
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Automated Dynamic Enforcement of
Synthesized Security Policies in Android

Hamid Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand and Sam Malek
{hbagheri, asadeghi, rjabbarv, smalek}@gmu.edu

Technical Report GMU-CS-TR-2015-5

Abstract

As the dominant mobile computing platform, Android
has become a prime target for cyber-security attacks.
Many of these attacks are manifested at the application
level, and through the exploitation of vulnerabilities in
apps downloaded from the popular app stores. Increas-
ingly, sophisticated attacks exploit the vulnerabilities in
multiple installed apps, making it extremely difficult
to foresee such attacks, as neither the app developers
nor the store operators know a priori which apps will
be installed together. This paper presents an approach
that allows the end-users to safeguard a given bundle
of apps installed on their device from such attacks. The
approach, realized in a tool, called DROIDGUARD, com-
bines static code analysis with lightweight formal meth-
ods to automatically infer security-relevant properties
from a bundle of apps. It then uses a constraint solver
to synthesize possible security exploits, from which
fine-grained security policies are derived and automat-
ically enforced to protect a given device. In our exper-
iments with over 4,000 Android apps, DROIDGUARD
has proven to be highly effective at detecting previously
unknown vulnerabilities as well as preventing their ex-
ploitation.

1 Introduction

The ubiquity of smartphones and our growing reliance
on mobile apps are leaving us more vulnerable to cy-
ber security attacks than ever before. According to the
Symantec’s Norton report [20], in 2013 the annual finan-
cial loss due to cybercrime exceeded $113 billion globally,
with every second 12 people become the victim of cy-
bercrime. An equally ominous report from Gartner [35]
predicts 10 percent yearly growth in cybercrime-related
financial loss through 2016. This growth is attributed
in part to the new security threats targeted at emerging

platforms, such as Google Android and Apple iPhone,
as 38% of mobile users have experienced cybercrime [20].
This is, though, nowhere more evident than in the An-
droid market, where many cases of apps infected with
malwares and spywares have been reported [48].

In this context, smartphone platforms, and in partic-
ular Android, have emerged as a topic du jour for secu-
rity research. These research efforts have investigated
weaknesses from various perspectives, including detec-
tion of information leaks [23, 29, 33, 41], analysis of the
least-privilege principle [24, 25], and enhancements to
Android protection mechanisms [16, 22, 27]. Above and
beyond such security techniques that are substantially
intended to detect vulnerabilities in a single application,
researchers have recently investigated techniques tack-
ling security vulnerabilities that arise due to the interac-
tion of multiple applications, such as inter-component
data leaks [37,38,55] and permission leaks [14,32], shown
to be quite common in the apps on the markets.

While the prior techniques mainly aim to find secu-
rity weaknesses in existing combination of apps, we are
also interested in the dual of this problem, that is what
security attacks are possible given a set of vulnerable apps?
Many Android malwares are embedded in supposedly
normal apps that aim to leverage vulnerabilities in either
the platform or other apps on the market for nefarious
purposes. If we could automatically generate security ex-
ploits for a given combination of apps, it would allow us
to identify possible security attacks before the adversary,
and thus protect our systems prior to the realization of
such attacks.

In this paper, we propose a proactive scheme to de-
velop Android security policies for vulnerabilities that
occur due to the interaction of apps comprising a system.
Our approach aims to automatically find vulnerabilities
in a given bundle of apps and generate specifications of
possible exploits for them, which then can proactively
be applied as preventive measures to guard against yet
unknown malicious behavior.

1

Specifically, we have developed an automated system
called DROIDGUARD that combines scalable static anal-
ysis with lightweight formal methods. DROIDGUARD
leverages static analysis to automatically infer security-
relevant facts about software systems.1 The app specifi-
cations are sufficiently abstract—extracted at the archi-
tectural level—to be amenable to formal analysis, and
to ensure the technique remains scalable to real-world
Android apps, yet represent the true behavior of the im-
plemented software, as they are automatically extracted
from the app bytecode, and appear sufficiently detailed
to express subtle inter-app vulnerabilities.

DROIDGUARD then uses a SAT-based engine to ana-
lyze the system model against compositional security
properties and generate potential attack scenarios. In
fact, it mimics the adversary by leveraging recent ad-
vancements in constraint solving techniques to synthe-
size possible security exploits, from which fine-grained
security policies are then derived and enforced for each
particular system. The synthesis of system-specific secu-
rity policies allows the user to proactively deploy pre-
ventive measures prior to the discovery of those exploits
by the adversaries.

To summarize, this paper makes the following contri-
butions:

• Formal Synthesis of Security Policies: We introduce a
novel approach to synthesize specifications of pos-
sible exploits for a given combination of apps, from
which system-specific security policies are derived.
The policy synthesizer relies on a fully analyzable
formal model of Android framework and a scalable
static analysis technique extracting formal specifica-
tions of Android apps.

• Runtime Enforcement of Security Policies: We develop
a new technology to automatically apply and dy-
namically enforce the synthesized, fine-grained poli-
cies (at the level of event messaging), specifically
generated for a particular collection of apps in-
stalled on the end-user device.

• Implementation of DROIDGUARD framework: We de-
scribe DROIDGUARD—the first end-to-end system
for fully automatic generation and enforcement of
fine-grain, formally-precise, and system-specific se-
curity policies for inter-component vulnerabilities
of real-world Android apps. DROIDGUARD is pub-
licly available for download [4].

• Experiments: We present results from experi-
ments run on 4,000 real-world apps as well
as DroidBench2.0 test suite [3], corroborating

1By a software system, we mean a set of independently developed
apps jointly deployed on top of a common computing platform, e.g.
Android framework, that interact with each other, and collectively
result in a number of software solutions or services.

DROIDGUARD’s ability in (1) effective composi-
tional analysis of Android inter-application vulner-
abilities and generation of preventive security poli-
cies, that many of those vulnerabilities cannot be
even detected by state-of-the-art security analysis
frameworks; (2) outperforming other compositional
analysis tools also in terms of scalability; and (3)
finding multiple crucial security problems in the
apps on the markets that were never reported be-
fore.

The remainder of paper is organized as follows. Sec-
tion 2 provides an overview of Android. Section 3 mo-
tivates our research through an illustrative example.
Section 4 provides an overview of DROIDGUARD. Sec-
tions 5, 6 and 7 describe the details of static model ex-
traction, formal synthesis and dynamic enforcement of
policies, respectively. Sections 8 and 9 present imple-
mentation and evaluation of the research. The paper
concludes with an outline of the related research and
future work.

2 Android Overview

This section provides a brief overview of the Android
framework to help the reader follow the discussions that
ensue.

The Android framework includes a full Linux OS
based on the ARM processor, system libraries, middle-
ware, and a suite of pre-installed applications. Android
applications (apps) are written in Java and compiled into
Dalvik bytecode [2]. Apps are then packaged as APK2

files, used for distributing and installing them. Each
app is executed in a separate instance of Dalvik Virtual
Machine (DVM). 3

Each Android APK includes a mandatory configura-
tion file, called manifest. It specifies, among other things,
the principal components that constitute the application,
including their types and capabilities, as well as required
and enforce permissions. The manifest file values are
bound to the application at compile time, and cannot
be changed afterwards, unless the application is recom-
piled.

Components are basic logical building blocks of apps.
Each component can be invoked individually, either
by its embodying application or by the system, upon
permitted requests from other applications. Android
defines four types of components: (1) Activity compo-
nents provide the basis of the Android user interface.
Each Application may have multiple Activities repre-
senting different screens of the application to the user.
(2) Service components provide background processing
capabilities, and do not provide any user interface. Play-

2Android application package.
3In Android L, Dalvik has been substituted with the previously

experimental Android runtime (ART) as a default environment.

2

ing a music and downloading a file while a user inter-
acts with another application are examples of operations
that may run as a Service. (3) Broadcast receiver compo-
nents respond asynchronously to system-wide message
broadcasts. A receiver component typically acts as a
gateway to other components, and passes on messages
to Activities or Services to handle them. (4) Content
Provider components provide database capabilities to
other components. Such databases can be used for both
intra-application data persistence as well as sharing data
across applications.

Inter-component communication (ICC) in Android is
mainly conducted by means of Intent messages. An In-
tent message is an event for an action to be performed
along with the data that supports that action. Com-
ponent capabilities are then specified as a set of Intent-
Filters that represent the kinds of requests handled by
a given component. Component invocations come in
different flavors, e.g., explicit or implicit, intra- or inter-
applications, etc. Android’s ICC allows for late run-time
binding between components in the same or different
applications, where the calls are not explicit in the code,
rather made possible through event messaging, a key
property of event-driven systems.

Permissions are the cornerstone for the Android secu-
rity model. The permissions stated in the app manifest
enable secure access to sensitive resources as well as
cross-application interactions. When a user installs an
app, the Android system prompts the user for consent
to requested permissions prior to installation. Should
the user refuse granting the requested permissions to
an app, the app installation is canceled. No dynamic
mechanism is provided by Android for granting per-
missions after app installation. Besides required per-
missions, the app manifest may also include enforced
permissions that other apps must have in order to in-
teract with this app. Android platform provides over
145 pre-defined permissions, and applications can also
define their own permissions. Each permission is spec-
ified by a unique label, typically indicating the pro-
tected action. For instance, the permission label of
android.permission.SET WALLPAPER is required
for an application to change the wallpaper.

