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Abstract

Proposed in this paper is an extensible decision sup-
port system framework to facilitate Commercial and
Industrial entities forming a consortium to collaborate
on their electric power supply and demand in order to
streamline their consumption and reduce their costs. The
collaborative framework includes the structure of mar-
ket setting, participants’ bids, and a market resolution
which produces a schedule of how power components
are controlled as well as the resulting payment by mar-
ket participants. We also define four properties that the
market resolution must satisfy, namely, feasibility, Pareto-
optimality, Nash equilibrium, and equal collaboration prof-
itability. Furthermore, we develop a market resolution
algorithm, based on a formal optimization model and
prove that it satisfies the desirable market properties.

1 Introduction

There has been an ongoing trend of moving toward less
reliance on conventional hydrocarbon energy resources
and more adoption of cleaner alternative energy due
to increased fuel costs or to be more sustainable. This
trend created a plethora of alternatives that promise to
cut carbon emissions and pollutants. Commercial and
Industrial (C&I) organization have a variety of power
enabled services. Furthermore, they add a variety of
energy and power resources including Photovoltaics,
wind, storage, local back-up generation, and commercial
contracts on supply of power and load curtailment.

In this context two complex questions arise: (1) how
to optimally operate available resources over time, and
(2) how multiple C&I organizations can collaborate on
sharing resources to minimize their costs. This paper
focuses on decision support for C&I organizations to
address these two problems.

To better understand interaction and collaboration

between different units, consider an illustrative scenario
depicted in Figure 1. In this scenario multiple units
(e.g., C&I organizations) have a diverse set of resources
that supply power and provide multiple services that
consume power at any operation time interval.

Figure 1: Power Loads & Resources Collaboration Exam-
ple

While a contract with electrical power company is
common, an organization can have other energy re-
sources (e.g., photovoltaic power systems, storage bat-
teries, backup engine generators, etc.) at its disposal.
With so many alternatives, finding the optimal opera-
tion of such resources while taking into consideration
the possibility of collaborating with others becomes an
increasingly complex problem.

In order to be able to model such a scenario, we must
define how electrical power components (i.e., electrical
power resources, or electrical power consuming services)
are modeled. Furthermore, we need to describe how
they behave under various conditions. In general, power
components of the electrical power infrastructure can
either produce power, consume power, store power, or
remain idle at any given time interval over the time
horizon under consideration. While power components’
internal workings can be unique, we try to find common
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characteristics that these components share in order to
generalize their modeling.

Since the introduction of the deregulated electric
power market, many innovative solutions have been
proposed to increase competitiveness and reduce costs.
As discussed in more detail in Section 2 (Related Work),
a range of demand response (DR) techniques have been
proposed [1]. DR techniques try to adapt consumption
based on changes in energy supply. Also, power auction
markets have been used to increase supply side com-
petitiveness and price variability based on changes in
demand [2]. Furthermore, there have been efforts to
model dynamic real-time allocation of resources such as
wireless spectrum between participating wireless carri-
ers with promising results [3]. However, these concepts
did not address (1) how participants of a consortium
can collaborate to share power resources and services
(2) how gains from such collaboration can be fairly dis-
tributed among the participants.

In previous work [4, 5], we explored the idea of how
units of an organization can optimally share their peak-
demand bounds to achieve an overall better operational
utility while fairly compensating participating units. We
also optimally planned the selection of peak-demand
of collaborating entities based on the projected demand
over a time-horizon with the condition that units can
share their peak-demand bounds. Both approaches re-
sulted in a better overall optimal level than if each player
acted separately. However, this approach does not con-
sider a range of power resources and services (e.g., pho-
tovoltaics, battery storage, backup generator, etc.), and
is not extensible. Bridging this gap is the focus of this
paper.

Making decisions in an environment where the the
benefit received from the operation of power consuming
services and the costs of power generation and acqui-
sition coupled with the possibility of collaboration in
real-time and for future planning with other C&I units
presents a complex problem. The purpose of this paper
is to introduce a decision support framework (see Figure
2) where C&I units that demand power, supply power,
or both can collaborate to optimize the operation, gener-
ation, and acquisition of electrical power components so
that they achieve a better financial and operational level.

