
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Nearly Convex Segmentation of Polyhedra Through Convex
Ridge Separation

Guilin Liu
gliu2@gmu.edu

Zhonghua Xi
zxi@gmu.edu

Jyh-Ming Lien
jmlien@cs.gmu.edu

Technical Report GMU-CS-TR-2015-3

Abstract

Decomposing a 3D model into approximately convex
components has gained more attention recently due to its
ability to efficiently generate small decomposition with
controllable concavity bound. However, current meth-
ods are computationally expensive and require many
user parameters. These parameters are usually unin-
tuitive and add unnecessary obstacles in processing a
large number of meshes and meshes that are generated
online in applications such as video games. In this paper,
we investigate an approach that decomposes a mesh P
based on the identification of convex ridges. Intuitively,
convex ridges are the protruding parts of the mesh P.
Our method, called CORISE, extracts nearly convex com-
ponents of P by separating each convex ridge from all
the other convex ridges. Through the new concept of
residual concavity CORISE requires only a single user pa-
rameter: concavity tolerance. We show that our method
can generate noticeably better segmentation in signifi-
cant shorter time than the current state-of-art methods.
Finally, we demonstrate applications of CORISE, includ-
ing physically-based simulation, cage generation and
model repairing.

1 Introduction

In interactive applications, it is necessary to create sim-
plified representations of a mesh to support various com-
putationally intensive operations. In this work, we are
interested in obtaining such simplified representations
via decomposition. Taking deformation as an example, a
mesh that has been decomposed into visually meaning-
ful parts (e.g. head, torso, limbs) eases the process of cre-
ating deformation at semantic level. On the other hand,
if a mesh is caged and partitioned by a set of convex
shells, artists can use these shells to perform physically-
based deformation efficiently. In many situations, both

of these higher-level (semantic) and lower-level (phys-
ical or geometric) deformations are required. While it
is ideal to keep both representations, it is also desirable
to have an unified representation. An unified repre-
sentation not only reduces space requirement but also
allows deformations created at various semantic levels
to be applied to the original mesh through a single ap-
proximation. Therefore, we recognize the need to have
decomposition methods, such as the one proposed in
this paper, that provide users both visual saliency and
bounded geometric properties.

The first type of decomposition above is called shape
decomposition. In the past decade, significant progress
has been made in producing high quality results [1, 2,
3, 4, 5, 6, 7]. Shape decomposition provides implicit
shape approximation and is useful for shape analysis
and recognition and semantic level shape editing and
deformation. The second type of decomposition can be
accomplished through the Approximate Convex Decom-
position (ACD) [8]. ACD decomposes a 3D mesh into
nearly convex parts. Unlike shape decomposition, ACD
provides explicit approximation with bounded approx-
imation errors and is therefore suitable for lower level
processing. For example, Bullet physics library uses hi-
erarchical ACD (HACD) [9] to speed up the collision
detection and response computation of the non-convex
shapes, and Muller et al. [10] proposed an interactive
tool to generate approximate convex parts for speeding
up dynamic fracture simulation.

The most challenging task in developing such a de-
composition method stems from the fact that current
convex decomposition and shape segmentation meth-
ods are computationally expensive and require different
parameter settings for different shapes which are usu-
ally unintuitive and make processing a massive number
of meshes in applications difficult. Recently, learning
based segmentation methods [4, 5] are proposed to learn
common parameters in an unsupervised or supervised
manner, but the computation time of these methods is

1

(a) Input (b) Convex ridges (c) CORISE

(d) Cage-based deformation (e) with Bullet library

Figure 1: An example of CORISE with concavity toler-
ance τ = 0.05. (a) Input mesh. (b) Ten convex ridges
(shown as translucent ellipsoids) are connected by deep
valleys (shown as the geodesic paths). Formal definition
of convex ridge and valley can be found in Section 4. (c)
Final decomposition. (d) CORISE used for automatic
cage generation. (e) The convex hulls of CORISE compo-
nents can be used to speedup computation in physically-
based simulation.

often intolerably high (minutes to hours), in particularly,
for interactive applications.

Contribution In this paper, we will describe an effi-
cient decomposition method, called CORISE. The only
user input parameter is a concavity tolerance which di-
rectly controls the approximation error. The novelty of
CORISE comes from the idea of convex ridge which can be
efficiently and robustly determined. Essentially, CORISE
extracts nearly convex components of a 3D mesh P by
separating each convex ridge from all the other convex
ridges using graph cut. An example of convex ridge
and CORISE decomposition is shown in Fig. 1. Formal
definition of convex ridge can be found in Section 4. In
addition, through the new concept of residual concavity,
CORISE is insensitive to the parameter in graph cut and
requires only a single user parameter: concavity toler-
ance. We will discuss residual concavity and graph cut
in Section 5.

Using the Princeton Segmentation Benchmark, we
show that CORISE generates noticeably better segmen-
tation in significant shorter time than the existing meth-
ods [9, 1, 7, 6]. Finally, we demonstrate applications of
CORISE, including physically-based simulation, cage
generation and model repair in Section 6. Fig. 1 shows

two of these applications.

2 Related Work

Many methods have been developed to decompose 3D
mesh models. Comprehensive surveys can be found in
[11, 12, 13]. In this section, we will review more recent
works on shape segmentation and convex segmentation.
After this short review, we will point out that the needs
for developing a more intuitive and efficient method,
such as CORISE.