The Android access control model is at the granular-
ity of individual apps, and there is no mechanism to
check security posture of the entire system. Such a per-
mission mechanism has proved insufficient to prevent
compositional security violations [16, 21, 25–27], since
permissions may be misused, intentionally or uninten-
tionally, as illustrated in the next section.

3 Motivating Example

To motivate the research and illustrate our approach, we
provide an example of a vulnerability pattern having to
do with ICC among Android apps. Figure 1 partially

1 public c l a s s FindLocat ionAct iv i ty extends A c t i v i t y {
2 public void onCreate (Bundle s a ve d I n s t an c e S t a te) {
3 I n t e n t i n t e n t = new I n t e n t () ;
4 i n t e n t . se tAct ion (”showLoc”) ;
5 LocationManager lm = getSystemService (Context .

LOCATION SERVICE) ;
6 Locat ion lastKnownLocation =
7 lm . getLastKnownLocation (LocationManager . GPS PROVIDER) ;
8 i n t e n t . putExtra (” l o c a t i o n I n f o ” , lastKnownLocation .

t o S t r i n g ()) ;
9 s t a r t A c t i v i t y (i n t e n t) ;

10 }

Listing 1: Vulnerable app (App1): sends the retrieved
location data to another component of the same app via
implicit Intent messaging.

1 public c l a s s TelephonyActivi ty extends A c t i v i t y {
2 public void onCreate (Bundle s a ve d I n s t an c e S t a te) {
3 I n t e n t i n t e n t = g e t I n t e n t () ;
4 S t r i n g number = i n t e n t . g e t S t r i n g E x t r a (”PHONENUM”) ;
5 S t r i n g message = i n t e n t . g e t S t r i n g E x t r a (”TEXT MSG”) ;
6 // i f (hasPermission ())
7 sendTextMessage (number , message) ;
8 . . . }
9 void sendTextMessage (S t r i n g num, S t r i n g msg) {

10 SmsManager mngr = SmsManager . ge tDefaul t () ;
11 mngr . sendTextMessage (num, null , msg , null , null) ;
12 }
13 boolean hasPermission () {
14 i f (checkCal l ingPermiss ion (” android . permission . SEND SMS”

) ==PackageManager . PERMISSION GRANTED)
15 return true ;
16 return f a l s e ;
17 }
18 }

Listing 2: Vulnerable app (App2): receives an Intent and
sends a text message.

shows a bundle of two benign, yet vulnerable apps, in-
stalled together on a device.

App1 is a navigation application that obtains the de-
vice location (GPS data) in one of its components and
then sends it to another component of the app via Intra-
app Intent messaging. The Intent involving the location
data (Listing 1, lines 3–8), instead of explicitly specifying
the receiver component, implicitly specifies it through
declaring a certain action to be performed in that com-
ponent. This represents a common practice among the
developers, yet an anti-pattern that may lead to unau-
thorized Intent receipt [18], as any component, even if it
belongs to a different app, that matches the action could
receive an implicit Intent sent this way.

On the other hand, the second app’s vulnerability oc-
curs on line 11 of Listing 2, where TelephonyActivity uses
system-level API SmsManager, resulting in a message
sent to the phone number previously retrieved from the
Intent. This is a reserved Android API that requires
special access permissions to the system’s telephony ser-
vice. Although TelephonyActivity has that permission,
it also needs to ensure that the sender of the original
Intent message has the required permission to use the
SMS service. An example of such a check is shown in
hasPermission method of Listing 2, but in this partic-
ular example it does not get called (line 6 is commented)
to illustrate the vulnerability.

3

Figure 1: A potential malicious application—its sig-
nature automatically generated by DROIDGUARD—
leverages vulnerabilities in other already installed be-
nign applications to perform actions (like sending device
location through text messages) that are beyond its indi-
vidual privileges. As the Android access control model
is per app, it cannot check security posture of the entire
system. DROIDGUARD generates and enforces composi-
tional policies that prevent such an exploit.

Given these vulnerabilities, a malicious app can send
the device location data to the desirable phone number
via text message, without the need for any permission.
As shown in Figure 1, the malicious app, first hijacks
the Intents containing the device location info from the
first app. Then, it sends a fake Intent to the second app,
containing the GPS data and adversary phone number
as the payload. While the example of Figure 1 shows
exploitation of vulnerabilities in components from two
apps, in general, a similar attack may occur by exploiting
the vulnerabilities in components of either single app or
multiple apps.

Android’s access control mechanism is at the level
of individual apps, which is not sufficient to prevent
compositional security violations, such as the one in
this example. Moreover, since the malicious app does
not require any security sensitive permission, it is easily
concealed as a benign app that only sends and receives
Intents. This makes the detection of such malicious apps
a challenging task for individual security inspectors or
anti-virus tools.

The above example points to one of the most challeng-
ing issues in Android security, i.e., detection and enforce-
ment of compositional security policies to prevent such
possible exploits. What is required is a system-level anal-
ysis capability that (1) identifies the vulnerabilities and
capabilities in individual apps, and (2) determines how
those individual vulnerabilities and capabilities could
affect one another when the corresponding apps are in-
stalled together. In the next sections, we first provide
an overview of DROIDGUARD and then delve into more
details about its approach to address these issues.

4 Approach Overview

This section overviews our approach to automatically
synthesize and enforce system-specific security policies
for such vulnerabilities that occur due to the interac-
tion of apps comprising a system. As depicted in Fig-
ure 2, DROIDGUARD consists of three main components:
(1) The Android model extractor (AME) that uses static
analysis techniques to automatically elicit formal speci-
fications of the apps comprising a system; (2) The anal-
ysis and synthesis engine (ASE) that is intended to use
lightweight formal analysis techniques [36] to find vul-
nerabilities in the extracted app models, and to generate
specifications of possible exploits, and in turn, policies
for preventing their manifestation; (3) The Android pol-
icy enforcer (APE) that enforces automatically generated,
system-wide policies on Android applications.

The AME component takes as input a set of Android
application package archives, called APK files. APKs
are Java bytecode packages used to distribute and install
Android applications. To generate the app specifications,
AME first examines the application manifest file to de-
termine its architectural information. It then utilizes
different static analysis techniques, i.e., control flow and
data flow analyses, to extract other essential informa-
tion from the application bytecode into an analyzable
specification language.

The ASE component, in addition to extracted app spec-
ifications, relies on two other kinds of specifications: a
formal foundation of the application framework and the
axiomatized inter-app vulnerability signatures. The An-
droid framework specification represents the foundation
of Android apps. Our formalization of these concepts
includes a set of rules to lay this foundation (e.g., applica-
tion, component, messages, etc.), how they behave, and
how they interact with each other. It can be considered as
an abstract, yet precise, specification of how the frame-
work behaves. We regard vulnerability signatures as
predicates that model Android inter-app vulnerabilities
in relational logic, representing their essential character-
istics as exhibited when the vulnerability is exploited.
All the specifications are uniformly captured in the Alloy
language [36]. Alloy is a formal specification language
based on first-order relational logic, amenable to fully
automated yet bounded analysis.

DROIDGUARD is designed as a plugin-based soft-
ware that provides extension points for analyzing apps
against different types of vulnerabilities. In order to
analyze each app, we distill each known inter-app vul-
nerability into a corresponding formally-specified sig-
nature to capture its essential characteristics, as man-
ifested when the vulnerability is exploited. Our cur-
rent DROIDGUARD prototype supports inter-component
vulnerabilities, such as Activity/Service launch, In-
tent hijack, privilege escalation, and information leak-
age [18, 21, 30]. Its plugin-based architecture supports
the necessary extensions that can be provided by users

4

Figure 2: Approach Overview.

at anytime to enrich the environment.
Given these specifications, the ASE component ana-

lyzes them as a whole for instances of vulnerabilities
in the extracted app specifications, and using formally-
precise scenario-generating tools, such as Alloy Analyzer
and Aluminum [36, 42], it attempts to generate possible
security exploit scenarios for a given combination of
apps. Specifically, we go beyond the detection of vulner-
abilities by asking: what security attacks are possible given
a set of vulnerable apps?

Having computed system-wide policies to prevent the
postulated attacks, DROIDGUARD parses and transforms
them from models generated in relational logic to a set
of configurations directly amenable to efficient policy en-
forcement. Our policy enforcer (APE) then instruments
each vulnerable app’s bytecode to dynamically intercept
event messages, check them against generated policies,
and possibly inhibits their executions if violating any
such policies. As such, to the best of our knowledge,
DROIDGUARD is the first approach capable of detect-
ing and protecting Android systems against zero-day
inter-app attacks.

In the following three sections, we describe the details
of each component in turn.