In this paper, we propose an extensible Decision Sup-
port System framework for market-based collaboration
of power resources and services. In doing so, we cre-
ate an extensible model where resources & services can
be added or removed by minimally describing their at-
tributes. More specifically, the contributions of this paper
are as follows:

First, we propose and formally define a collaborative
market framework. The basic idea of this market is
to create a consortium of organizational units where
each unit has the freedom to make decisions related to
power consumption, generation, and storage. Members
of this consortium have some services that they need to

run (e.g., lighting, HVAC, water heating, etc.) and also
have some power resources (e.g., utility contract, pho-
tovoltaics, backup power generator, etc.). The members
also have some expectation of the intrinsic value of run-
ning services at different levels of operation over a time
horizon represented as a bid that each member of this
consortium submits to market. The market resolution
produces a power resource allocation for each unit, and
the payment that each member has to pay or receive.
We also define four desirable properties that our market
must satisfy, namely, feasibility, Pareto-optimality, Nash
equilibrium, and equal collaboration profitability.

Second, in order to support market resolution, we
develop and implement a formal optimization model
to decide on the operation of resources to be used, and
the services that are run while maintaining feasibility, i.e,
the power consumed by all members of the consortium
does not exceed the total power supply.

Third, we develop a market resolution mechanism
based on the optimization models that guarantees the
satisfaction of the defined properties of market, namely,
Pareto optimality, Nash equilibrium, as well as the property
of equal collaboration profitability, defined formally in this
paper.

This paper is organized as follows: In the second sec-
tion, we present a brief survey of related work. In the
third section we present a small example of the collabo-
ration problem. In section four, we describe our collabo-
rative market framework where we formally define the
power market setting, market bids, market resolution
and desirable properties that our market must satisfy.
In section five, we describe the market resolution algo-
rithm and how the extra benefit that resulted from the
collaboration is fairly distributed among the participants.
Finally, we briefly discuss our conclusions and give some
future work directions.

2 Related Work

Power markets have been the focus of a great deal of
research. There have been numerous efforts to deal with
reducing power consumption costs either through im-
proving technological efficiency or through market sup-
ply and demand mechanisms. An extensive work was
directed to dealing with the reduction of power con-
sumption from the demand side by changes in price
in an area that is termed Demand Response (DR) [1].
This approach has been used broadly with large power
consumers to cut or curtail demand when power gener-
ation and transmission networks are about to be over-
loaded. The participants are motivated by promising
financial incentives if they comply. Demand response
entails changing the consumers normal consumption
patterns in response to changes in price, or to qualify
for a certain incentive payment. Such DR programs are
categorized into two broad groups: price-based, and
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Figure 2: Electric Power Collaboration Decision Support Framework

incentive-based. Price-based methods include the use
of time-of-use (TOU) rates, real-time pricing (RTP), and
critical peak pricing (CPP). Whereas, incentive-based
methods use techniques such as: direct load control
(DLC), interruptible/curtailable (I/C) service, demand
bidding/buyback (DB), emergency demand response
programs (EDRP), capacity market programs (CMP),
and ancillary services market programs (ASMP). These
methods are summarized in [6].

There has also been significant work on deregulated
electricity markets and their competitive characteristics
[2]. Most of the work is has been directed to different
parts of market design, mainly, the relationship between
power generation companies and wholesale companies.
Different approaches to the use of auctions in electric
markets has been investigated, e.g., in [7], [8], [9],[10],
[11], and [12]. They discuss methods in how such mar-
kets should be designed to account for buyers and sellers
of electric power. Although there has been some work
that tries to address large consumers power procure-
ment optimization by evaluating different procurement
options [13], they fall short of addressing modeling inter-
nal power components and collaboration optimization.
There has been also some effort to control peak demand
and reduce overall consumption by using physical im-
provements [14] and load scheduling [15] yet the idea of
designing a decision support framework for the power
components modeling and collaboration has not been
addressed.