Shape segmentation Many of the existing single-
shape segmentation methods are based on clustering
mesh faces, such as k-means clustering [14], fuzzy clus-
tering [15], mean-shift clustering [16], and spectral clus-
tering [17]. Shape features, such as geodesic distance,
local concavity, curvature, have significant impact on
these clustering methods. More advanced features in-
clude shape diameter function [6] that is a measure of
the diameter of the object’s volume in neighborhood of
a point, and Mumford-Shah model [3] that measures the
variation within a segment. Methods that are not cluster-
ing based do exist. For example, the method proposed
by Wang et al. [18] uses the training segmentation of 2D
projection images. Random cuts method [7] uses other
different segmentation algorithms with various param-
eters to generate a collection of segmentations to find
consistent cut positions.

Recently, we see more techniques using data-driven
approach. These methods usually provide more consis-
tent segmentations over a set of models [19] and produce
segmentations that are more natural via machine learn-
ing approaches [4, 5]. However, these methods are com-
putationally intensive (require hours of computation)
and are not suitable for interactive use.

Primitive segmentation While many algorithms fo-
cus on decomposing a model into visually meaningful
parts, other algorithms focuses on partitioning models
into geometric primitives such as ellipsoids [20] and
convex objects [8].

In this paper, we are interested in producing nearly
convex components. We found that many methods in
the literature use again clustering (bottom-up) approach.
Mamou and Ghorbel [9] proposed a method called Hier-
archical Approximate Convex Decomposition (HACD)
for 3D meshes. HACD iteratively clusters mesh facets
by successively applying half-edge collapse decimation
operations (see more detailed discussion in Section 6).
Attene et al. [21] proposed to convert a model into tetra-
hedral mesh and then merge tetrahedra to form near
convex components. However, this method requires hu-
man interaction, thus not suitable for segmenting a large
number of models. The method proposed in [22] is based
on a region growing approach controlled by convexity,
compactness and part cost. To-down approaches are
rare. For example, Ghosh et al. [23] proposed a notion

2

named relative concavity to model the concavity measure
before and after every mesh cut. Nearly convex compo-
nents are obtained by finding the cuts that have largest
relative concavities via dynamic programming. In many
of these methods, several parameters are needed to be
set to balance various features.

We would like to note that there are also methods
that use convexity and concavity but do not produce
segmentation with bounded convexity or concavity. For
example, Au et al. [2] used concavity-aware field to form
potential cuts and the final cuts are achieved by maxi-
mizing the cut score. Even though concavity is used, it
doesn’t have direct control of concavity for final com-
ponents and several parameters and thresholds need
to be set. Asafi et al. [24] defined the convexity using
the line-of-sight and applied spectral clustering on the
visibility matrix to achieve segmentation. van Kaick et al
[1] applied merging on the initial result of [24] based on
the Shape Diameter Function. However, since the pair-
wise visibility needs to be computed, the computation
is time-consuming. Moreover, even though these two
methods use convexity as clue for segmentation, they
didn’t directly control the convex/concave geometric
property for the final components.

Concavity and its counterpart, convexity, have shown
to be valuable for various decomposition methods. In-
tuitively, concavity of a polyhedron P measures how
different P is from a convex object, which is typically the
smallest convex object enclosing P, i.e. the convex hull
H(P) of P. Concavity can be measured globally from the
difference between the volumes of P and H(P) or the
difference of their projections [25]. Concavity can also be
measured locally for every point on the surface ∂P of P.
Local concavity measures how far away a point on the
surface of P is from the surface of H(P), thus provides
richer information to guide the decomposition process.

There have been several definitions of local concav-
ity, such as curvature [2]. A more general definition
of the concavity of a point p is the length of the short-
est distances from p ∈ ∂P to H(P) without intersecting
P. Due to the high computational complexity of 3D
shortest-path problem, approximation is required. For
example, Zimimer et al. [26] proposed to compute the
shortest path by tessellating the space between ∂P and
∂H(P) using constrained Delaunay triangulation (CDT).
However, this solution required ∂P to be closed. Many
other approaches resort to the Euclidean distance be-
tween the vertex and the convex hull in the outward
normal direction of the vertex. It is clear that the asso-
ciation between ∂P and ∂H(P) is usually complex and
cannot be captured by the surface normals of P. This
can result in inaccurate measurement of the concavity
and lead to incorrect decomposition. Lien and Amato
[8] proposed to determine the association by projecting
the edges and then facets of ∂H(P) to ∂P. Unfortunately,
such an association between ∂P and ∂H(P) is not always
well defined as it usually depends on how P and ∂H(P)

are tessellated.

3 Overview

CORISE takes a single 3D mesh and a concavity tolerance
parameter τ as input and decomposes this mesh into
nearly convex components in a top-down fashion that
includes three main steps:

Step 1. Build bridges and compute concavities
Bridges are the convex hull edges, and the shortest
geodesic path on the mesh connecting the end vertices
of a bridge is called valley. Then, the concavity of a point
in the valley is measured as the shortest-path distance
to the bridge. Exact shortest geodesic path and shortest-
path distance are computationally expensive thus we
will discuss how we approximate them. We say that a
valley is deep if the maximum concavity in the valley
is greater than τ, otherwise the valley is shallow. It is
important to remember that, throughout the entire seg-
mentation process, concavity is only defined for points
in the valleys and undefined elsewhere.