5 AME: Android Model Extraction

In order to automatically analyze vulnerabilities, we first
need to extract a model of each app’s behavior to reason
about its security properties. This section first defines
the model we extract for each app, and then describes
the extraction process.

Definition 1. A model for an Android application is a tuple
App =< Cmps, Intents, IFltrs, Perms, Paths >, where

• Cmps is a set of components, where each component
c ∈ Cmps has a set of Intent messages intents(c) ⊆
Intents, a set of Intent filters i f ltrs(c) ⊆ IFltrs, a
set of permissions perms(c) ⊆ Perms required to
access the component c, and a set of sensitive paths
paths(c) ⊆ Paths.

• Intents is a set of event messages that can be used for
both inter- and intra-application communications.

• IFltrs is a set of Intent filters, where each Intent
filter i f ilter ∈ IFltrs is attached to a component
c ∈ Cmps.

• Perms is a union of required and enforced permis-
sions, Perm = PermsReq ∪ PermsEn f , where PermsReq
specifies the permissions to which the application
needs to have access to run properly and PermsEn f
specifies the permissions required to access compo-
nents of the application under consideration. We let
the set of permissions actually used within a compo-
nent c as permUsed(c) ⊆ PermsReq.

• Paths is a finite set of sensitive data flows; each
data flow belongs to a component c ∈ Cmps and
is represented as a tuple < Source, Sink >, where
Source represents a sensitive data (e.g., the device
ID) and Sink represents a method that may leak data,
such as sending text messages.

Architecture Extraction. To obtain an app model,
AME first examines the app manifest file to capture the
high-level architectural information, including the com-
ponents (Cmps) comprising the app, permissions that
the app requires (PermsReq), and the enforced permis-
sions (PermsEn f) that the other apps must have in order
to interact with the app components. AME also identi-
fies public interfaces exposed by each application, which
are essentially entry points defined in the manifest file
through Intent Filters (IFltrs) of components.

Intent Extraction. The next step of model extraction
involves an inter-procedural data flow analysis [15], to
track the Intents and Intent Filters that are declared in
code, rather than the manifest file, as well as their prop-
erties. Each Intent (i ∈ Intents) belongs to one particular
component sending it (sender(i) ∈ Cmps), may have
one recipient component (component(i) ∈ Cmps), and
three sets of action(i), data(i) and categories(i) specify-
ing the general action to be performed in the recipient
component, additional information about the data to be
processed by the action, and the kind of component that
should handle i, respectively.

Similar to Intents, each Intent filter (i f ilter) has a non-
empty set of actions(i f ilter) and two sets of data(i f ilter)
and categories(i f ilter). Note that Intent filters for com-
ponents of type Service and Activity must be declared
in their manifest; for Broadcast Receivers, though, either
in the manifest or at runtime.

To resolve the values associated with the retrieved
attributes (e.g., the Intent action) AME uses string con-
stant propagation [19], which provides a suitable solu-
tion since, by convention, Android apps use constant
strings to define these values. In case a property is dis-
ambiguated to more than one value (e.g., due to a condi-
tional assignment), AME generates a separate entity for

5

each of these values, as they contribute different expo-
sure surfaces or event messages in case of Intent filters
and Intents, respectively. AME handles aliasing through
performing on-demand alias analysis [52]. More specifi-
cally, for each attribute that is assigned to a heap variable,
the backward analysis finds its aliases and updates the
set of its captured values accordingly.

Path Extraction. AME analyzes the app using a
static taint analysis to track sensitive data flow tuples
< Source, Sink >. To achieve a high precision in data
flow analysis, our approach is flow-, field-, and context-
sensitive [11], meaning that our analysis distinguishes
a variable’s values between different program points,
distinguishes between different fields of a heap object,
and that in analysis of method calls is sensitive to their
calling contexts, respectively. In the interest of scalability,
DROIDGUARD’s analysis, however, is not path-sensitive.
The results (cf. Sec. 9) though indicate no significant im-
precision caused by path-insensitivity in the context of
Android vulnerability analysis.

AME uses a set of most frequently used source and
sink Android API methods from the literature [44], iden-
tified through the use of machine-learning techniques.
This set has a recall and precision of over 90%, thus is suf-
ficient for our testing and evaluation. To further detect
those paths traversing through different components, we
adapted this set by identifying source and sink methods
corresponding to inter-component communication.

Figure 3 shows two instances of sensitive data paths
in models derived for our running example. The
first one starts from node M©, where FindLocationActiv-
ity retrieves device location and sends it over an im-
plicit Intent, leading to a sensitive path from source
method getLastKnownLocation to sink method
startActivity. Another path is also similarly iden-
tifiable within the TelephonyActivity component. The
involving nodes, paths and components are highlighted
by red color in Figure 3. These identified paths are later
used in the ASE module to detect data leaks vulnerabili-
ties, and thereby to generate respective policies prevent-
ing their potential exploits.

Permission Extraction. To ensure the permission poli-
cies are preserved during an inter-component communi-
cation, one should compare the granted permissions of
the caller component against the enforced permissions
at the callee component side. Therefore, the permissions
actually used by each component should be determined.
While we already identified the coarse-grained permis-
sions specified in the manifest file, AME analyzes per-
mission checks throughout the code to identify those
controlling access to particular aspects of a component
(e.g., recall hasPermission method of Listing 2). In doing
so, it relies on API permission maps available in the liter-
ature, and in particular the PScout permission map [12],
one of the most recently updated and comprehensive
permission maps available for the Android framework.
API permission maps specify mappings between An-

Figure 3: Extracted models of the apps described in
listings 1 and 2. The malicious app’s (App3) model is
not extracted by Model Extractor, rather its specification
is automatically generated by our synthesis engine.

droid API calls/Intents and the permissions required to
perform those calls.

As shown in Figure 3, a node could be directly tagged
as permission-required node (shown by ! sign), or transi-
tively tagged by tracking the call chains. To find the tran-
sitive permission tag, AME performs backward reach-
ability analysis starting from the permission-required
node. The tagged permission are propagated from all
children to their parent nodes, until reaching to the root
nodes. In case an entry point node of a component is
tagged by a permission, it will be added to the list of
used permissions of that component, permUsed(c). For
instance, as shown in Figure 3, FindLocationActivity com-
ponents requires ACCESS FINE LOCATION due to call-
ing GPS APIs, and TelephonyActivity component needs
SEND SMS as it uses text messaging service.

6 ASE: Vulnerability Analysis and
Policy Synthesis Engine

We now show that our ideas for automated synthesis
of exploit specifications can be reduced to practice. The
insight that enabled such synthesis was that we could
interpret the synthesis problem as the dual of formal
verification. Given a system specification S, a model M,
and a property P, formal verification asserts whether M
satisfies the property P under S. Whereas the synthesis
challenge is given a system specification S and a property
P, generate a model M satisfying the property P under
system S. M is an instance model of S that satisfies P.

6

This observation enables leveraging verification tech-
niques to solve synthesis problems. As shown in Fig-
ure 4, we can view the bundle of app specifications,
Sa, and the framework specification, S f , collectively as
system S and a compositional security issue as prop-
erty P, and model them as a set of constraints. The
problem then becomes to generate a candidate set of
violation scenarios, M, that satisfies the space of con-
straints: M |= S f ∧ Sa ∧ P. Our approach is thus based
on a reduction of the synthesis problem into a constraint-
solving problem represented in relational logic (i.e., Al-
loy). Alloy is a formal modeling language with a compre-
hensible syntax that stems from notations ubiquitous in
object orientation, and semantics based on the first-order
relational logic [36], making it an appropriate language
for declarative specification of both applications and
properties to be checked (i.e., possible exploits).

The formulation of the synthesis problem in Alloy con-
sists of three parts: (1) a fixed set of signatures and facts
describing the Android application fundamentals (e.g.,
application, component, Intent, etc.) and the constraints
that every application must obey. Technically speaking,
this module can be considered as a meta-model for An-
droid applications; (2) a separate Alloy module for each
app modeling various parts of an Android app extracted
from its APK file. The automatically extracted model
for each app relies on the Android framework specifi-
cation module (the first item above); and (3) a set of
signatures used to reify inter-component vulnerabilities
in Android, such as privilege escalation. The rest of this
section details each part in turn.

Formal Model of Android Framework. Listing 3
shows (part of) the Alloy code describing the meta-
model for Android application models (Appendix A
provides a brief overview of Alloy). For example, note
the signatures Component and Intent4. A component
belongs to exactly one application, and may have any
number of IntentFilters—each one describing a dif-
ferent interface (capability) of the component—and a set
of permissions required to access the component. The

4In the Alloy language, signatures (sig) provide the vocabulary of a
model by defining the basic types of elements and the relationships
between them.

Figure 4: Automated synthesis of possible exploit speci-
fications.