Furthermore, such concept of dynamic allocation have
been employed in other fields like computational sys-
tems resource distribution and wireless spectrum allo-
cation (i.e., [16, 17, 18, 3, 19, 20]). Solutions of micro-
economic equilibrium have been implemented with
promising results. However, the notion of using such
methods to share load consumption and power re-
sources to allocate power among multiple participants
such as units has not been explored. Moreover, studied
electricity markets are akin to commodity markets with
special characteristics whereas in our case, we need to
consider power components with right to use, which is
more akin to options market.

There have been several attempts to create a real-time
pricing market where participant place bids at every
considered time slot. The ideas propose models for
collaboration between customers of a power company
where participants place bids that correspond to bene-
fits gained from running household appliances. It also
considers a mix auxiliary power sources such as batter-
ies and plug-in hybrid electric vehicles (PHEV). With
simulated loads, the results indicated an overall stabi-
lization of power consumption curve over the consid-
ered time span compared to flat-rate which resulted in
the reductions of peak-demand consumption. While
such solution is promising, it does not consider the dy-
namics and the cascading effects of power components
planning for units of an organization or a consortium of
organizations where certain resolution and and payment
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exchange must be determined at each time interval while
optimizing for the entire time horizon. It also doesn’t
propose a fair mechanism to sharing the extra benefit of
collaboration versus working alone [21].

In previous work [4] we investigated the optimal dis-
tribution of an already allocated peak demand among
participating organization’s units. Under such model
the peak-demand budgets of participating units were
pooled together to increase the total welfare of an or-
ganization. A fair compensation and payment method
was proposed to distribute gains from collaboration. We
have also proposed to account for short term variabil-
ity of renewable resources and employ this variability
to make decision for peak-demand distribution. Short
term knowledge of efficiency that can be gained from the
immediate variability of renewable was employed for
the exchange of peak demand power bounds between
participating entities. We also proposed a model of how
to determine and optimal peak demand limits given
the opportunity of collaboration with other participants
later and how gains from reducing the contracted peak
demand bounds are fairly distributed among partici-
pants [5]. In this work however, we try to generalize
and expand our model to account for any type of power
component (e.g., consumption, generation, or storage)
given the component’s attributes.

3 Problem Example

To make the problem more concrete consider two an ex-
ample depicted in Figure 3 with Unit 1 and Unit 2. Unit 1
runs two power consuming services, water heating, and
HVAC. These two services have value to their respective
unit which we call intrinsic value (measured in dollars
amount). Each power consuming service needs power
to operate measured in kW. By intrinsic value we mean
the amount in dollars that a unit is willing to accept
in lieu of shutting that service off. Unit 1 also has two
types of power resources. The first is a utility contract
with a power company. This is not a power resource
in itself but a right to use power on agreed upon terms.
Utility contract may state the rate per kWh in dollars
and a maximum peak demand consumption level before
incurring a penalty rate. The other type of resource is a
backup power generator. Unit 2, on the other hand, has
two other power consuming services: lighting, and Plug-
in Electric Vehicle (PEV) charging . Unit 2 resources
are Photovoltaic unit and battery power storage unit.
The battery unit has controls that can be instructed at
any given time interval to either store power (charge),
provide power (discharge), or stay idle.

Using a power resource typically incurs certain cost
which can be either variable, fixed or both (e.g., acqui-
sition cost, fuel cost, maintenance cost, etc.). If these
resources are dispatched to third parties, they can gener-
ate revenue. These resources usually have certain status

indicators (e.g., charge level, efficiency, etc.) depend-
ing on the type of resource. Resources also have con-
straints that determine the feasible operation parameters
depending on multiple factors including the status of the
power resource. Most power consuming and producing
components allow for control that affect their operation.