Step 2. Identify convex ridges In CORISE, a convex
ridge consists of a group of convex-hull vertices con-
nected only by shallow valleys. Intuitively, a convex
ridge can be viewed as a protruding part of the mesh that
is guaranteed to be convex enough. This implies that a
continuous subset of the mesh containing two or more
convex ridges must be too concave. Fig. 1(b) shows an
example of 10 convex ridges.

Step 3. Partition using convex ridges CORISE seg-
ments the mesh by ensuring that each component in
the segmentation contains only a single convex ridge.
The segmentation process is bootstrapped by splitting
each deep valley into shallow ones at the valley separators.
Then CORISE applies graph cut using the region defined
by valley separators as data term and edge angle and
length as smoothness term to find optimal cut loops near
these valley separators.

The above three steps are repetitively applied to the
segmented part whose concavity is greater than τ.

4 Bridge, Valley, and Convex Ridge

To approximate a mesh using convex shapes, we should
establish relationships between the mesh and its convex
hull. Let the input be a polyhedron P = {VP, FP, EP}
composed of a list of vertices VP and faces FP connected
by edges EP. We assume that P consists of a single con-
nected component. The convex hull of P is denoted as
H(P) = {VH , FH , EH}, where VH ⊂ VP. Let us consider
a convex hull edge e = {u, v} ∈ EH . Since e is the short-
est Euclidean path connecting u and v, let us call e a
bridge. Because u and v must also be the vertices of P,
we can always find a path connecting u and v on ∂P. We
call the shortest geodesic path connecting u and v on ∂P
a valley underneath the bridge eβ.

3

Figure 2: The left figure shows one bridge and its valley
in 3D. The right part shows its projected concavity poly-
gon in 2D. Concavities are measured in this 2D polygon
using the shortest-path distance.

A bridge eβ and its associated valley e∨ form a 3D poly-
gon. We call this polygon the concavity polygon, which
plays an important role in many stages of our algorithm.
For example, we project the concavity polygon into a 2D
space and only measure the concavity in the projected
2D space. More specifically, each point p ∈ e∨ = (u, v)
is projected to

p′ = (−→up · −→uv, d(p, eβ)) , (1)

where −→up · −→uv is the inner product of −→up and −→uv, and
the function d defines the Euclidean distance between
a point and a line segment. Fig. 2 shows an example of
bridge, its valley and the projected 2D concavity polygon.
Then, the concavity C(p) of the point p is determined
as the shortest-path distance between p′ and the projected
eβ. It is known that the shortest-path distance can be
measured in O(n) time for a polygon of size n.

The concavity of a valley e∨ (and its associated bridge
eβ) is defined as the maximum concavity of its vertices,
i.e., C(e∨) = C(eβ) = maxp∈e∨(C(p)). Let us call e∨ deep
valley if C(e∨) is larger than the tolerance, otherwise e∨
is called a shallow valley. For the convenience of our fu-
ture discussion, we also classify bridges into high and
low bridges (as measured by the deck height of bridge)
if their corresponding valleys are deep and shallow, re-
spectively.

4.1 Convex Ridge

Now let us formally define the convex ridge. A convex
ridge R of P is a graph representing a subset of convex
hull H(P). We say a subset of R ⊂ H(P) is a convex
ridge if all bridges of R are shallow and there are no
high bridges connecting two vertices in R. More specif-
ically, a convex ridge R must satisfy the following two
conditions:

∀e ∈ ER, C(e) < τ , and
6 ∃e = (u ∈ VR, v ∈ VR), C(e) > τ , (2)

where VR and ER are the vertices and edges of R, respec-
tively. In short, a convex ridge can only have vertices
connected by bridges whose valleys are shallow.

The convex ridges of a given mesh is constructed by
iteratively clustering the convex hull vertices while en-
suring that the properties in Eq. 2 is maintained for
each cluster. The clustering proceeds by collapsing low
bridges sorted in an ascending order based on the length
of the associated valleys. Each final cluster would be-
come a convex ridge. Figure 3 shows examples of convex
ridges. We can also see that convex ridges are quite in-
sensitive to surface noise in Figure 3. In fact, as long as
sallow valleys remain sallow, all convex ridges will be
unaffected.

4.2 Residual concavity

Residual concavity measures the concavity of a valley
e∨ after e∨ is split into two subpaths at a vertex of e∨.
Let e∨ = {v0, v1, · · · , vn−1} be a deep valley, and let
ek
∨ = {v0, v1, · · · , vk−1} be a prefix subset of e∨, where

k ≤ n. We further let ê∨ = {vn−1, vn−2, · · · , v0} be the
reverse of e∨. The residual concavity of e∨ at the k-th
vertex is then defined as:

RC(e∨, k) = max
(

C(ek
∨), C(ê(n−k+1)

∨)
)

. (3)

Recall that the concavity is always measured in the 2D
concavity polygon projected using Eqn.1. It is important
to note that once the valley e∨ is split, two or more new
bridges must be formed to determine the concavity of
e∨’s sub-valleys. Therefore, at the first glance, computing
RC seems to be time consuming, but we have shown that
RC can be computed in linear time.

Lemma 4.1. The computation of residual concavity
RC(e∨, k) takes time linear to the size of e∨, i.e. O(n) for
e∨ with n edges.

Proof. See details in the supplementary material.