1 a b s t r a c t s i g Component{
2 app : one App l i c a t i o n ,
3 i n t e n t F i l t e r s : s e t I n t e n t F i l t e r ,
4 p e rm i s s i o n s : s e t Pe rm i s s i on ,
5 paths : s e t De ta i l e dPa th }
6 a b s t r a c t s i g I n t e n t F i l t e r {
7 a c t i o n s : some Act ion ,
8 data : s e t Data ,
9 c a t e g o r i e s : s e t Category }

10 f a c t IFandComponent{
11 a l l i : I n t e n t F i l t e r |
12 one i . ˜ i n t e n t F i l t e r s }
13 f a c t No I F f o rP r o v i d e r s {
14 no i : I n t e n t F i l t e r |
15 i . ˜ i n t e n t F i l t e r s i n P r o v i d e r }
16 a b s t r a c t s i g I n t e n t {
17 s ende r : one Component ,
18 component : l o n e Component ,
19 a c t i o n : l o n e Act ion ,
20 c a t e g o r i e s : s e t Category ,
21 data : s e t Data ,
22 e x t r a : l o n e Resource }

Listing 3: Excerpts from the meta-model for Android
application models in Alloy.

paths field then indicates information flows between
permission domains. We define the source and destina-
tion of a path based on canonical permission-required re-
sources identified by Holavanalli et al. for Android appli-
cations [32]. Examples of such resources are NETWORK,
IMEI, and SDCARD. Thirteen permission-required re-
sources are identified as source, and five resources as
destination, of a sensitive data flow path. The IPC mech-
anism augments both source and destination sets.

The fact5 IFandComponent specifies that each Intent-
Filter belongs to exactly one Component, and the fact
NoIFforProviders specifies that out of four core com-
ponent types, only three of them can define IntentFilters;
no IntentFilter can be defined for Content Provider
components.

An Intent belongs to one particular component send-
ing it, and may have one recipient component. Each
Intent also includes three sets of action, data and
categories. These three elements are used to deter-
mine to which component an implicit Intent—one that
does not specify any recipient component—should be
delivered. Each of these elements corresponds to a test,
in which the Intent’s element is matched against that of
the IntentFilter. An IntentFilter may have more actions,
data, and categories than the Intent, but it cannot contain
less. The extra field indicates the type of data carried
by the Intent in terms of permission-required resources
it is obtained from.

Formal Model of Apps. Listing 4 partially shows the
generated specifications for the apps shown in Listings 1
and 2. Each app model starts by importing the android-
Declaration module (cf. Listing 3). Consider the extracted
models for our running example (cf. Fig. 3) and the
corresponding generated Alloy models. There is a data-
flow from the node M, where the sensitive GPS data is
retrieved, to the Intent I. The component thus contains

5In Alloy, facts define constraints that must always hold.

7

1 (a) App1 model
2 open a n d r o i dD e c l a r a t i o n
3 . . .
4 one s i g F i n d L o c a t i o nA c t i v i t y e x t end s A c t i v i t y {}{
5 app i n App1
6 no i n t e n t F i l t e r s
7 paths = p a t h F i n d L o c a t i o nA c t i v i t y 1
8 p e rm i s s i o n s = ACCESS FINE LOCATION }
9 one s i g p a t h F i n d L o c a t i o nA c t i v i t y 1 ex t end s Path{}{

10 s ou r c e = LOCATION
11 s i n k = IPC }
12 one s i g i n t e n t 2 1 ex t end s I n t e n t {}{
13 s ende r = Lo cA c t i v i t y
14 no component
15 a c t i o n=showLoc
16 c a t e g o r i e s= DEFAULT
17 data = NoMimeNoScheme
18 e x t r a= LOCATION }
19 (b) App2 model
20 one s i g Te l e p hon yAc t i v i t y e x t end s A c t i v i t y {}{
21 app i n App2
22 i n t e n t F i l t e r = I n t e n t F i l t e r 1
23 paths = pa t h Te l e p h on yAc t i v i t y 1
24 no p e rm i s s i o n s }
25 one s i g p a t h Te l e p h on yAc t i v i t y 1 ex t end s Path{}{
26 s ou r c e = IPC
27 s i n k = SMS }

Listing 4: Excerpts from generated specifications for
(a) App1 (Listing 1) and (b) App2 (Listing 2).

1 s i g Gene r a t edAc t i v i t yLaunch{
2 d i s j launchedCmp ,malCmp : one Component ,
3 ma l I n t e n t : I n t e n t }{
4 ma l I n t e n t . s ende r = malCmp
5 launchedCmp i n s e t E x p l i c i t I n t e n t [ma l I n t e n t]
6 no launchedCmp . app & malCmp . app
7 launchedCmp . app i n d e v i c e . apps
8 not (malCmp . app i n d e v i c e . apps)
9 some launchedCmp . paths && launchedCmp . paths . s ou r c e

= IPC
10 some ma l I n t e n t . e x t r a
11 malCmp i n A c t i v i t y
12 }

Listing 5: Alloy specifications of Activity Launch
vulnerability in Android.

a sensitive path (path FindLocationActivity 1),
and the extra field of the Intent in the generated Alloy
model (line 18) is accordingly set. On the other hand,
there is a data-flow, started from the J IntentFilter and
reaches to node F, which uses the data in the body of a
text message. The path field of the TelephonyActivity in
the generated Alloy model (line 23, 25–27) thus reflects
this path. Note that this component does not enforce any
access permission neither in the manifest file nor in the
source code (line 24).

Formal Model of Vulnerabilities. To provide a ba-
sis for precise analysis of app bundles against inter-app
vulnerabilities and further to automatically generate pos-
sible scenarios of their occurrence given particular con-
ditions of each bundle, we designed specific Alloy signa-
tures. As a concrete example, we illustrate the semantics
of one of these vulnerabilities in the following. The oth-
ers are evaluated similarly.

Listing 5 presents the GeneratedActivitylaunch
signature along with its signature fact that specifies the
elements involved in, and the semantics of, an Activ-

ity launch exploit, respectively. In short, a malicious
component (malCmp) can launch an Activity by send-
ing an Intent (malIntent) to an exported component
(launchedCmp) that is not expecting Intents from that
component. According to line 9, the launchedCmp com-
ponent has a path from the exported interface to a
permission-required resource. It, thus, may leak infor-
mation or perform unauthorized tasks, depending on
the functionalities exposed by the victim component.

Generating possible exploit scenarios. We run the
modules defined above with a command that tries to sat-
isfy the vulnerabilities signature facts. Note that Alloy
analysis must be done within a given scope, which speci-
fies an upper bound for, or an exact, number of instances
per element signature. In our case, the exact scope of
each element, such as Application and Activity, required
to instantiate each vulnerability is automatically derived
from the specification.

If an instance is found, DROIDGUARD reports it along
with the information useful in finding the root cause of
the violation, from which fine-grained security policies
are then derived for the given system. Given our run-
ning example, the analyzer automatically generates the
following scenario:

. . . // omitted d e t a i l s of model i n s t a n c e s
GeneratedInfoLeak={GeneratedInfoLeak$0}
| components={vulnerableCmp$1 , vulnerableCmp$2 , malCmp}
| vulnerableCmp$1={App1/FindLocat ionAct iv i ty}
| | v u l n e r a b l e I n t e n t $ 1 ={FindLocat ionAct iv i ty/ i n t e n t 2 1}
| vulnerableComponent$2={App2/TelephonyActivity}
| malCmp={Applicat ion$0/ A c t i v i t y $ 0}
| malIntent$1={A c t i v i t y $ 0 / I n t e n t $ 0}
| sender={Applicat ion$0/ A c t i v i t y $ 0}
| component={App1/TelephonyActivi ty}
| a c t i o n ={sendSMS}
| e x t r a = {LOCATION}

It essentially states the scenario represented in Fig-
ure 1, in which a postulated malicious component, here
the generated Application$0/Activity$0 compo-
nent, can send the device location data captured from
a vulnerable Intent, intent2 1, to the desirable phone
number via an explicit Intent, Activity$0/Intent$0,
sent to the App2/TelephonyActivity component
that is vulnerable to Activity launch.

The next section describes how we can prevent occur-
rence of such vulnerability exploits through generation
and enforcement of respective policies.

7 APE: Android Policy Enforcer

In the implementation of APE, we faced two possible
alternatives: (1) modify the Android OS to enforce the
policies, or (2) modify the apps through injection of pol-
icy enforcement logic into the APK file. We chose the
latter approach, as it allows DROIDGUARD to be used
on an unmodified version of Android, thereby making
it widely applicable and practical for use by many.

Similar to a conventional access control model [46],
our approach is comprised of two elements: policy de-

8

cision point (PDP)—the entity which evaluates access
requests against a policy, and policy enforcement point
(PEP)—the entity which intercepts the request to a re-
source, makes a decision request to the PDP, and acts
on the received decision. The protected resources in
our research are mainly Android APIs that can result
in IPC calls. The PDP is realized by instrumenting ev-
ery application identified as vulnerable with a module
that relies on the synthesized policies for preventing or
allowing IPC access. The PEP in our case corresponds
to the instrumentation of code to dynamically intercept
event messages. More specifically, each IPC method in
an app’s APK file (e.g., startActivity(Intent)) is
replaced with a guarded operation that checks whether
the operation should proceed (e.g., Intent to be deliv-
ered to its destination) by calling the PDP.

