Department of Computer Science
Technical Reports

George Mason University

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Decentralized Software Architecture Discovery in
Distributed Systems

Jason Porter
jportel0@gmu.edu

Daniel A. Menascé
menasce@gmu.edu

Hassan Gomaa
hgomaa@gmu.edu

Technical Report GMU-CS-TR-2016-2

Abstract

Software architecture discovery plays an increasingly
important role in the evolution, maintenance, and run-
time self-adaptation of modern software systems whose
architecture may have become outdated or may not have
previously existed. However, current approaches to
architecture discovery take a centralized approach, in
which the process is carried out from a single location.
This proves inadequate in the case of large distributed
systems which, due to size, consist of nodes that are
disparately located and are highly dynamic in nature.
This report presents DeSARM: Decentralized Software
Architecture discoveRy Mechanism, a completely de-
centralized and automated approach for software archi-
tecture discovery of distributed systems based on gos-
siping and message tracing. Through message tracing,
the technique is able to identify important architectural
characteristics such as components and connectors, in
addition to synchronous and asynchronous communi-
cation patterns. Furthermore, through its use of gossip-
ing, it exhibits the properties of scalability, global consis-
tency among participating nodes, self-organization, and
resiliency to failures. The report discusses DeSARM’s
architecture and detailed design and demonstrates its
properties through an analysis of small and large-scale
experiments.

1 Introduction

Software architecture—the high level structures of a soft-
ware system including a collection of components, con-
nectors and constraints—plays an increasingly critical
role in the design and development of any large com-
plex software system. These artifacts are needed to rea-
son about the system. In general, software architecture
acts as a bridge between requirements and implemen-
tation and provides a blueprint for system construction

and composition. The architecture helps in the under-
standing of complex systems, supports reuse at both the
component and architectural level, indicates the major
components to be developed and their relationships and
constraints, exposes changeability of the system as well
as allowing the verification and validation of the target
system at a high level [22, 56].

An area in which software architecture has been very
influential is that of self-adaptive systems, i.e., systems
that are capable of self-configuration, self-optimization,
self-healing and self-protection, also called self-* or
autonomic systems [25]. In architecture-based self-
adaptation, components dynamically change in order to
continuously adhere to architectural specifications and
system goals. This approach has proven to be very pop-
ular and many groups have used it as the foundation
for their work [59]. In a previous work [37], Menascé et
al. developed a framework for a self-architecting soft-
ware system (SASSY), which was designed to automate
the architectural decision making process for service-
oriented systems in the face of quality-of-service (QoS)
trade-offs. The framework automatically generates, at
runtime, candidate software architectures and selects the
one that best serves stakeholder-defined scenario-based
QoS goals [14, 35]. Adaptation decisions are made based
on changes in the system’s operational environment that
affect these goals [19, 18]. A new architecture is then
generated and the system is reconfigured to a new QoS
optimized state.

Whereas with SASSY the current (i.e., before adapta-
tion) architecture is assumed to be known, this research
considers the case in which the architecture is unknown
and needs to be discovered at run-time. It is not uncom-
mon for the architecture to be unknown in large-scale
distributed systems because the system’s structure is of-
ten dynamic due to churn, where nodes randomly join
and leave the network and may fail.

Software architecture erosion may occur when the
prescriptive or intended software architecture departs

from the descriptive or implemented software architec-
ture due to the system’s evolution over time [10]. As
one can imagine, such discrepancies can affect adapta-
tion decisions at run-time where complete knowledge
of the current architecture is imperative. Besides ero-
sion, another factor that would require the retrieval of
the software architecture at run-time is when there is no
prescriptive architecture available for the system. This
often occurs when the system is either developed with-
out an explicit architecture or design documents may
be lost [22]. Such issues are a motivation for software
architecture discovery. Software architecture discovery
involves the methods, techniques and processes used to
uncover a software system’s architecture from available
information [38]. This is the focus of this report.

Currently, most architecture discovery techniques rely
on input obtained from implementation level artifacts
to reconstruct the software architecture [39]. Software
maintenance and evolution requires architecture discov-
ery when the original architecture has eroded [16]. In our
work we do architecture discovery for architecture-based
adaptation purposes and perform discovery through a
decentralized analysis of message flows between com-
ponents in a distributed system.