4.3 Shape of a valley

The residual concavity gives us a way to estimate the
shape of a valley. We say a valley e∨ is V-shaped if there
exists a vertex vk such that the residual concavity of e∨
is less than the tolerable τ. Otherwise e∨ is U-shaped. An
example of a U-shaped valley can be found in Fig. 4. If
e∨ is U-shaped, we can always find the bottom of e∨ as
the sub-polygon bounded by the prefix and suffix of e∨
that have residual concavities less than τ. In Fig. 4, we
show that the bottom of the U-shaped valley is defined as
(vi, vj), where i and j are the maximum indices such that

C(ei
∨) < τ and C(ê(n−j)

∨) < τ, respectively; recall that
ê∨ is the reverse of e∨. As we will discuss in Section 5,
the shape of valley can be used to determine the number
of vertices needed to separate each convex ridge in the
wired representation to ensure that its concavity is less
than τ.

4

Figure 3: Convex ridges found in these models. Each ellipsoid represents a convex ridge. The three figures on the
right show the convex ridges on the ant model with random noise added. The convex ridges of last 3 pictures are all
generated using τ=0.08

5 Convex Ridge Separation

CORISE segments a mesh by ensuring that each compo-
nent in the segmentation contains only a single convex
ridge. Essentially, CORISE finds such segmentation in
two steps: first, CORISE only focuses on the wireframe
representation of the mesh that consists of vertices and
edges of all convex ridges and deep valleys. An example
of such a representation can be found in Fig. 1(b). For
each deep valley, CORISE determines one or two key
vertices (depending on whether it is a V- or U-shaped
valley) that can separate each deep valley into at least
two shallow valleys. In Section 5.1, we will discuss
how CORISE decomposes this wireframe representa-
tion. Then, once the wireframe is decomposed, CORISE
switches back to the original model and applies a two-
way graph cut to find optimal cut loops near the valley
separators. This step will be discussed in Section 5.2.

5.1 Valley separators

a
b

e�

e_

vk

vg

vi

vj

Figure 4: A deep
U-shaped valley e∨
and its valley sep-
arators vk and vg.
The sub-valleys ei

∨
and êj

∨ are sub-
sets of e∨ whose
residual concavity
is less than the con-
cavity tolerance τ.
The valley separa-
tors vk ∈ ei

∨ and
vg ∈ êj

∨ minimize
the residual concav-
ities RC(ei

∨, k) and
RC(êj

∨, g).

To separate the convex ridges
in the wireframe presentation,
CORISE finds valley separators
for each deep valley and ensures
that each convex ridge only con-
nects the subset of the valley
that has concavity less than the
tolerance. For a V-shaped val-
ley e∨, the valley separator is a
single vertex that has the largest
concavity in e∨. By splitting at
the vertex with the largest con-
cavity, we can guarantee that the
two new sub-valleys of e∨ are
shallow.

For a U-shaped valley e∨,
things are a bit more complex.
Basically, CORISE splits e∨ into
three sub-valleys and guaran-
tees that two sub-valleys inci-
dent to two convex ridges are
shallow even though the bottom
of e∨ may not be. Let eβ = (a, b)
be a bridge whose valley e∨ is U-

shaped. Using the residual concavity defined in Eqn. 3
in Section 4.2, we can find two vertices vi and vj such

that ei
∨, a sub-valley between a and vi, and êj

∨, a sub-
valley between b and vj, are shallow. See Fig. 4 for the

illustration of ei
∨ and êj

∨. Our goal is to define two valley
separators in ei

∨ and êj
∨, respectively. It is true that we

can use vi and vj as the valley separators and still guaran-

tee that ei
∨ and êj

∨ are shallow. However, the locations of
vi and vj are quite arbitrary in most cases. Therefore, the
valley separators for a U-shaped valley e∨ are defined as
a couple of vertices (vk, vg):

(vk, vg), where k = arg min
k

RC(ei
∨, k), g = arg min

g
RC(êj

∨, g)) .

From Fig. 4, we can see that the valley separators
vk and vg of e∨ are identified at the locations of large
concavity if the valley is split at vi and vj. Once the
valley separators are identified for all deep valleys, all
convex ridges are separated and only attached to shallow
valleys. Next, CORISE switches back to the original
representation and segments the mesh using graph cut.

5.2 Convex ridge separator

Graph cut is a powerful optimization tool that has been
proven to be successful in segmentation. In this sec-
tion, we formulate the mesh segmentation as a graph-cut
problem. In the rest of this section, we will focus on how
CORISE separates a convex ridge from others in a single
iteration.

Data term To feed the graph cut, we define the data
term using the so called must-link regions. Intuitively,
each convex ridge has a must-link region which is a
set of faces that must be segmented with the convex
ridge. As we can see in Fig. 5, the boundary of must-link
regions roughly define where the potential cut would
be.

Potential Regions. In order to determine the must-link
region, CORISE first finds a set of facets that can poten-
tially belong to a give convex ridge Rk. Let ei

∨ be the
sub-valley incident to Rk, created from valley separator
as described in Section 5.1. We further let Ti be a set of
facets whose geodesic distance to the end point of ei

∨ in
Rk is less than the path length of ei

∨. Now, from Ti, we

5

Figure 5: The must-link regions connected by the deep
valleys.

can determine a set URk of facets that forms a superset
containing Rk. More specially,

URk =
⋃

1≤i≤n
Ti , (4)

where n is the number of sub-valleys incident to Rk.
Now, two neighboring convex ridges Rk and Rj are

likely to compete on certain facets. In this case, URk
and URj overlap. The overlapping region of IR URk with
other convex ridges is then defined as:

IRk =
⋃
j 6=k

(
URk

⋂
URj

)
.