Sensitive operations in Android applications, such as
sending SMS messages, are conducted through calls to
Android API methods. PEP wraps these operations and
uses PDP to check whether they are allowed to run or
not. Whenever an application is about to run a sensitive
operation, it is checked against the synthesized policies.
The respective application is then allowed to perform
the given operation as long as it conforms to such poli-
cies. Otherwise, the PDP prompts the user for consent
along with the information that would help the user in
making a decision, including the description of security
threat as well as the name and parameters of the inter-
cepted event. Should the user refuse, the application
skips the given operation and continues with running
the subsequent one. As IPC mechanisms in Android
are essentially performed by asynchronous API calls,
inhibiting them implies that no response for the event is
ever received, without causing unexpected crashes. Of
course, preventing IPC calls would naturally force the
app to operate in a degraded mode.

Continuing with our running example, given the gen-
erated scenario, App2 will be integrated with the fol-
lowing policy: every attempt of sending device LOCATION
data through SMS must be manually approved by the user.
Observe that each app, such as App2 can, and in this
case would, be guarded against more than one policy
at the same time. Indeed, App1 and App2 would also
be instrumented with policies generated regarding the
Intent hijacking and Activity Launch, respectively.

8 Tool Implementation

We have implemented DROIDGUARD as a publicly avail-
able tool [4]. We have built our static analysis capabil-
ity on top of the Soot [53] framework. We used Flow-
droid for intra-component taint analysis [11], and ex-
tended it to improve precision of analysis especially
to support some complicated ICC methods, such as
startActivityForResult. The prototype imple-
mentation of DROIDGUARD only requires the APK files—

not the original source code—which is important, of
course, for running it over non-open source apps. The
translation of captured app models into the Alloy lan-
guage are implemented using FreeMarker template en-
gine [6]. The core components of our analysis and syn-
thesis model are embedded in a relational logic lan-
guage, i.e., Alloy [36]. As a back-end analysis engine,
DROIDGUARD relies on Aluminum [42], a recently de-
veloped principled scenario explorer that generates only
minimal scenarios for specifications axiomatized in Al-
loy. Lastly, our policy enforcer (cf. APE module) lever-
ages the Soot framework [53] to inject instrumented
code—dynamically preventing event messages violating
synthesized policies—into each vulnerable application.

9 Evaluation

In this section, we present the experimental evaluation of
DROIDGUARD. Our evaluation addresses the following
research questions:

RQ1. What is the overall accuracy of DROIDGUARD in
detecting IPC (i.e., both inter-component and inter-
application) vulnerabilities compared to other state-
of-the-art techniques?

RQ2. How well does DROIDGUARD perform in practice?
Can it find security exploits and synthesize their
corresponding protection policies in real-world ap-
plications?

RQ3. What is the performance of DROIDGUARD’s analy-
sis implemented atop static analyzers and SAT solv-
ing technologies?

RQ4. How well does DROIDGUARD’s policy enforcement
perform compared with existing tools?

9.1 Results for RQ1 (Accuracy)

To evaluate the effectiveness and accuracy of our anal-
ysis technique and compare it against the other static
analysis tools, we used the DroidBench [3] and ICC-
Bench [8] suites of benchmarks, two sets of Android ap-
plications containing IPC based privacy leaks for which
all vulnerabilities are known in advance—establishing
a ground truth. These test cases comprise the most fre-
quently used IPC methods found in Google Play apps.
The benchmark apps also include unreachable, yet vul-
nerable components; reported vulnerabilities that in-
volve such unreachable components are thus considered
as false warnings. Using the apps in this benchmark,
which is developed by other research groups, we have
attempted to eliminate internal threats to the validity of
our results. Further, using the same benchmark apps as
prior research allows us to compare our results against
them.

9

We compared DROIDGUARD with existing tools tar-
geted at ICC vulnerability detection, namely DidFail [37]
and AmanDroid [55]. COVERT [14] only targets a spe-
cific type of inter-app vulnerability, i.e. privilege esca-
lation. We excluded COVERT from our comparison, as
all of the apps in DroidBench and ICC-Bench are exam-
ples of information leakage type of vulnerabilities that
COVERT cannot detect. We also tried to run IccTA [38],
another tool intended to identify inter-app vulnerabili-
ties, but faced technical difficulties. The tool terminated
with error while capturing ICC links. This issue has also
been reported by others [9]. Though we have been in
contact with the authors, we have not been unable to fix
it so far.

To compare the accuracy of selected tools, we mea-
sured precision, recall, and F-measure as follows:
Precision is the percentage of those vulnerabilities de-
tected by the tool that were also classified as vulnerabili-
ties by the benchmark: TP

TP+FP
Recall is the percentage of real vulnerabilities that the
tool finds: TP

TP+FN
F-measure is the harmonic mean of precision and recall:
2∗Precision∗Recall
Precision+Recall

where TP (true positive), FP (false positive), and FN
(false negative) represent the number of vulnerabilities
that are correctly detected, falsely reported, and missed.

Table 1 summarizes the results of our experiments
for evaluating the accuracy of DROIDGUARD in detect-
ing IPC vulnerabilities compared to other state-of-the-
art techniques. DROIDGUARD succeeds in detecting all
23 known vulnerabilities in DroidBench benchmarks,
and 7 vulnerabilities out of 9 in ICC-Bench suite. It
correctly finds both cases of privacy leak in bindService4
and startActivityForResults4. It also correctly ignores two
cases where there are no leaks, since the code harbor-
ing those vulnerabilities is not reachable, i.e., startActiv-
ity{4,5}. The only missed vulnerabilities are the ones
that are caused by dynamic registration of Broadcast Re-
ceivers, which is not handled by DROIDGUARD’s model
extractor.

In addition to missing the vulnerabilities in the bound
services, AmanDroid is unable to examine Content
Providers for security analysis. DidFail does even worse.
Based on the results, DidFail found only the vulnerabil-

Figure 5: ICC Benchmark Comparison Results.

Table 1: Comparison between DROIDGUARD, DidFail,
and AmanDroid. TP, FP and FN are represented by
symbols 2�, 4, 2, respectively. (X#) indicates the number
of detected instances for the corresponding symbol X.

Test Case DidFail AmanDroid DroidGuard

D
ro

id
Be

nc
h2

ICC bindService1 42 2 2�
ICC bindService2 2 2 2�
ICC bindService3 2 2 2�
ICC bindService4 4(22) (22) (2�2)
ICC sendBroadcast1 2� 2� 2�
ICC startActivity1 2 2� 2�
ICC startActivity2 2 2� 2�
ICC startActivity3 2 2� 2�
ICC startActivity4 4
ICC startActivity5 (42)
ICC startActivityForResult1 2 2� 2�
ICC startActivityForResult2 2 2 2�
ICC startActivityForResult3 2 24 2�
ICC startActivityForResult4 (22) 2�42 (2�2)
ICC startService1 42 2� 2�
ICC startService2 42 2 2�
ICC delete1 2 2 2�
ICC insert1 2 2 2�
ICC query1 2 2 2�
ICC update1 2 2 2�
IAC startActivity1 2�4 2 2�
IAC startService1 2� 2 2�
IAC sendBroadcast1 2� 2 2�

IC
C

-B
en

ch

Explicit Src Sink 2 2� 2�
Implicit Action 2� 2� 2�
Implicit Category 2� 2� 2�
Implicit Data1 2� 2� 2�
Implicit Data2 2� 2� 2�
Implicit Mix1 2� 2� 2�
Implicit Mix2 2� 2� 2�
DynRegisteredReceiver1 2 2� 2
DynRegisteredReceiver2 2 2 2

ities caused by implicit Intents, missing vulnerabilities
that are due to explicit Intents, such as information leak.

The precision, recall and F-measure for the benchmark
apps are depicted in Figure 5. The results show that
DROIDGUARD outperforms the other two tools in terms
of both precision and recall.

9.2 Results for RQ2 (DROIDGUARD and Real-
World Apps)

To evaluate the implications of our tool in practice, we
collected 4,000 apps from the following four different
sources:
Google Play [7]. This repository serves as the official
Android app store. Our Google play collection consists
of 600 randomly selected and 1,000 most popular free
apps in the market.
F-Droid [5]. This is a software repository that contains
free and open source Android apps. Our collection in-
cludes 1,100 apps from this Android market.
Malgenome [58]. This repository contains malware sam-
ples that cover the majority of existing Android malware
families. Our collection includes all (about 1,200) apps
in this repository.

10

Table 2: Vulnerability Types and Samples of detected apps for each type.

Vulnerability Types Vulnerable Apps
Activity/Service Launch Barcoder: Exposes bill payment service by receiving an implicit Intent.
Intent Hijack Hesabdar: Sends users accounts as an implicit Intents, could be received by unauthorized apps.
Information Leakage OwnCloud: Leaks cloud account information to the Android shared log.
Privilege Escalation Ermete SMS: Gives out the SMS permission to other apps who may not have it.