A software architecture has structure and behav-
ior, where structure captures components and how
they are connected, and behavior captures interactions
among components. This report focuses on software
architecture structure discovery but also addresses be-
havioral discovery of the architecture such as inter-
component communication patterns (i.e., synchronous,
asynchronous, single or multiple destination). We re-
cover the software architecture in a decentralized man-
ner by keeping message logs in each node and dissemi-
nating message interaction information between nodes
through the use of gossip exchanges. Once convergence
is achieved, each component will have a global view of
the architecture.

This report makes the following key contributions:

1. DeSARM: Decentralized Software Architecture dis-
coveRy Mechanism, a completely decentralized and
automated method for software architecture discov-
ery of distributed systems using gossiping and mes-
sage tracing. The information dissemination and
fast convergence capability of gossiping aids each
component in deriving a view of the architecture.

2. Demonstration that the software architecture dis-
covery mechanism exhibits the following properties:
self-healing, self-organizing, global consistency, and
scalability. These properties relate to the architec-
ture discovery process not to the failure recovery of
the application system.

The rest of this report is organized as follows. Section 2
discusses related work. Section 3 provides a problem
description along with some basic assumptions. Sec-

tion 4 describes the architecture of DeSARM, our archi-
tecture discovery method. Section 5 presents the details
of running experiments with DeSARM. Finally, Section 6
presents some concluding remarks and discusses possi-
ble future work.

2 Related Work

The columns of Table 1 categorize software architec-
ture discovery techniques into either centralized or dis-
tributed and the rows categorize software applications as
either centralized or distributed. A centralized architec-
ture discovery method is one in which the discovery pro-
cess, which includes data gathering and processing, is
done from a single location. Conversely, in a distributed
discovery method, data gathering and processing is ac-
complished across multiple locations. We discuss here
prior work that uses centralized discovery methods ap-
plied to both centralized and distributed applications,
as well as distributed discovery methods applied to dis-
tributed applications, which is the focus of our report.
Clearly, a distributed method applied to a centralized
application is not applicable.

Architecture Discovery Method
Application | Centralized | Distributed
Centralized v’ N/A
Distributed v’ v’

Table 1: application structure and architecture discovery
method

Software architecture discovery approaches can be fur-
ther classified into dynamic, static, and hybrid, i.e., com-
bining both dynamic and static analysis, as described in
what follows.

Israr et al. [23] describe SAMEtech, a dynamic ap-
proach for automating the discovery of architecture mod-
els and layered performance models from message trace
information. DiscoTect [53] uses a set of pattern recog-
nizers and knowledge of the architectural style being
implemented to map low-level system events into high-
level architecturally meaningful events. Bojic and Vela-
sevic [6] use test cases that cover relevant use-cases, and
concept analysis to group system entities together that
implement similar functionality. Vasconcelos et al. [58]
use specified use-cases to generate execution traces from
which interaction patterns are identified using pattern
detection in order to define architectural elements. Es-
fahani et al [13] take a dynamic approach to recovering
the architectural model of a distributed application by
generating a component interaction model using data
mining. The approach works by collecting system ex-
ecution traces at run-time, then uses association rule
mining to infer a probabilistic model of the component
interactions taking place.

A number of papers present hybrid approaches for
architecture discovery. For instance, in [4] Antoniol et.
al propose WANDA, a tool for instrumenting web ap-
plications that combines the static analysis of server-
side scripting with the dynamic analysis of HTML, SQL
and client-side scripting to recover the as-is architecture.
Quingshan et al. [46] deals with architecture discovery
from the perspective of processes, by extracting Process
Structure Graphs (PSGs) based on the features of the
relations among processes in a Unix system. In their
technique, static analysis is used to identify the static
code fragment of a dynamic process, then during dy-
namic analysis a mapping algorithm is used to identify
the correspondence between the dynamic process ID and
the static process module. Riva and Yang [48] present
an approach to create an architectural model of a system
along with its documentation using XML. Their tech-
nique relies on static analysis of the source code and sys-
tem documentation along with execution traces gained
through dynamic analysis. Riva and Rodriguez [47] and
Sartipi and Dezhkam [50] combine static and dynamic
information to reconstruct an architecture with multiple
views. In the former case, the static information is ex-
tracted by analyzing the source code and searching for
architecturally significant elements while the dynamic in-
formation is obtained through instrumenting the source
code and executing different scenarios, then collecting ar-
chitecturally relevant traces. In the latter case, the static
information is generated using an approximate pattern
matching technique to generate a source graph, while
the dynamic information is obtained by observing the
number of function invocations for each function that is
involved in the execution of frequent task scenarios. The
obtained dynamic information is then embedded into
the extracted source graph of the system to be used for
an amalgamated static and dynamic discovery process.