In a typical environment, units operate independently
to satisfy their power loads. Now let’s consider a sce-
nario where unit 1 has a previously unanticipated surge
in demand. Unit 1 now has many alternatives to con-
sider. It can exceed its peak demand and incur penalty
which could affect the entire contractual period. It can
also arbitrarily curtail demand without giving much
thought to the lost intrinsic value of the service being
turned off. The unit can also dispatch the battery to sat-
isfy excess demand without considering the diminished
ability of the battery to satisfy possible future demand.
Now add to that the ability for multiple units to collab-
orate. That means if units 2 would agree to a certain
compensation, unit 1 could tap into unit 2’s power that
is coming from the either power company or use unit 2’s
backup engine generator. Choosing an alternative that
maximizes the unit’s value becomes increasingly com-
plex without a collaborative power resource and load
sharing market framework.

The formal market framework described in the next
Section (4) is designed to address the problem of (1) how
exactly each combined resource and service operate (2)
How to correctly compensate some units for enabling
the usage of their resources.
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Figure 3: Example Problem Units’ Power Components

4 Collaborative Market Framework

In this section we define the power market setting, mar-
ket bids, and the market resolution and its desired prop-
erties. We begin by describing the power market setting.

4.1 Power Market Setting

To facilitate market mechanisms, we assume that the
market consist of a set of components C = {1, · · · , n}.
Power components can be in the form power produc-
ing resources such as diesel generators, solar panels, etc.
They can also be in the form of power consuming ser-
vices such as lighting, air conditioning, water heating,
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etc. The time horizon is a set T = {1, · · · , N}, i.e., we
assume that time is divided into discrete time intervals
which determine the market execution frequency. For
example, a day of operation can be divided into 24 hours,
i.e., N = 24.

A control vector ai,t , 1 ≤ i ≤ n , 1 ≤ t ≤ N
represents the control actions that component i takes
at time interval t. Let dom(i) indicate the domain of
control values for component i. A vector of controls
āi = (ai,1, · · · , ai,N) , 1 ≤ i ≤ n, represents the control
actions that component i takes over the time horizon
N. The control actions for all components over the time
horizon N is represented as matrix

A =

 ā1
...

ān

 =

a1,1 · · · a1,N
...

. . .
...

an,1 · · · an,N


We assume that the market consists of a set of units
U = {1, · · · , k}. Each unit u ∈ U has number of com-
ponents and each component belongs to only one unit.
We further assume without loss of generality that unit
1’s components are {1, · · · , n1}, unit 2’s components are
{n1 + 1, · · · , n2}, and so on and finally unit k’s compo-
nents are {nk−1 + 1 , · · · , n}. For a general notation, unit
u’s components are {nu−1 + 1, · · · , nu} where n0 = 0
and nk = n.

The matrix of actions A can then be segmented by the
participating units, i.e.,

A =



A1
...

Au
...

Ak

 =



ā1
...

ān1...
ānu−1+1

...
ānu...

ānk−1+1
...

ān


where Au, 1 ≤ u ≤ k, is given by

Au =

ānu−1+1
...

ānu

 =


Au1

anu−1+1,1 · · · anu−1+1,N
...

. . .
...

anu ,1 · · · anu ,N


We will denote by Au1 the first column of matrix Au, i.e.,
the actions of the components of unit u at time interval
t = 1 (upcoming time interval). That is,

Au1 =

anu−1+1,1
...

anu ,1


4.2 Market Bids

Every unit u ∈ U submits a bid to the market

{〈costi, revi, intrinsicVali, poweri, constri〉 |

nu−1 + 1 ≤ i ≤ nu}

which gives a tuple 〈costi, revi, intrinsicVali,
poweri, constri〉 for every component i of u where:

• costi : dom(i)N → R+ is a function that gives ag-
gregate cost of component i associated with actions
āi over the time horizon. For example, a cost of a
diesel engine generator consist of the acquisition
cost, fuel cost, maintenance cost, etc.

• revi : dom(i)N → R+ is a functions that gives the
revenue of operation received (in dollars) of com-
ponent i associated with actions āi over the time
horizon,for example, dispatching the battery to a
another unit in returns for compensation.

• intrinsicVali : dom(i)N → R+ is a function that
gives the intrinsic value (or utility acquired) of op-
erating component i (in dollars) given the actions
āi over the time horizon. In other words, this is
the value that unit u is willing to get in lieu of not
operating component i.