Bazaar [1]. This website is a third-party Android mar-
ket. We collected 100 popular apps from this repository,
distinguished from apps downloaded from Google Play
and F-Droid.

We partitioned the subject systems into 80 non-
overlapping bundles, each comprised of 50 apps, sim-
ulating a collection of apps installed on an end-user
device. The bundles enabled us to perform several
independent experiments. We have made the list of
apps in each bundle available to the reader [4]. Discov-
ered vulnerabilities can be categorized into four classes,
shown in the first column of Table 2. Out of 4,000 apps,
DROIDGUARD identified 97 apps vulnerable to Intent
hijack, 124 apps to Activity/Service launch, 128 apps to
inter-component sensitive information leakage, and 36
apps to privilege escalation. We then manually inspected
the DROIDGUARD’s results to assess its utility in prac-
tice. In the following, we describe some of our findings.
To avoid leaking previously unknown vulnerabilities,
we only disclose a subset of those that we have had the
opportunity to bring to the app developers’ attention.

Activity/Service Launch. Barcoder is a barcode scan-
ner app that scans bills using the phone’s camera, and
enables users to pay them through an SMS service. It also
stores the user’s bank account information, later used in
paying the bills. Given details of a bill as payload of an
input Intent, the InquiryActivity component of this app
pays it through SMS service. This component exposes
an unprotected Intent filter that can be exploited by a
malicious app for making an unauthorized payment.

Intent Hijack. Hesabdar is an accounting app for per-
sonal use and money transaction that, among other
things, manages account transactions and provides a
temporal report of the transaction history. One of its com-
ponents handles user account information and sends the
information as payload of an implicit Intent to another
component. When a component sends an implicit Intent,
there is no guarantee that it will be received by the in-
tended recipient. A malicious application can intercept
an implicit Intent simply by declaring an Intent filter
with all of the actions, data, and categories listed in the
Intent, thus stealing sensitive account information by
retrieving the data from the Intent.

Information Leakage. OwnCloud provides cloud-
based file synchronization services to the user. By cre-
ating an account on the back-end server, user can sync
selected files on the device and access synced files to
browse, manage, and share. Our study indicates that
OwnCloud app is vulnerable to leak sensitive informa-

Table 3: Experiments performance statistics.

Components Intents Intent Time (sec)
Filters Construction Analysis

313 322 148 260 57

tion to other apps. One of its components obtains the
account information and through a chain of Intent mes-
sage passing, eventually logs the account information in
an unprotected area of the memory card, which can be
read by any other app on the device.

Privilege Escalation. Ermete SMS is a text messaging
application with WRITE SMS permission. Upon receiv-
ing an Intent, the ComposeActivity component of this app
extracts the payload of the given Intent, and sends it via
text message to a number also specified in the payload,
without checking the permission of the sender. This
vulnerable component, thus, provides the WRITE SMS
permission to all other apps that may not have it.

9.3 Results for RQ3 (Performance and Tim-
ing)

The next evaluation criteria are the performance bench-
marks of static model extraction and formal analysis and
synthesis activities. We used a PC with an Intel Core
i7 2.4 GHz CPU processor and 4 GB of main memory,
and leveraged Sat4J as the SAT solver during the experi-
ments.

Figure 6 presents the time taken by DROIDGUARD to
extract app specifications for 4,000 real-world apps. This
measurement is done on the data-sets collected from
4 repositories: Google Play, F-Droid, Malgenome, and
Bazaar. The scatter plot shows both the analysis time
and the app size. According to the results, our approach
statically analyzes 95% of apps in less than two minutes.
As our approach for model extraction analyzes each
app independently, the total static analysis time scales
linearly with the size of the apps.

Table 3 shows the average time involved in composi-
tional analysis and synthesis of policies for a set of apps.
The first three columns represent the average number
of Components, Intents, and Intent filters within each
analyzed bundle. The next two columns represent the
time spent on transforming the Alloy models into 3-SAT
clauses, and in SAT solving to find the space of solutions
for each bundle. The timing results show that on aver-
age DROIDGUARD is able to analyze bundles of apps
containing hundreds of components in the order of a

11

few minutes (on an ordinary laptop), confirming that
the proposed technology based on a lightweight formal
analyzer is feasible.

Finally, we compared scalability of DROIDGUARD
with other tools that support analysis of inter-app vulner-
abilities, namely DidFail and AmanDroid. Figure 7 com-
pares the analysis time taken by each of these tools. We
chose configuration of apps from the already reported
repositories (cf. RQ2) with the number of components
specified on the x axis. As illustrated in the diagram,
the analysis time by AmanDroid scales exponentially,
and for a bundle of just 8 components it exceeds 10 min-
utes. DidFail performs better in terms of time, but fails
to analyze apps with more than 30 components, with
error in its transformation phase. The results show that
DROIDGUARD outperforms the two other tools in terms
of scalability.

9.4 Results for RQ4 (policy enforcement)

The last evaluation criteria are the performance bench-
marks of DROIDGUARD’s policy enforcement. Recall
from Section 7 that DROIDGUARD instruments each vul-
nerable app with a PDP, a module that implements pol-
icy decision making. We measured the overhead intro-
duced by APE due to bytecode instrumentation of apps
with PDP. This module accounts for 522 instructions. On
average, the overhead of instrumented instructions for
the subject systems we measured is less than one percent,
and more specifically 0.22%.

To measure the runtime overhead required for PEP
(i.e., policy enforcement), we tested an instrumented
application on a Nexus 1 phone (Android version 2.3.7).
Our benchmark application repeats performing an IPC
operation, namely startService, for 100 times. We have
handled uncontrollable factors in our experiments by
repeating the experiments 33 times and reporting the
results using their 95% confidence intervals. Overall,
the execution time overhead incurred by APE for policy

Figure 6: Scatter plot representing analysis time for
model extraction of Android apps.

enforcement is 4.94% ± 1.06%, making the effect on user
experience negligible.

We also tried to compare dynamic policy enforcement
feature of DROIDGUARD with other state-of-the-art tools,
namely AppFence [34], AppGuard [13], Aurasium [57],
DroidForce [45], and Pegasus [17]. Out of these five
tools, AppGuard, Aurasium and DroidForce were pub-
licly available. For the other tools, we contacted the
respective authors. Unfortunately, the authors of Pega-
sus stated that it is not publicly available, and we never
heard back from AppFence.

We tested the available tools against the benchmark
apps of DroidBench2.0 [3]. Aurasium’s enforcement is
based on repackaging the application and attaching pol-
icy logic to it. However, the tool was not able to repack-
age any of the DroidBench apps and terminated with an
internal error. We contacted the authors, but never heard
back. To run DroidForce tool, we developed a set of ap-
propriate policies for preventing ICC leaks in benchmark
apps. However, DroidForce was not able to correctly en-
force the policies. The issue is confirmed by the authors.
We installed AppGuard app on a phone, and it correctly
instrumented the benchmark apps, which allows us to
revoke permissions after app-installation time. However,
policies that can be enforced by AppGuard are limited to
the permissions enabling access to sensitive sources and
sinks, rather than narrowly targeted policies preventing,
e.g. certain vulnerable inter-component communica-
tions, as in DROIDGUARD. In conclusion, while there
is a number of policy-enforcement tools for Android
available in the scientific literature, we were unable to
successfully fix ICC vulnerabilities in the benchmark
apps.

Figure 7: Performance Comparison Results. To im-
prove the readability, the y-axis is limited to 10 minutes
(600 seconds), which intercepts Amandoird line at 8-
components point. DidFail was unable to analyze apps
with more than 30 components.

12

10 Related Work

Mobile security issues have received a lot of attention
recently. Here, we provide a discussion of the related
efforts in light of our research.

A large body of work [18,23,28–30,41,43,59] focuses on
performing program analysis over Android applications
for security. Chin et al. [18] studied security challenges
of Android communication, and developed ComDroid
to detect those vulnerabilities through static analysis of
each app. Octeau et al. [43] developed Epicc for analy-
sis of Intent properties—except data scheme—through
inter-procedural data flow analysis. FlowDroid [11] in-
troduces a precise approach for static taint flow analysis
in the context of each application component. CHEX [39]
also takes a static method to detect component hijack-
ing vulnerabilities within an app. These research ef-
forts, like many others we studied, are mainly focused
on Intent and component analysis of one application.
DROIDGUARD’s analysis, however, goes far beyond sin-
gle application analysis, and enables synthesis of policies
targeting the overall security posture of a system, greatly
increasing the scope of vulnerability analysis.