A large number of architecture discovery approaches
rely on purely static analysis. There are also many differ-
ent types of static analyses to gather architectural knowl-
edge. Moreover, source code is not the only artifact that
can be analyzed statically; other examples include build
files, scripts, configuration files and natural language
text [27]. Some approaches directly query the source
code [41] [43] [44] while others abstract it and represent
it as metamodels [32] [31] [21]. Some approaches use
textual information derived from the source code and
comments [8] [7] [40] [17] [43] [44] as well as method
names [29] [34] and source file names [3]. Another ap-
proach is based on the physical organization of files,
folders and packages within an application [20] [62] [32]
[30] [45] [61]. Clustering can also be used to group these
implementation-level artifacts into clusters representing
components [27] [33] [60]. Pattern detection [57] [51] [52]
and conceptual analysis [54] is used to identify structural
dependencies between components in some approaches.
Another set of approaches use hierarchical clustering
to recover architectures that can be viewed at multiple

levels of abstraction [2] [33] [42]. In [38] Mendonga de-
scribes X-ray, an integrated approach for statically re-
covering distributed system architectural views. X-ray
combines component module classification which auto-
matically distinguishes source code modules according
to the executable components they implement, syntactic
pattern matching which recognizes code fragments that
implement typical component interaction features, and
structural reachability analysis which associates those
features to the code specific to each component.

All of the approaches mentioned above are based on
a centralized method to architecture discovery applied
to both centralized and distributed systems. In contrast,
our approach is based on a decentralized method to ar-
chitecture discovery. The underlying assumption in the
current approaches is that the gathering and process-
ing of system events can take place centrally. However,
in the case of a large-scale distributed system such a
premise proves infeasible. To the best of our knowl-
edge, no existing method in the current literature takes
a completely decentralized approach to the software ar-
chitecture discovery process.

Another area related to our work is that of message
logging in distributed systems. Message logging proto-
cols are more often used for achieving fault tolerance
and are an integral part of implementing processes that
can recover from failures [24] [55] [1]. Our approach
is dependent on access to and availability of messag-
ing events for architecture discovery, also due to the
expected size and dynamicity of our target system, fail-
ures are considered imminent. As such, employing such
protocols is deemed appropriate.

3 Problem Description

A distributed software system consists of a number of
software components running on two or more intercon-
nected nodes. More than one component may be run-
ning at any given node.

This report makes the following assumptions:

1. Nodes, links, and components may fail in either a
fail-recover mode or in a fail-stop mode.

2. If a component fails, it is restarted on the same node
if the node is still running.

3. If a node fails, all the components running on that
node fail.

4. If a node cannot be restarted, its components can
be moved to other node(s) using an existing compo-
nent recovery mechanism not within the scope of
our work.

5. The message exchange between components can
use either a connection-less transport protocol such
as UDP or a connection-oriented protocol such as
TCP.

CENTRALIZED

Dynamic Analysis

Filtering Schmerl (2006)
. Schmerl (2006) Israr (2007)
Pattern Matching Vasconcelos (2004)
Clustering Bojic (2000) Israr (2007)
Concept Analysis Bojic (2000)
Tracing Israr (2007) Esfahani (2016)
Data Mining Esfahani (2016) Yuan (2016)
Hybrid
— Antoniol (2004) Riva (2002)
Filtering Sartipi (2007)
Pattern Matching Riva (2002) Sartipi (2007)
. Riva (2002) Sartipi (2007)
Clustering Riva (2002)
Concept Analysis Sartipi (2007)

Antoniol (2004) Qingshan

Standard Visualization | (2005) Riva (2002) Riva
(2002) Sartipi (2007)
Slicing Qingshan (2005) Riva (2002)
Querying Sartipi (2007)
Metrics Sartipi (2007)