• poweri : dom(i) → R is a function that gives the
power in kW that component i produces (or con-
sumes) given the control actions āi at any time point.
A positive value means that the component gives
power while a negative value means that the com-
ponent takes power.

• constri(āi) is the operational constraint of compo-
nent i in terms of control actions āi. For example,
maximum charge rate (in kW) and maximum dis-
charge rate (in kW) are constraints that affect the
power of a battery resource.

We denote the net value of operating component i given
control actions āi by the function

valuei : dom(i)→ R+

which is defined by

valuei(āi)
def
= intrinsicVali(āi) + revi(āi)− costi(āi).

The total value of components given their control action
matrix
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A =

ā1
...

āz


is defined as

totalValue(A)
def
=

z

∑
i=1

valuei(āi).

4.3 Market Resolution and Its Desired
Properties

Definition 1. A market resolution is a set

{〈A∗u1, Pu〉 | 1 ≤ u ≤ k}

where, for every 1 ≤ u ≤ k:

• A∗u1 is the actions matrix at time interval 1 (upcoming
time interval) for all components of unit u .

• Pu is the payment amount (in dollars) by unit u. A
positive value indicates that unit u makes a payment
while a negative value means that the unit receives a
payment.

We propose the following desired properties of a market
resolution:

• Feasibility

• Pareto-optimality

• Nash equilibrium

• Equal collaboration profitability

which we describe next.
Intuitively, a market resolution is feasible if the action

vector for every unit u at time point 1 can be extended
for the entire time horizon without violating unit u’s
constraints. More Formally,

Definition 2. We say that a market resolution
{〈Au1, Pu〉 | 1 ≤ u ≤ k} is feasible if, for every unit
u, 1 ≤ u ≤ k, there exists a unit’s action matrix

Au =

ānu−1+1
...

ānu

 =

anu−1+1,1 · · · anu−1+1,N
...

. . .
...

anu ,1 · · · anu ,N



where

anu−1+1,1
...

anu ,1

 = A∗u1

In the definition, note that the actions for time point 1 are
exactly those of A∗u1 so that each component i of u, nu−1 +
1 ≤ i ≤ nu satisfies its constraints constri(ai,1, · · · , ai,N).

To define the properties of Pareto optimality and Nash
equilibrium, we need to define the notions of selfValue
and collabValue for unit u , associated with the market
resolution.

Intuitively, a selfValue of u is the value u can optimally
achieve without collaborating with other units. More
formally,

Definition 3. selfValueu =

max
Au

totalValue(Au)

subject to
(∀i, nu−1 + 1 ≤ i ≤ nu) constri(āi) ∧

(∀t, 1 ≤ t ≤ N)
nu

∑
i=nu−1+1

poweri(ai,t) = 0

The optimal actions matrix As
u is the actions matrix that gives

the maximum self value under the the same constraints. That
is,

As
u ∈ arg max

Au

totalValue(Au)

subject to
(∀i, nu−1 + 1 ≤ i ≤ nu) constri(āi) ∧

(∀t, 1 ≤ t ≤ N)
nu

∑
i=nu−1+1

poweri(ai,t) = 0

Intuitively, given a market resolution, a collaborative
value of u is the value that u can optimally achieve by
extending its actions A∗u1 from the market resolution.
More formally,

Definition 4. collabValueu =

max
Au

totalValue(Au)

subject to

(∀i, nu−1 + 1 ≤ i ≤ nu)
(
constri(āi) ∧ (ai,1 = a∗i,1)

)
∧

nu

∑
i=nu−1+1

poweri(ai,1) =
nu

∑
i=nu−1+1

poweri(a∗i,1)∧

(∀t, 2 ≤ t ≤ N)
nu

∑
i=nu−1+1

poweri(ai,t) = 0

where a∗i,1 is a component of A∗u1
from market resolution.