Must-link and Fuzzy Regions. With URk and IR, we are
ready to define the must-link and fuzzy regions. The
must-link region CRk of Rk is simply URk with facets in
IRk removed, i.e. CRk = URk \ IR. Then the fuzzy region
FR is the union of facets that do not belonging to any
must-link regions:

FR = F \
⋃

CRk ,

where F is the facets of the mesh.
Smoothness term The smoothness term evaluates the

similarity/compatibility between two adjacent triangle
facets. In this paper, we use the same definition of
smoothness as that in [15].

A parameter α is introduced to balance the importance
of dihedral angel and edge length. The definition is as
below: Let vi and vj be two adjacent vertices, namely
are the two end vertices of an edge (denoted as eij) on
the mesh. And let fi and f j to be the two triangle facets
sharing this edge. Let θij be the dihedral angle between
fi and f j, |eij| be the length of eij. Let Θij be a function of
θij such that Θij is a positive small number for concave
edges and 1 for convex edges. Then the smoothness term
defined in [15] is:

wij = α(
Θij

µΘ
) + (1− α)

|eij|
µe

, (5)

where µΘ and µe are the average values of Θ and edge
length, respectively, of the entire mesh. In this paper, we
set α = 0.8 in all experiments. Finally, we solve graph

Figure 6: Approximate shapes using the convex hulls of
decomposed parts. The results in this figure are gener-
ated by CORISE using models in the Princeton Segmen-
tation Benchmark.

cut optimization using the max-flow algorithm. For each
convex ridge that has applied the graph-cut, we will find
its decomposed component by solving that optimization
problem. Segmentation is performed iteratively until all
components have smaller concavity than τ.

Discussion In each graph-cut optimization, one con-
vex ridge is separated from the mesh at a time. One may
argue that n-way graph cut should be adopted to sepa-
rate all convex ridges at once. However, we have found
that the direct application of n-way graph cut forces
the mesh to be split into n parts, including the regions
that are classified as fuzzy, and produces undesirable
segmentation.

6 Experimental Results

We have implemented CORISE in C++. In order to eval-
uate CORISE we compare CORISE extensively to the
existing approximate convex decomposition methods
HACD [9] that is available in the Bullet Physics Library
and WCSeg [1]. We also compare CORISE with shape de-
composition methods using the Princeton 3D Mesh Seg-
mentation Benchmark [13], which includes 380 surface
meshes of 19 different object categories. For all models
used, the radius of the smallest enclosing ball is 1.0. The
quality of the decomposition is measured via the Rand
Index that estimates the similarity by measuring facet
pairwise label difference between the segmentations gen-
erated by CORISE and those generated by humans and
the state-of-art methods [6, 7, 3, 1]. All experimental re-
sults are collected on a workstation with two Intel Xeon
2.30GHz CPUs and 32 GB memory. HACD and CoRise
are implemented using C++ and WCSeg uses MATLAB.

6.1 Comparison of Approximation

Given a concavity tolerance, we compare CORISE with
HACD [9] and WCSeg [1] based on (1) the number of de-
composition components, (2) decomposition time, and
(3) approximation accuracy. HACD first simplifies the
model using Quadric Error Metrics (QEM) and then

6

(a) CORISE (b) HACD

Figure 7: Shape approximation using the convex hulls
of all components in the decompositions from CORISE
and HACD.

hierarchically merges facets and ensures that the concav-
ities of all clusters are lower than the tolerable concavity.
WCSeg creates initial segmentation using line-of-sight
concavity/convexity measurement and then uses Shape
Diameter Function [6] to merge the initial segmentations.
Table 1 shows the decomposition size, computation time,
and the ratio between the volume of the convex hull
approximation and the volume of the original model.

From Table 1, we can observe that, on average,
CORISE generates smaller decomposition than HACD
and WCSeg. In addition, CORISE is significantly faster
than HACD and WCSeg. This is because HACD requires
many concavity evaluations in the bottom-up approach
clustering process, and the bottleneck of WCSeg comes
from the spectral clustering that involves solving the
eigen-decomposition of a large pairwise matrix (whose
size is square to the number of facets). Without simpli-
fying models, HACD can even take more than several
hours to decompose a model with around 10,000 ver-
tices.

Table 1 also shows the comparison of volume ratios.
The volume ratio is defined as vol(∪i(CHi))/vol(P),
where vol(∪i(CHi)) is the volume of the union of all
convex hulls and vol(P) is the volume of the input mesh.
From Table 1, HACD has smallest average volume ratios.
However, the result is biased because HACD simplifies
the input model before decomposition, thus these con-
vex hulls created by HACD do not guarantee to enclose
the original model. This may also produce noticeable
penetration if these convex hulls are used in collision de-
tection. We can also see that the approximation volume
of CORISE is slightly smaller than WCSeg. However,
because WCSeg produces more segments, we can say
that CORISE is more effective (use less components to
provide tighter approximation). This is especially true
in the human and octopus category. Fig. 8 shows an
example of the segmentations of a human model and an
octopus model from both CORISE and WCSeg. The main
differences between CORISE and WCSeg stem from how
concavity is used for segmentation. CORISE cares about
the approximation error, thus ignores the fingers of the
human model because the concavity between two fin-
gers is smaller than the concavity tolerance. On the other
hand, the legs of the octopus model are bended and we

Table 1: Statistical results of the number of final compo-
nents, computation time and the volume ratio which is
approximations’ volume compared to that of the original
model on the Princeton 3D Mesh Segmentation Bench-
mark. All results are obtained using concavity tolerance
= 0.1.