Static Analysis

Koschke (2009) Magbool

. (2007) Wiggerts (1997)
Clustering Andritsos (%%OS) Naseem
(2011)
Tzerpos (2000) Sartipi (2001)
Pattern Matching Sartipi (2003) Mendonca
(2011)
Concept Analysis Siff (1999)
. Murph 1995) Pinzger
Querying (2002}; P};nz(ger (2002) §
Lungu (2006) Lethbridge
Meta-models (2004%) Schurr (2006) i
Pinzger (2002) Pinzger
(2002) Corazza (2010)
. Corazza (2011) Misra (2012
Text Analysis Garcia (2(011))Kuhn ézoo7;
Marcus (2004) Anquetil
(1999)
Harris (1995) Yeh (1997) Lan-
Physical Organization | gelier (2005) Pinzger (2005)
Wu (2004)
Reachability Mendonca (2011)
Dominance Mendonca (2011)
DECENTRALIZED
Dynamic Analysis
Message Tracing Our Approach
Gossiping Our Approach

Table 2: Software Architecture Discovery Approaches

6. The message exchange between DeSARM modules
should use TCP if the messages need to be broken

into more than one packet.

7. The software architecture is not known because it
may dynamically change due to churn and failures
or it may not have previously existed.

These important assumptions are key to the founda-
tions of our architecture discovery process. We believe
each assumption reasonably reflects important consider-
ations related to the dynamic execution of a large-scale
distributed component-based software system.

4 Software Architecture Discovery
Method

This section provides a detailed discussion of our archi-
tecture discovery method, DeSARM. We first describe
the structure of a node running DeSARM. Then, we
give an overview of how gossiping and message trac-
ing are incorporated into the discovery process. Finally,
we delve into the details of the architecture discovery
method.

A node in a distributed system consists of three lay-
ers according to Fig. 1: application layer, DeSARM
layer, and communication middleware. The application
layer consists of the distributed application components
which communicate over the network via messaging
events. Each component has two logs: message sent log
(MSL) and message received log (MRL). The DeSARM
layer forms a wrapper around the communication mid-
dleware and provides an interface to the application
layer components. DeSARM consists of a number of
modules each providing different functionality:

e Message logging: All incoming messages are logged
before being passed to the application layer compo-
nents and all outgoing messages are logged before
being passed to the communication middleware.
Also, in compliance with message logging proto-
cols, all messages are logged to stable storage.

e Message log aggregation: The MSLs and MRLs of
all components are aggregated to form an aggregate
message log (AML) at each node. This is further
merged with the AMLs from incoming gossip mes-
sages received from other nodes (see below).

o Gossip-based dissemination: This forms the core of
our architecture discovery method and enables the
distribution of AMLs from each node throughout
the system.

e Peer node selection: This is achieved through the
maintenance of a component/node database which
is derived by identifying component IDs and their
related node IDs from incoming and outgoing mes-
sages. This ensures that only nodes running com-
ponents that are part of the same application are
selected for dissemination.

APPLICATION LAYER

DeSARM

Peer Selector

Component/Peer
Map

r——

Incoming Qutgoing
MSG Logging MSG Logging

éMRL‘

MSL I

MSL |

l

Architecture

Architecture
Discovery

Aggregate

}

Component/Peer
Map Maintenance

>
l—1
—]

lA

Message Log
Aggregator

DeSARM
Controller

Message
a Log(AML)

Merge AML Entries

Generate Outgoing
Gossiping

List of AML
Entries

Outgoing Gossip
Message

Process Gossip

Message

Send Gossip
Message to Peer

l

Incoming Gossip
Message

COMMUNICATION MIDDLEWARE

Figure 1: Node Structure

e Control: This manages the execution of the gossip
process by maintaining the timing between consec-
utive rounds.

e Architecture discovery: This is used to derive the ar-
chitectural view of the system based on the message
traces.

Finally, the communication middleware provides net-
work access allowing the sending and receiving of
component-level and gossiping messages between
nodes.

Gossiping is an epidemic protocol, which due to its
simplicity, robustness and flexibility makes it ideal for
reliable dissemination of data in large-scale distributed
systems. An important observation of gossip-based dis-
semination is that data spreads exponentially fast and
takes O(logN) rounds to reach all nodes, where N is
the number of nodes in the system [26]. The essence of
this approach, which lies at the core of all gossip-based
dissemination approaches, was first introduced in the
seminal paper by Demers et al. [9], and involves the dis-
semination of data by allowing randomly chosen pairs
of nodes to exchange new information. After the ex-
change, the two nodes forming a pair should have the
same information effectively reducing the entropy of the
system [49].