The other, and perhaps more closely related, line of
research focuses on ICC analysis [14,37,38,55,56,59]. Did-
Fail [37] introduces an approach for tracking data flows
between Android components. It leverages Epicc for In-
tent analysis, but consequently shares Epicc’s limitation
of not covering data scheme, which negatively affects
the precision of this approach in inter-component path
matching. Moreover, it does not generate nor enforce
system-specific policies, as performed by DROIDGUARD.
IccTA, similarly, leverages an intent resolution analysis
to identify inter-component privacy leaks [38]. IccTA’s
approach for inter-component taint analysis is based
on a pre-processing step connecting Android compo-
nents through code instrumentation, which improves
accuracy of the results but may also cause scalability
issues. Amandroid also tackles Android ICC-based pri-
vacy leaks [55]. It does not support one of the four
types of Android components, i.e., Content Provider,
nor complicated ICC methods, like startActivityForRe-
sult. Along the same line, COVERT [14] presents an ap-
proach for compositional analysis of Android inter-app
vulnerabilities. While this work is concerned with the
analysis of permission leakage between Android apps,
it does not really address the problem that we are ad-
dressing, namely the automated synthesis and dynamic
enforcement of system-specific policies.

The other relevant thrust of research has focused on
policy enforcement [13, 17, 34, 45, 47, 54, 57]. Kirin [24] ex-
tends the application installer component of Android’s
middleware to check the permissions requested by appli-
cations against a set of security rules. These predefined
rules are aimed to prevent unsafe combination of per-
missions that may lead to insecure data flows. Our work
differs in that it generates system-specific, fine-grain poli-

cies for a given system, rather than relying on general-
purpose policies defined based only on coarse-grain per-
missions. Moreover, DROIDGUARD is more precise as
it dynamically analyzes policy violations against flows
that actually occur at run-time.

Along the same line, Kynoid [47] enforces policies
at runtime through performing a dynamic taint anal-
ysis over a modified version of Dalvik VM. This ap-
proach, similar to many of the previously proposed
solutions [22–24, 26], requires changes to the Android.
Our approach, in contrast, requires no platform mod-
ifications. Rasthofer et al. proposed DroidForce [45],
in which each sensitive operation should be approved
by a central app before being executed by individual
apps. This centralized architecture, however, implies
both performance and security deficiencies. More re-
cently, DeepDroid [54] presents a policy enforcement
scheme based on dynamic memory instrumentation of
system processes on Android devices. However, it de-
pends on undocumented internal architecture of An-
droid framework and its system resources which may
change in future versions without notice.

All the enforcement techniques we studied rely on
policies developed by users, whereas DROIDGUARD is
geared towards the application of formal techniques to
synthesize such policies through compositional analysis
of Android apps. Our work can complement their re-
search by providing highly precise synthesized policies
to relieve their users of responsibility of manual policy
development.

Finally, constraint solving for synthesis and anal-
ysis has increasingly been used in a variety of do-
mains [10, 31, 49–51]. These research efforts share with
ours the common insight of using the state-of-the-art
constraint solving for synthesis. Different from all these
techniques, DROIDGUARD tackles the automated detec-
tion and mitigation of inter-app security vulnerabilities
in Android, by synthesizing Android-specific security
policies. It thus relieves the tedium and errors associ-
ated with their manual development. To the best of our
knowledge, DROIDGUARD is the first formally-precise
technique for automated synthesis and dynamic enforce-
ment of Android security policies.

11 Concluding Remarks and Limita-
tions

This paper presents a novel approach for automatic syn-
thesis and enforcement of security policies, allowing the
end-users to safeguard the apps installed on their device
from inter-app vulnerabilities. The approach, realized in
a tool, called DROIDGUARD, combines static program
analysis with lightweight formal methods to automat-
ically infer security-relevant properties from a bundle
of apps. It then uses a constraint solver to synthesize
possible security exploits, from which fine-grained secu-

13

rity policies are derived and automatically enforced to
protect a given device. The results from experiments in
the context of thousands of real-world apps corroborates
DROIDGUARD’s ability in finding previously unknown
vulnerable apps as well as preventing their exploitation.

Our approach has a few limitations. Current imple-
mentation of DROIDGUARD mainly instruments API
calls at the bytecode level. It thus might miss meth-
ods executed in native libraries accessed via Java Native
Interface (JNI), or from external sources that are dynam-
ically loaded. It has been shown that only about 4.52%
of the apps on the market contain native code [60]. Sup-
porting these additional sources of vulnerability entails
extensions to our static program analysis and instrumen-
tation approach to support native libraries. Reasoning
about dynamically loaded code is not possible through
static analysis, and thus, an additional avenue of future
work is leveraging dynamic analysis techniques, such
as TaintDroid [23] and EvoDroid [40], that would allow
us to extract additional behaviors that might be latent in
apps.

References
[1] Bazaar. http://cafebazaar.ir/.

[2] Dalvik - code and documentation. http://code.google.
com/p/dalvik/.

[3] Droidbench2.0. http://github.com/
secure-software-engineering/DroidBench/tree/
iccta/apk.

[4] Droidguard. Redacted due to double blind submission require-
ment.

[5] F-droid. https://f-droid.org/.

[6] Freemarker java template engine. http://freemarker.org/.

[7] Google play market. http://play.google.com/store/
apps/.

[8] Iccbench. https://github.com/fgwei/ICC-Bench/
tree/master/apks.

[9] Iccta tool on github, reported issues. https://github.com/
lilicoding/soot-infoflow-android-iccta/issues/
7.

[10] AKHAWE, D., BARTH, A., LAM, P., MITCHELL, J., AND SONG,
D. Towards a formal foundation of web security. In Proceedings
of the IEEE Computer Security Foundations Symposium (2010).

[11] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL, A.,
KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL, P. Flow-
droid: Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. In Proceedings of the 35th
annual ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI 2014) (2014).

[12] AU, K. W. Y., ZHOU, Y. F., HUANG, Z., AND LIE, D. Pscout:
Analyzing the android permission specification. In Proceedings
of the ACM Conference on Computer and Communications Security
(CCS) (2012).

[13] BACKES, M., GERLING, S., HAMMER, C., MAFFEI, M., AND VON
STYP-REKOWSKY, P. Appguard–enforcing user requirements on
android apps. In Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2013, pp. 543–548.

[14] BAGHERI, H., SADEGHI, A., GARCIA, J., AND MALEK, S. Covert:
Compositional analysis of android inter-app vulnerabilities. Tech.

Rep. GMU-CS-TR-2015-1, Department of Computer Science,
George Mason University, 4400 University Drive MSN 4A5, Fair-
fax, VA 22030-4444 USA, 2015.

[15] BODDEN, E. Inter-procedural data-flow analysis with ifds/ide
and soot. In Proceedings of the ACM SIGPLAN International Work-
shop on State of the Art in Java Program analysis (2012), ACM, pp. 3–
8.

[16] BUGIEL, S., DAVID, L., DMITRIENKO, A. FISCHER, T., SADEGHI,
A., AND SHASTRY, B. Towards taming privilege-escalation at-
tacks on android. In Proc. of NDSS (2012).

[17] CHEN, K. Z., JOHNSON, N. M., D’SILVA, V., DAI, S., MACNA-
MARA, K., MAGRINO, T. R., WU, E. X., RINARD, M., AND SONG,
D. X. Contextual policy enforcement in android applications
with permission event graphs. In NDSS (2013).

[18] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D. Ana-
lyzing inter-application communication in android. In Proceedings
of the 9th international conference on Mobile systems, applications, and
services (New York, NY, USA, 2011), MobiSys ’11, ACM, pp. 239–
252.

[19] CHRISTENSEN, A. S., MØLLER, A., AND SCHWARTZBACH, M. I.
Precise analysis of string expressions. In Proceedings of the 10th
international conference on Static analysis (SAS’03) (2003), pp. 1–18.

[20] CORP., S. 2012 norton study: Consumer cybercrime estimated at
$110 billion annually. http://www.symantec.com/about/
news/release/article.jsp?prid=20120905_02, Sept.
2012.

[21] DAVI, L., DMITRIENKO, A., SADEGHI, A.-R., AND WINANDY,
M. Privilege escalation attacks on android. In Proceedings of the
13th international conference on Information security (ISC) (2010).

[22] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WALLACH,
D. S. Quire: Lightweight provenance for smart phone operating
systems. In Proc. of USENIX (2011).

[23] ENCK, W., GILBERT, P., CHUN, B. G., COX, L. P., JUNG, J., MC-
DANIEL, P., AND SHETH, A. N. Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones.
In Proc. of USENIX OSDI (2011).

[24] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On lightweight
mobile phone application certification. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS) (2009).

[25] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAGNER,
D. Android permissions demystified. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS) (2011),
pp. 627–638.

[26] FELT, A. P., WANG, H., MOSHCHUK, A., HANNA, S., AND CHIN,
E. Permission re-delegation: Attacks and defenses. In Proc. of the
20th USENIX Security Symposium (2011).

[27] FRAGKAKI, E., BAUER, L., JIA, L., AND SWASEY, D. Modeling
and enhancing android’s permission system. In Proc. of ESORICS
(2012).

[28] FUCHS, A. P., CHAUDHURI, A., AND FOSTER, J. S. Scandroid:
Automated security certification of android applications, 2009.

[29] GIBLER, C., CRUSSELL, J., ERICKSON, J., AND CHEN, H. An-
droidleaks: Automatically detecting potential privacy leaks in
android applications on a large scale. In Trust and Trustworthy
Computing (2012), Springer, pp. 291–307.