of components Time (sec) Volume Ratio
Category HACD CORISE WCSeg HACD CORISE WCSeg HACD CORISE WCSeg

human 12.10 9.85 18.85 84.80 2.33 677.92 1.23 1.31 1.24
cup 18.90 4.55 5.50 372.09 1.25 1362.30 2.66 3.15 3.02

glass 6.40 5.53 8.90 433.84 0.63 416.09 1.69 1.75 1.90
airplane 5.20 7.55 7.70 1103.85 1.07 431.91 1.30 1.37 1.25

ant 13.45 14.50 11.25 223.99 1.76 413.63 1.11 1.14 1.17
chair 9.50 10.64 16.35 297.72 1.86 1021.50 1.67 1.45 1.56

octpus 14.40 14.45 9.10 903.44 1.98 599.90 1.23 1.27 1.83
table 6.00 6.05 5.55 3385.97 1.25 2762.60 1.33 1.42 1.68
teddy 6.80 7.05 7.45 1548.05 2.16 1026.30 1.05 1.07 1.05
hand 9.10 9.00 9.20 205.92 1.67 670.00 1.14 1.27 1.16
plier 5.20 5.89 6.50 393.18 0.88 368.90 1.30 1.33 1.37
fish 5.05 5.20 6.25 2969.80 0.84 546.04 1.12 1.18 1.16
bird 5.55 6.39 11.10 547.89 0.73 515.03 1.36 1.35 1.26

armadillo 15.30 14.90 20.10 56.89 5.46 1914.80 1.12 1.19 1.12
bust 9.30 7.80 8.70 118.18 4.50 2285.80 1.05 1.11 1.08
mech 4.45 3.65 3.70 1286.43 1.04 2587.30 0.87 1.02 1.02

bearing 5.47 1.58 3.00 1095.92 0.25 1188.90 0.95 1.17 1.08
vase 9.80 5.15 5.65 1059.17 1.63 1247.60 1.06 1.12 1.10

four-leg 12.95 12.25 14.05 61.85 1.86 614.97 1.20 1.25 1.23
Average 9.21 8.00 9.42 849.95 1.75 1086.90 1.29 1.36 1.38

would cut the legs into several components to satisfy the
concavity tolerance while WCSeg merges them together.

6.2 Comparison using benchmark dataset

We should first note that CORISE aims at resolving the
concavity of a model and is not designed for semantic
segmentation. For example, in Fig. 13, the bird is decom-
posed into over 30 parts which is much more than that of
other shape segmentation. This will certainly influence
the evaluation if CORISE is compared to segmentations
created by human. However, we feel it is important to
compare CORISE to shape segmentation methods since,
after all, convexity is one of the important properties
used in shape segmentation, and we also believe that a
visually meaningful decomposition can provide visually
convincing simulation.

Fig. 9 shows the Rand Index (RI) scores obtained
from seven methods on the same benchmark. Although
CORISE performs worse than the learning-based ap-
proach, CORISE outperforms some single-model based
methods [6, 7] that require more user parameters, such as
number of clusters. If CORISE can choose a concavity tol-
erance for each category, its performance is comparable
to [1] which also has several parameters and thresholds.
Moreover, if CORISE chooses concavity tolerance for
each model individually, just as other methods selecting
component size for each model, its RI score is lower than

7

Figure 8: WCSeg vs. CORISEṪop row from left to right:
WCSeg decomposition, CORISE decomposition and con-
vex hulls of CORISE components. Bottom row from left
to right: WCSeg decomposition, convex hulls of WCSeg
components, CORISE decomposition, and convex hulls
of CORISE components.

all single-model methods in Fig. 9.
Compared with other shape-segmentation methods,

CORISE has three major advantages: First, CORISE
provides the bounded convexity that can be used by
broader applications. Second, CORISE has less num-
ber of parameters, while others require several user pa-
rameters for each model to specify component num-
ber, soft-clustering number, or smooth factors. Table 2
summarizes the number of parameters of each method.
Finally, CORISE is efficient without simplification as pre-
processing.

Although it is true that only a small subset of con-
cavity tolerances produce semantic decomposition of a
given shape, those that do create semantic decomposi-
tions reflect the geometric property of the shape. We
encourage readers to look at our supplementary mate-
rials which show the RI, HD, CE and CD scores for a
range of concavity tolerances.

Table 2: Number of parameters of segmentation methods.
RC: Rand cut method; SDF: Shape Diameter Function
method;

WCSeg RC SDF HACD CORISE

≥ 4 ≥ 2 ≥ 2 7 2

7 Applications

CORISE is designed to approximate a 3D shape with a

Figure 9: Rand Index (RI) comparison on the Princeton
Benchmark data. human: human cut; PT: CORISE with
a τ for each model; CT: CORISE with a τ for each cate-
gory; CR9: CORISE with τ = 0.09; CR10: CORISE with
τ = 0.1; Additional comparisons evaluated using other
metrics such as consistency error, cut discrepancy, Ham-
ming distance all show similar trend as RI and can be
found in the supplementary materials.

set of convex objects. In this section, we demonstrate
several applications using this type of approximation.

7.1 Physically-based Simulation

Figure 10: Simulation cre-
ated using the convex hulls of
CORISE.