The optimal actions matrix Ac
u is the actions matrix that

gives the maximum collaborative value for each unit
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under the the same constraints. That is,

Ac
u ∈ arg max

Au

totalValue(Au)

subject to

(∀i, nu−1 + 1 ≤ i ≤ nu)
(
constri(āi) ∧

(ai,1 = a∗i,1)
)
∧

nu

∑
i=nu−1+1

poweri(ai,1) =
nu

∑
i=nu−1+1

poweri(a∗i,1)∧

(∀t, 2 ≤ t ≤ N)
nu

∑
i=nu−1+1

poweri(ai,t) = 0

Intuitively, a market resolution is Pareto-optimal if no
other market resolution can increase the value of a unit
without decreasing the value of another unit. More
specifically,

Definition 5. Pareto-ptimality: We say that a market resolu-
tion {〈A∗u1

, Pu〉 | 1 ≤ u ≤ k} is Pareto-optimal if there does
not exist a market resolution {〈A′u1

, P′u〉 | 1 ≤ u ≤ k} such
that

(∀u ∈ U) (collabValue′u + P′u) ≥ (collabValueu + Pu)

and

(∃u ∈ U) (collabValue′u + P′u) > (collabValueu + Pu)

no other market resolution can increase the value of a
unit without decreasing the value of another unit.

Definition 6. Nash equilibrium: We say that a market reso-
lution satisfies the Nash equilibrium property if, no unit can
get a higher value by quitting the coalition, i.e.,

(collabValueu − Pu) ≥ selfValueu

Definition 7. Equal collaboration profitability of market res-
olution (fairness): We say that a market resolution satisfies
the equal collaboration profitability property if every unit u
has the same profit margin ru, defined as

ru
def
=

(collabValueu − Pu)− selfValueu
selfValueu

Note that collabValueu − Pu reflects the total value that
unit u receives from the market (collabValue minus the
payment).

Definition 8. Market-Resolution Algorithm properties: We
say that a market resolution algorithm satisfies the properties
of (1) Feasibility, (2) Pareto-optimality, (3) Nash equilibrium,
and (4) Equal collaboration profitability, if for every market
setting and market bids, it returns a market resolution that
satisfies the corresponding properties.

5 Market Resolution Algorithm

After we have defined the market resolution and its de-
sired properties, we now present how our market resolu-
tion algorithm is derived. We first define the global opti-
mization upon which the control actions of the market
resolution for the upcoming time interval are based(A∗u1).
We then extend these control actions for all the units to
find their collaborative value and then compare it to
their non-collaborative value and calculate the added
benefit of collaboration (∆). Finally we define how this
added benefit is distributed in order to determine the
payment (Pu) that each unit has to give or receive , which
completes the market resolution.

5.1 Global Optimization

The optimal value that the coalition can achieve which
maximizes the welfare is given by the maximization

globalValue = max
A

totalValue(A)

subject to
(∀i, 1 ≤ i ≤ n)constri(āi) ∧

(∀t, 1 ≤ t ≤ N)
n

∑
i=1

poweri(ai,t) = 0

The control actions matrix that produces the optimal
maximum total value for all components is the global
control actions matrix Ag, i.e.,

Ag ∈ arg max
A

totalValue(A)

subject to
(∀i, 1 ≤ i ≤ n)constri(āi) ∧

(∀t, 1 ≤ t ≤ N)
n

∑
i=1

poweri(ai,t) = 0

The matrix

Ag =

ag
1
...

ag
n

 =

ag
1,1 · · · ag

1,N
...

. . .
...

ag
n,1 · · · ag

n,N


represents the control actions that all units collectively
need to make in order to achieve the optimal value over
the entire time horizon. However, since our market
executes at every time interval, we are only interested in
the upcoming time interval (t = 1). The control action
matrix by units where Ag

u, 1 ≤ u ≤ k, is given by

Ag
u =

āg
nu−1+1

...
āg

nu
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The market resolution control actions are therefore
adopted from the this global optimization, i.e.,

A∗u1 = Ag
u1 =


ag

nu−1+1,1
...