The main elements of the gossip-based dissemination
framework are: peer selection, where a peer (node) selects
another peer uniformly at random from the set of avail-
able peers, data exchanged, which involves the exchange
of data between peers and is specific to the use of the gos-
sip mechanism, and data processing, which details how

Gossip sender thread
(peer P)

do every 6 time units

// select exchange partner
Q € selectPeer();
// proceed to exchange
send(Q, AML);
>
e
// wait for response
AML, ¢ receiveFrom(Q);
// merge AMLs to get new aggregated AML
AML ¢ mergeLogs(AML, AMLy);

Gossip receiver thread
(peer Q)

reception of request from P

// receive message
AML, ¢ receiveFrom(P);

// proceed to exchange

send(P, AML);

//merge AMLs to get new aggregated AM
AML ¢ mergelogs(AML, AML,);

end end

Figure 2: Gossip-based Dissemination Framework

each peer handles the information received from other
peers and is also specific to the use of the gossip mecha-
nism [26]. DeSARM'’s use of gossip-based dissemination
is depicted in Fig. 2 and is described as:

o Peer selection: A peer P periodically chooses an-
other peer Q uniformly at random from the set of
available peers.

¢ Data exchanged: The AML is copied from one peer
to another.

o Data processing: The received AML is merged with
the local AML at each node to produce an updated
AML.

Once the gossip protocol has converged, i.e., all nodes
of the system have the same AML, a view of the system
architecture can be derived at each node.

«input» «proxy» «user interaction»
«componenty «componenty larmR . «componenty
: MonitoringSensor : RemoteSystem . alarm iqll'es D : Operator
Component Proxy (in request, out alarmData), Presentation
post (event)
post (alarm) post (event)
v N Lo
\ monitoringRequest
event (in request
ost (alarm . Lo
post () Notify out monitoringData)

7

«service»

: AlarmService (alarm)

alarmNotify

(event) A

«service»
: Monitoring
DataService

Figure 3: Emergency Monitoring System. Components: Monitoring Sensor (MSC, MSC2, and MSC3), Remote System
Proxy (RSP, RSP2, and RSP3), Operator Presentation (OP), Alarm Service (ArmS), and Monitoring DataService

(MDS).

To facilitate message tracing, the MSL and MRL of
each component is used. Each log entry has the follow-
ing fields:

e Timestamp (ts)

e Destination Type (dt): single destination (SD) or
multiple destination (MD)

e Message Type (mt): request reply (RQ), no-reply
requested (NR) and reply to previous request (RP)

e Transaction ID (tid)
e Message Unique ID (mid)

e Return ID (rid): equals 0 if mt is not equal to RP,
otherwise equals mid of original request message

e Source Component (src_comp): component send-
ing the message

e Destination Component (dst_comp): component
receiving the message

e Node ID (node_id): ID of sending node

During the aggregation of the MRLs and MSLs to form
the AML, only messages sent and received within a spec-
ified time interval are considered. This interval should
be long enough to capture component communications
that are intermittent but short enough to ensure that
only the most up to date interactions are used during
the discovery process.

The MRL and MSL for each component are scanned
to recover messages with a timestamp ts within the
specified time interval. The interaction patterns for these
messages are then identified. The following types of
messages are considered:

e Reply requests (RQ)

o No-reply requests (NR)
e Replies (RP).

These message types allows us to identify syn-
chronous vs asynchronous interactions. In the former
case, since reply messages are guaranteed to have a re-
quest, then the original request reply message and its
associated reply message are treated as a single syn-
chronous interaction (SY). If the original message was
sent as a unicast then the tuple (source, destination, SY,
SD) is added to the AML. Otherwise, if the original mes-
sage was sent as a multicast, then the tuple (source, des-
tination, SY, MD) is added to the AML. No-reply re-
quested messages on the other hand are treated as asyn-
chronous interactions (AS) and added to the AML as
(source, destination, AS, SD) if the message was sent as a
unicast, or (source, destination, AS, MD) if the message
was multicasted (see Algorithm 1). The AML is treated
as a set so only unique tuple entries are allowed for each
component interaction, irrespective of the frequency of
such interactions in the message logs. This is the case
because a software architecture does not consider how
many times a certain type of interaction occurred be-
tween components.