Physics simulation li-
braries, such as Bullet
and Box2D, use mul-
tiple convex shapes to
approximate the origi-
nal non-convex shape.
Approximating a
shape with bounded
concavity allows
computations, such as
collision response and
penetration depth,
more efficient. In
these applications, we
care about the number of approximation components
and the approximation error. Exact convex decomposi-
tion has no approximation error, however, the number
of components is usually prohibitively huge, thus the
computation, e.g., penetration depth, is inherently
expensive. It is therefore desirable to have smaller
number of components while the approximation error is
bounded. From the comparisons between HACD and
CORISE shown in Table 1, CORISE provides following
advantages: 1). CORISE guarantees to enclose the
original model while HACD does not; 2). CORISE is
much faster than HACD; 3). CORISE produces smaller
segmentation given the same concavity tolerance.

We have successfully integrated CORISE with the
Bullet library. This allows us to generate convincing
physically-based simulations using only the convex hulls
of CORISE decompositions. We encourage the readers
to view the supplementary video.

8

Figure 11: A cage created from CORISE decomposition.

7.2 Cage-Based Deformation

Cage based deformation technique aims to be an easy-
to-use tool for graphics modelling, texturing and anima-
tion. The advantage of cage-based space deformation
is its simplicity, flexibility and efficiency. Most cages in
cage-based deformation are created manually, and the
process can be tedious. Xian et al. [27] proposed an au-
tomatic cage generation technique based on iteratively
splitting the bounding boxes. However, their method
requires mesh voxelization that is both time consuming
and, more importantly, ignores important structural fea-
tures of the input shape. For example, their cage usually
misses vertices near the concave regions of the input
mesh. Moreover, their method is not suitable for inter-
active applications as for a shape with only 10k vertices,
their method can take several minutes. CORISE gener-
ates a cage in almost real-time. Fig. 11 shows a cage
created for the Armadillo model and its deformation
using Green coordinates. More examples can be found
in the supplementary materials.

7.3 Model Repair

All the models used in Table 1 are watertight. However,
many digitized models have degenerated features and
may require mesh repair. The convex hulls of CORISE
decomposition provide a convenient way to generate a
watertight representation. In Fig. 12, we show a mesh
that has 45% of the facets removed, and CORISE suc-
cessfully decomposes the mesh and produces better ap-
proximation than HACD does. In fact, CORISE will be
able to produce similar results as long as the mesh edge
connectivity has not been significantly changed.

8 Conclusion, Limitations and Fu-
ture Work

In summary, in this paper we proposed a 3D decomposi-
tion method that produces components with bounded
convexity. Our method called CORISE meets the needs
of real-time simulations and computer games better than
the existing methods. We also showed that the decom-
position results can produce semantically meaningful
decomposition with low computation cost when proper

(a) (b) (c)

Figure 12: (a) Noisy mesh with missing facets. The bot-
tom figure provides a close-up view. (b) CORISE results.
(c) Top: Convex hulls of 16 segmented parts in (b). Bot-
tom: Convex hulls of HACD segmentation (138 compo-
nents). All results are obtained using concavity tolerance
0.1.

concavity tolerances are given. The decomposition is
achieved by identifying convex ridges and then solving
a graph cut optimization problem formulated with val-
ley separators and must-link regions. Comparing CORISE
with other methods on the public benchmark dataset, we
show that CORISE can generate results close to manual
decomposition. Comparing CORISE with other approx-
imate convex decomposition methods, we show that
CORISE is significantly more efficient.

Known Limitations. Each of the major step of
CORISE is quite robust. For example, the convex ridges
are always identified at expected locations for all the
models that we tested (see the supplementary material
for more examples). A main limitation of CORISE is that
its semantic meaning of CORISE components is signif-
icantly influenced by the concavity tolerance τ. When
τ is too small, small components are produced and the
semantic meaning of these components diminishes. For
example in Fig. 13(b) and (c), even though CORISE still
provides a tight approximation of the initial model using
a relatively small concavity tolerance (0.05), many small
components do not have significant meanings.

Another limitation of CORISE is that CORISE may
not decompose a cup-like shape if none of the valleys
reach the bottom of the cup’s concavity (see Fig. 13(d)).
This is caused by the fact that a valley is the (approxi-
mated) shortest geodesic path. We believe that this can
be addressed by ensuring that the vertex p with largest
concavity of a valley has the locally maximum concavity.
If this is not the case, then we iteratively descend p until
a point p′ with locally maximum concavity is reached.
A new valley is then computed by enforcing it to pass
through p′.

9

(a) (b) (c) (d)

Figure 13: (a) CORISE result of a bird. (b) CORISE result
using τ = 0.05. (c) The corresponding nearly convex
approximation of (b). (d) CORISE result of a cup.

References

[1] O. van Kaick, N. Fish, Y. Kleiman, S. Asafi, and
D. Cohen-Or, “Shape segmentation by approximate
convexity analysis,” ACM Trans. on Graphics, vol. to
appear, 2014.

[2] O.-C. Au, Y. Zheng, M. Chen, P. Xu, and C.-L. Tai,
“Mesh segmentation with concavity-aware fields,”
Visualization and Computer Graphics, IEEE Transac-
tions on, vol. 18, no. 7, pp. 1125–1134, 2012.

[3] J. Zhang, J. Zheng, C. Wu, and J. Cai, “Variational
mesh decomposition,” ACM Transactions on Graph-
ics (TOG), vol. 31, no. 3, p. 21, 2012.

[4] E. Kalogerakis, A. Hertzmann, and K. Singh,
“Learning 3d mesh segmentation and labeling,”
ACM Transactions on Graphics (TOG), vol. 29, no. 4,
p. 102, 2010.