ag
nu ,1


5.2 Added Collaboration Benefit (∆)

After determining the optimal market resolution con-
trol actions, the impact on units’ values for choosing
this resolution must be measured in order to compen-
sate the units appropriately. The additional value the
units collectively get by collaborating is the sum of the
their collaborative values minus the sum of their non-
collaborative values, i.e.,

∆ =
k

∑
u=1

collabValueu −
k

∑
u=1

selfValueu

We assume that each unit u has a non-negative share of
this ∆, i.e.,

∆ =
k

∑
u=1

∆u , (∀u = 1, · · · , k) ∆u ≥ 0

Value difference is the value that each unit u gets by
participating versus working alone, i.e.,

Vu = collabValueu − selfValueu

Pu is the payment that unit u makes (Pu < 0 means that
u receives payment)

∆u = Vu − Pu

Therefore,

Pu = Vu − ∆u

5.3 Added Benefit Distribution

The only remaining part is to find a fair methods to cal-
culate ∆u. We recall that we use the principle of equal
collaboration profitability which means that each unit gets
a portion of the resulting added value of collaboration
proportional to its standalone value, i.e.,

r =
∆1

selfValue1
= · · · = ∆k

selfValuek

where r is the ratio of the equal collaboration profitability
margin. That is,

(∀u ∈ U) ∆u = r · selfValueu

Since,

∆ =
k

∑
u=1

∆u

Therefore,

∆ =
k

∑
u=1

r · selfValueu

Thus,

∆ = r ·
k

∑
u=1

selfValueu

Finally,

r =
∆

k
∑

u=1
selfValueu

The market resolution algorithm is summarized in
Algorithm 1.

Algorithm 1 Market Resolution
Input: Market setting, Market bids
Output: Market resolution {〈A∗u1

, Pu〉 | 1 ≤ u ≤ k}
1: Let optCont[u] = ∅, pay[u] = ∅, V[u] = ∅
2: Let totalSelfValue = ∅, totalCollabValue = ∅
3: Let ∆ = ∅, r = ∅, ∆[u] = ∅
4: Solve globalValue
5: for u← 1 to k do
6: optCont[u]← Ag

u1
7: end for
8: for u← 1 to k do
9: Solve selfValueu

10: Solve collabValueu
11: Vu ← collabValueu − selfValueu
12: totalSelfValue← totalSelfValue + selfValueu
13: totalCollabValue← totalCollabValue + collabValueu
14: end for
15: ∆← totalCollabValue− totalSelfValue
16: r ← ∆/totalSelfValue
17: for u← 1 to k do
18: ∆u ← r× selfValueu
19: pay[u]← Vu − ∆u
20: end for
21: return (optCont, pay)

Theorem 1. The Market Resolution algorithm guarantees
the desired market properties which are:

• Feasibility

• Pareto-optimality

• Nash equilibrium

• Equal collaboration profitability

Proof. Feasibility follows directly from Ac
u where actions

of the global optimization are extended to satisfy the
constraints of individual units. Pareto-optimality fol-
lows from the fact of the collaborative maximization of
the consortium value (collabValueu). Nash equilibrium
follows from the fact that ∆ ≥ 0, and thus ∆u ≥ 0 for

8



every u ∈ U. Equal collaboration profitability of the
added value of collaboration follows directly from the
way the payment Pu and thus ∆u is distributed.

6 Conclusions & Future Work

This paper introduced an extensible decision-guided
market-based framework where units that contain
power components can collaborate to increase their
value and reduce their cost. This market described
the market setting, market bids, and market resolu-
tion. This framework also described a number of de-
sired properties the market resolution algorithm must
satisfy. This paper leveraged our prior work on mod-
ular modeling and optimization techniques such as
[22, 23, 24, 25, 26, 27]

This up to our knowledge is the first attempt to model
a generic electric power collaboration market with multi-
ple players which is extensible. We plan in the future to
implement a comprehensive study where we define spe-
cific instances of component’s controls and constraints
and model them using an optimization language such
as Optimization Programming Language (OPL). We also
plan to investigate whether the market mechanism can
be gamed by participants, by trying to infer the bid of
other participants, e.g., using techniques from [28].
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