[30] GRACE, M., ZHOU, Y., WANG, Z., AND JIANG, X. Systematic
detection of capability leaks in stock android smartphones. In Pro-
ceedings of the 19th Annual Symposium on Network and Distributed
System Security (2012).

[31] GULWANI, S. Dimensions in program synthesis. In Proceedings
of the 12th international ACM SIGPLAN symposium on Principles
and practice of declarative programming (New York, NY, USA, 2010),
PPDP ’10, ACM, pp. 13–24.

14

http://cafebazaar.ir/
http://code.google.com/p/dalvik/
http://code.google.com/p/dalvik/
http://github.com/secure-software-engineering/DroidBench/tree/iccta/apk
http://github.com/secure-software-engineering/DroidBench/tree/iccta/apk
http://github.com/secure-software-engineering/DroidBench/tree/iccta/apk
https://f-droid.org/
http://freemarker.org/
http://play.google.com/store/apps/
http://play.google.com/store/apps/
https://github.com/fgwei/ICC-Bench/tree/master/apks
https://github.com/fgwei/ICC-Bench/tree/master/apks
https://github.com/lilicoding/soot-infoflow-android-iccta/issues/7
https://github.com/lilicoding/soot-infoflow-android-iccta/issues/7
https://github.com/lilicoding/soot-infoflow-android-iccta/issues/7
http://www.symantec.com/about/news/release/ article.jsp?prid=20120905_02
http://www.symantec.com/about/news/release/ article.jsp?prid=20120905_02

[32] HOLAVANALLI, S., MANUEL, D., NANJUNDASWAMY, V., ROSEN-
BERG, B., SHEN, F., KO, S. Y., AND ZIAREK, L. Flow permissions
for android. In Proceeding of the 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (2013).

[33] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These aren’t the droids you’re looking for:
Retrofitting android to protect data from imperious applications.
In Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS) (2011), pp. 639–652.

[34] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious applications.
In Proceedings of the 18th ACM conference on Computer and commu-
nications security (2011), ACM, pp. 639–652.

[35] INC., G. Gartner reveals top predictions for IT organizations
and users for 2012 and beyond. http://www.gartner.com/
newsroom/id/1862714, Dec. 2011.

[36] JACKSON, D. Alloy: a lightweight object modelling notation.
TOSEM 11, 2 (2002), 256–290.

[37] KLIEBER, W., FLYNN, L., BHOSALE, A., JIA, L., AND BAUER, L.
Android taint flow analysis for app sets. In Proceedings of the 3rd
ACM SIGPLAN International Workshop on the State of the Art in Java
Program Analysis (2014), pp. 1–6.

[38] LI, L., BARTEL, A., KLEIN, J., TRAON, Y. L., ARZT, S.,
RASTHOFER, S., BODDEN, E., OCTEAU, D., AND MCDANIEL, P.
I know what leaked in your pocket: uncovering privacy leaks on
android apps with static taint analysis. Tech. Rep. arXiv preprint
arXiv:1404.7431, 2014.

[39] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. Chex: statically
vetting android apps for component hijacking vulnerabilities. In
Proceedings of the ACM Conference on Computer and Communications
Security (CCS) (2012).

[40] MAHMOOD, R., MIRZAEI, N., AND MALEK, S. Evodroid: Seg-
mented evolutionary testing of android apps. In Proceedings of
the 2014 ACM SIGSOFT International Symposium on Foundations of
Software Engineering (Hong Kong, China, November 2014), FSE
’14, ACM.

[41] MANN, C., AND STAROSTIN, A. A framework for static detection
of privacy leaks in android applications. In Proceedings of the 27th
Annual ACM Symposium on Applied Computing (New York, NY,
USA, 2012), SAC’12, ACM, pp. 1457–1462.

[42] NELSON, T., SAGHAFI, S., DOUGHERTY, D. J., FISLER, K., AND
KRISHNAMURTHI, S. Aluminum: Principled scenario exploration
through minimality. In Proceedings of the International Conference
on Software Engineering (2013), pp. 232–241.

[43] OCTEAU, D., MCDANIEL, P., JHA, S., BARTEL, A., BODDEN,
E., KLEIN, J., AND TRAON, Y. L. Effective Inter-Component
Communication Mapping in Android with Epicc: An Essential
Step Towards Holistic Security Analysis. In Proceedings of the 22nd
USENIX Security Symposium (Washington, DC, August 2013).

[44] RASTHOFER, S., ARZT, S., AND BODDEN, E. A machine-learning
approach for classifying and categorizing android sources and
sinks. In Proceedings of the 19th Annual Symposium on Network and
Distributed System Security (NDSS 2014) (2014).

[45] RASTHOFER, S., ARZT, S., LOVAT, E., AND BODDEN, E. Droid-
force: Enforcing complex, data-centric, system-wide policies in
android. In Availability, Reliability and Security (ARES), 2014 Ninth
International Conference on (2014), IEEE, pp. 40–49.

[46] SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN,
C. E. Role-based access control models. Computer 29, 2 (1996),
38–47.

[47] SCHRECKLING, D., POSEGGA, J., KÖSTLER, J., AND SCHAFF, M.
Kynoid: Real-time enforcement of fine-grained, user-defined, and
data-centric security policies for android. In Proceedings of the
6th IFIP WG 11.2 International Conference on Information Security
Theory and Practice: Security, Privacy and Trust in Computing Sys-
tems and Ambient Intelligent Ecosystems (Berlin, Heidelberg, 2012),
WISTP’12, Springer-Verlag, pp. 208–223.

[48] SHABTAI, A., FLEDEL, Y., KANONOV, U., ELOVICI, Y., DOLEV,
S., AND GLEZER, C. Google android: A comprehensive security
assessment. Security & Privacy, IEEE 8, 2 (2010), 35–44.

[49] SRIVASTAVA, S., GULWANI, S., AND FOSTER, J. S. From program
verification to program synthesis. In POPL’10 (Jan. 2010), pp. 313–
326.

[50] SRIVASTAVA, S., GULWANI, S., AND FOSTER, J. S. Template-
based program verification and program synthesis. International
Journal on Software Tools for Technology Transfer (Jan. 2012).

[51] TORLAK, E., AND BODIK, R. Growing solver-aided languages
with rosette. In Proceedings of the 2013 ACM International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming
& Software (New York, NY, USA, 2013), Onward! ’13, ACM,
pp. 135–152.

[52] TRIPP, O., PISTOIA, M., COUSOT, P., COUSOT, R., AND
GUARNIERI, S. Andromeda: Accurate and scalable security anal-
ysis of web applications. In Fundamental Approaches to Software
Engineering. Springer, 2013, pp. 210–225.

[53] VALLE É-RAI, R., CO, P., GAGNON, E., HENDREN, L., AND LAM,
P.AND SUNDARESAN, V. Soot - a java bytecode optimization
framework. In Proc. of CASCON’99 (1999).

[54] WANG, X., SUN, K., WANG, Y., AND JING, J. Deepdroid: Dy-
namically enforcing enterprise policy on android devices. In Proc.
of 18th Annual Network and Distributed System Security Symposium
(NDSS) (2015).

[55] WEI, F., ROY, S., OU, X., AND ROBBY. Amandroid: A precise
and general inter-component data flow analysis framework for
security vetting of android apps. In Proceedings of the 2014 ACM
Conference on Computer and Communications Security (CCS) (2014).

[56] WU, L., GRACE, M., ZHOU, Y., WU, C., AND JIANG, X. The im-
pact of vendor customizations on android security. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security (2013).

[57] XU, R., SAÏDI, H., AND ANDERSON, R. Aurasium: Practical
policy enforcement for android applications. In USENIX Security
Symposium (2012), pp. 539–552.

[58] ZHOU, Y., AND JIANG, X. Dissecting android malware: Charac-
terization and evolution. In Security and Privacy (SP), 2012 IEEE
Symposium on (2012), IEEE, pp. 95–109.

[59] ZHOU, Y., AND JIANG, X. Detecting passive content leaks
and pollution in android applications. In Proceedings of the 20th
Network and Distributed System Security Symposium (NDSS 2013)
(2013).

[60] ZHOU, Y., Y. WANG, Z., ZHOU, W., AND JIANG, X. Hey, you,
get off of my market: Detecting malicious apps in official and
alternative android markets. In Proceedings of the 19th Network
and Distributed System Security Symposium (NDSS 2012) (2012).

15

http://www.gartner.com/newsroom/id/1862714
http://www.gartner.com/newsroom/id/1862714

	Introduction
	Android Overview
	Motivating Example
	Approach Overview
	AME: Android Model Extraction
	ASE: Vulnerability Analysis and Policy Synthesis Engine
	APE: Android Policy Enforcer
	Tool Implementation
	Evaluation
	Results for RQ1 (Accuracy)
	Results for RQ2 (DROIDGUARD and Real-World Apps)
	Results for RQ3 (Performance and Timing)
	Results for RQ4 (policy enforcement)

	Related Work
	Concluding Remarks and Limitations