[5] Q. Huang, V. Koltun, and L. Guibas, “Joint shape
segmentation with linear programming,” in ACM
Transactions on Graphics (TOG), vol. 30, no. 6. ACM,
2011, p. 125.

[6] L. Shapira, A. Shamir, and D. Cohen-Or, “Consis-
tent mesh partitioning and skeletonisation using
the shape diameter function,” The Visual Computer,
vol. 24, no. 4, pp. 249–259, 2008.

[7] A. Golovinskiy and T. Funkhouser, “Randomized
cuts for 3d mesh analysis,” in ACM Transactions on
Graphics (TOG), vol. 27, no. 5. ACM, 2008, p. 145.

[8] J.-M. Lien and N. M. Amato, “Approximate convex
decomposition of polygons,” Comput. Geom. Theory
Appl., vol. 35, no. 1, pp. 100–123, 2006.

[9] K. Mamou and F. Ghorbel, “A simple and efficient
approach for 3d mesh approximate convex decom-
position,” in Image Processing (ICIP), 2009 16th IEEE
International Conference on, Nov. 2009, pp. 3501 –
3504.

[10] M. Müller, N. Chentanez, and T.-Y. Kim, “Real time
dynamic fracture with volumetric approximate con-
vex decompositions,” ACM Transactions on Graphics
(TOG), vol. 32, no. 4, p. 115, 2013.

[11] M. Attene, S. Katz, M. Mortara, G. Patané, M. Spag-
nuolo, and A. Tal, “Mesh segmentation-a compara-
tive study,” in Shape Modeling and Applications, 2006.
SMI 2006. IEEE International Conference on. IEEE,
2006, pp. 7–7.

[12] A. Shamir, “A survey on mesh segmentation tech-
niques,” in Computer graphics forum, vol. 27, no. 6.
Wiley Online Library, 2008, pp. 1539–1556.

[13] X. Chen, A. Golovinskiy, and T. Funkhouser, “A
benchmark for 3d mesh segmentation,” ACM Trans-
actions on Graphics (TOG), vol. 28, no. 3, p. 73, 2009.

[14] S. Shlafman, A. Tal, and S. Katz, “Metamorphosis
of polyhedral surfaces using decomposition,” in
Computer Graphics Forum, vol. 21, no. 3. Wiley
Online Library, 2003, pp. 219–228.

[15] S. Katz and A. Tal, “Hierarchical mesh decomposi-
tion using fuzzy clustering and cuts,” ACM Trans.
Graph., vol. 22, no. 3, pp. 954–961, 2003.

[16] H. Yamauchi, S. Lee, Y. Lee, Y. Ohtake, A. Belyaev,
and H. Seidel, “Feature sensitive mesh segmenta-
tion with mean shift,” in Shape Modeling and Appli-
cations, 2005 International Conference. IEEE, 2005,
pp. 236–243.

[17] R. Liu and H. Zhang, “Mesh segmentation via spec-
tral embedding and contour analysis,” in Computer
Graphics Forum, vol. 26, no. 3. Wiley Online Library,
2007, pp. 385–394.

[18] Y. Wang, M. Gong, T. Wang, D. Cohen-Or, H. Zhang,
and B. Chen, “Projective analysis for 3d shape seg-
mentation,” ACM Transactions on Graphics (TOG),
vol. 32, no. 6, p. 192, 2013.

[19] A. Golovinskiy and T. Funkhouser, “Consistent seg-
mentation of 3d models,” Computers & Graphics,
vol. 33, no. 3, pp. 262–269, 2009.

[20] L. Lu, Y. Choi, W. Wang, and M. Kim, “Variational
3d shape segmentation for bounding volume com-
putation,” in Computer Graphics Forum, vol. 26, no. 3.
Wiley Online Library, 2007, pp. 329–338.

[21] M. Attene, M. Mortara, M. Spagnuolo, and B. Fal-
cidieno, “Hierarchical convex approximation of 3d
shapes for fast region selection,” in Computer Graph-
ics Forum, vol. 27, no. 5. Wiley Online Library, 2008,
pp. 1323–1332.

[22] V. Kreavoy, D. Julius, and A. Sheffer, “Model com-
position from interchangeable components,” in
Computer Graphics and Applications, 2007. PG’07. 15th
Pacific Conference on. IEEE, 2007, pp. 129–138.

[23] M. Ghosh, N. M. Amato, Y. Lu, and J.-M. Lien, “Fast
approximate convex decomposition using relative

10

concavity,” Computer-Aided Design, vol. 45, no. 2, pp.
494–504, 2013.

[24] S. Asafi, A. Goren, and D. Cohen-Or, “Weak con-
vex decomposition by lines-of-sight,” in Computer
Graphics Forum, vol. 32, no. 5. Wiley Online Library,
2013, pp. 23–31.

[25] Z. Lian, A. Godil, P. L. Rosin, and X. Sun, “A new
convexity measurement for 3d meshes,” in Com-
puter Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on. IEEE, 2012, pp. 119–126.

[26] H. Zimmer, M. Campen, and L. Kobbelt, “Effi-
cient computation of shortest path-concavity for
3d meshes,” in Computer Vision and Pattern Recogni-
tion (CVPR), 2013 IEEE Conference on. IEEE, 2013,
pp. 2155–2162.

[27] C. Xian, H. Lin, and S. Gao, “Automatic cage gen-
eration by improved obbs for mesh deformation,”
The Visual Computer, vol. 28, no. 1, pp. 21–33, 2012.

11

