time horizon is 

deterministic and known ahead of time 

 Power Generation is based on fossil 

fuels with no restriction on fuel availability 

and with uniform fuel pricing across different 

generation facilities i.e. no wind-power or 

solar generation facilities for this initial 

model, and consequently, the power 

generation will also be considered 

deterministic. 

 Power aggregators do not incur loss 

when redistributing power flows. 

 Power loss ratios are constant and 

known for each Transmission/Distribution 

facility. 

 Batteries can either be charged or 

discharged or committed to one specific 

market at any point in time. The market pays 

the utility by capacity committed and not by 

energy available (which get restored to the 

original value when the battery is released 

back). 

 As a result of above assumptions, the 

key consideration for determining the flow of 

energy between the different components is 

the behavior of the different batteries, and the 

decision to charge, discharge or commit to a 

market each of the batteries capacity.  

 Battery Capacity at any time t would 

be normally considered a function of the 

cumulative charge and discharge. For sake of 

simplification, we use energy capacity as a 

given constant for each t within the time 

horizon. We will also refrain from deep 

technical considerations in this work, 

regarding all the factors affecting capacity 

and battery utilization, using rather a simpler 

model to convey the concept. 

6 PROOF OF CONCEPT AND 

CASE STUDY 

In this section we propose different scenarios to 

provide insights into the model, and to correspond to 

the intuition of what to expect from its behavior for 

different combinations of components ads their 

characteristics. We also follow a given sequence of 

key steps that constitute the methodology: First, we 

depict each scenario as the topological representation, 

as described in section 3. Next, we capture each of the 

component characteristics into the variables defined 

by the HRES optimization framework. Lastly, we 

implement the MILP problem solution, by translating 

these variables into IBM OPL CPLEX Studio, and 

running the solver, to derive the solutions.  

We examined scenarios in which the different 

parameters combinations drive distinct decision 

variables for the time horizon. As explained in prior 

section, we are examining a 24 hour time horizon, 

within a time unit of one hour. For each hourly 

interval, in essence, we are determining what would 

be the optimal value for power flows, battery states, 

commitments and costs, for the full 24-hour time 

frame. On real life utilization scenario, two possible 

operation modes could be considered: in the first, a 

planning engine would run based on the expected 

demand for the upcoming day, and after execution, 

the planning engine plans the subsequent day 

operation; another option, would be to re-evaluate 

dynamically the planning within a rolling time 

horizon, as every hour we could look at actual values, 

as well as adjustments on demand for upcoming 24 

hours.  

In order to better understand the model behavior, 

we first look at a highly simplified model (see Figure 

3), with a minimal number of components, based on 

synthetic data, in order to visualize the effects. 

 
Figure 3: Simplified Topology Diagram 

 
We populated a simple set of parameters for the 

components depicted and observed the behavior of 

changing specific values, and examining the impact 

on the decision variables and the objective function. 

As described before, given that the infrastructure is 

fixed for the time horizon, and the demand is assumed 

as known for that time period, the key variable to be 

regulated would be the battery, to address possible 

imbalance between energy supply and demand: 

 When the energy from the generator(s) 

is sufficient to satisfy the demand, the 

batteries will not be utilized in the network, 

and will be fully committed to an external 

market to generate revenue. 

 For any points in time when demand 

exceed the generator(s) capacity (also 

accounting for efficiencies, and possible 

losses in transmission), the batteries would 

be activated (discharged), and subsequently 



 

re-charged in order to return to the original 

energy level. 

 If for economic reason, it becomes 

more cost effective to utilize batteries for 

period of time (therefore saving on 

generators’ operation), the batteries would 

be activated (discharged), and subsequently 

re-charged in order to return to the original 

energy level. 

 If a transmission ‘glut’ occurs (i.e. 

transmission/distribution lines are not 

sufficient to handle remote demand, 

downstream batteries (located next to the 

demand centers) would be leveraged during 

those times. 

With these insights in mind, we proceeded to scale 

up the model, to reflect the topology depicted in 

Figure 2, and built (again recurring to synthetic data), 

to create the four scenarios depicted below.  

Scenario 1: Generation and transmission capacity 

can satisfy the demand. 

Summary results: Model recommended not using 

batteries in operation, and always committing them to 

market.  

 

Scenario 2: For some hours in the time horizon, 

the fuel cost is very high.  

Summary results: Model recommended 

discharging batteries at that time. 

 

Scenario 3: The generators capacity cannot satisfy 

some peak demand (for some hours of operation). 

Summary results: model recommended using 

batteries for these periods. 

 

Scenario 4: The transmission capacity is limited, 

so that it is not sufficient during some hours of peak 

demand.  

Summary results: model recommended using the 

batteries downstream (at the distribution areas), to 

offset lack of power from upstream. 

7 CONCLUSIONS AND FUTURE 

DIRECTIONS 

In this work, we were able to demonstrate an 

approach for optimizing the operations of 

components of an electric power network, including 

power generation, transmission/distribution, power 

storage, energy markets, and end customer demand 

(residential and commercial).  A prototype was 

developed using IBM OPL CPLEX Studio, to make 

recommendations for operating the network, while 

minimizing revenue-adjusted overall costs for a given 

time horizon. A simple topology was created, and 

different scenarios were examined to assess the basic 

behavior of the model, in common situations, based 

on realistic synthetic data. The initial results 

demonstrate the validity of the approach, and provide 

some promising directions for future development. 

This work opens multiple avenues to be explored 

in the future, which can be focused on different 

directions: operations optimization (i.e. keeping the 

existing objectives for the short term, but expanding 

the complexity of the model to address more realistic 

scenarios); investment planning / policy (addressing 

the mid to long term decisions, from the perspective 

of the investment in the network, and the 

public/private policy determination decisions); and 

the technology aspects of the solution.  

Regarding operations optimization, the model can 

be refined in several ways. First, given that one of the 

key overarching goals in to support a hybrid network, 

introducing energy generation through wind and solar 

power, to as alternate source to the fuel based 

generators. Second, we could add stochastic 

elements, considering the more realistic the need to 

incorporate demand variability (and possibly supply 

too, especially with renewable sources, and 

occasional failures of conventional ones), adding 

forecasting elements and/or stochastic optimization 

into the model. Third, we should collect and refine 

real data (possibly with collaboration with 

utility/power companies) to relax some of the 

simplifying assumptions and increase the 

applicability of the model.  

In the real of long term planning, the framework 

could be expanded, to support decisions that go 

beyond the operations of the network, and to include 

infrastructure/ capital investment recommendations 

to achieve long term goals. On a broader sense, we 

would define multiple objectives, translated into Key 

Performance Indicators (KPIs), which would in turn 

address other goals beyond cost optimization 

(including environmental impact, regional 

employment, system reliability, etc.). This process 

would possibly involve multiple stakeholders / 

decision-makers, in the public and private sectors, 

which could also drive policy decisions that address 

those goals. What-if scenarios could provide the 

sensitivity analysis to the model, to evaluate the 

effects of different policies (e.g. tax incentives, 

emissions regulations), as well as the prioritization of 

investment in network assets (such as new batteries, 

new distribution lines, etc.).  



 

Finally, from a technology perspective, although 

a good initial model could be built directly within 

OPL, we could invest in more flexible tools to be 

developed, to allow a more intuitive modeling (i.e. 

driven by business rules), and reusability, therefore 

overcoming some of the obstacles of modeling 

directly in the optimization tool. This could also allow 

for incorporating other features such as learning and 

improving the model based on real data, integrating 

prediction mechanisms, and supporting more 

intuitive what-if analysis capabilities.  
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