After each round of gossiping, the updated AML is
used to incrementally recover the architecture, which
is represented as a labeled directed graph. The vertices
of this graph correspond to unique component ids and
the edges correspond to unique component interactions.
Edges are labeled with the interaction patterns (SY or
AS) and destination types (SD or MD) (see Algorithm
2).

To depict how DeSARM works, we use an example ar-
chitecture of a distributed emergency monitoring system
(see Fig.3). The architecture consists of five types of com-
ponents with three instances of the Monitoring Sensor
and RemoteSystem Proxy components, two instances of

Remote
System
Proxy

Monitoring
Sensor
Component

AS, SD
AS, SD

Alarm
Service

Operator
Presentation

Monitoring
Data
Service

SY, sD

Figure 4: Recovered Architecture as Labeled Directed
Graph

the Operator Presentation component and a single in-
stance of the other components. This example assumes
that each component is assigned to a single node. The
communication patterns within the system are:

e Operator Presentation sends synchronous messages
with reply to Alarm Service and Monitoring Data
Service.

e Alarm Service and Monitoring Data Service send
asynchronous multicast messages to Operator Pre-
sentation.

e Monitoring Sensor and Remote System Proxy send
asynchronous unicast messages to Alarm Service
and Monitoring Data Service.

The recovered architecture corresponding to Fig. 3 is
the graph shown in Fig.4.

5 DeSARM Implementation and Ex-
periments

Our experiments demonstrate the operation of DeSARM
and assess its convergence and the number of messages
exchanged by the DeSARM middleware. Two types of
experiments were conducted. In the first, there were no
component/node failures during the experiment. In the
second, we added random fail-recover failures for each
of the components. This second experiment reveals the
impact of failures on the convergence of DeSARM to the
final architecture.

We implemented DeSARM in Java and emulated a
distributed system by implementing each node of the
distributed system on a different virtual machine (VM).
We spread the VMs over physical machines connected
over a network. The VMs communicate over TCP/IP so
they can be located anywhere on the network. The De-
SARM implementation is heavily multi-threaded with
different functions of DeSARM implemented as differ-
ent threads. Some examples of threads include sending
and receiving of gossip messages, message log aggrega-
tion, architecture discovery, component/node database
maintenance, and sending and receiving of component

Algorithm 1: Message Log Aggregation

w N

'S

@ 9 o »

10

11
12
13

14
15
16
17
18

19
20
21

22
23
24
25
26
27
28

29
30

31
32
33

34
35
36
37
38

39
40
41

43
44
45
46

Input :MRL and MSL of each component
Output: AML

Definitions: C: set of components; T: time interval
MRL: message received log; MSL: message sent log
AML: aggregate message log

AML « {}
foreachc € Cdo

end

foreach m € c. MSL do
if m.ts < T then

if m.rt = RP AND dm’ € MRL s.t. m’.mid
= m.rid then
if m’.dt = MD then
‘ AML + AML {J (m.dst_comp, c,
SY, MD)
end
else
‘ AML < AML {J (m.dst_comp, c,
SY, SD)
end
nd
Ise if m.rt = NR then
if m.dt = MD then
‘ AML < AML {J (c, m.dst_comp,

o o

AS, MD)

end

else

‘ AML < AML {J (¢, m.dst_comp,

AS, SD)

end

end
end
end

foreach m € c. MRL do
if m.ts < T then

if m.rt = RP AND dm’ € MSL s.t. m’.mid
= m.rid then
if m’.dt = MD then
‘ AML < AML (J (c, m.src_comp,
SY, MD)
end
else
‘ AML «+ AML {J (¢, m.src_comp,
SY, SD)
end
nd
Ise if m.rt = NR then
if m.dt = MDD then
‘ AML «+ AML {J (m.src_comp, ¢,

o 0

AS, MD)

end

else

‘ AML < AML (J (m.src_comp, c,

AS, SD)

end

end
end
end

Algorithm 2: Architecture Discovery

Input :AML
Output: Architecture (A)

1 A: {V,E, L} /* architecture as a graph */
2 L+ {SY, AS, SD, MD} /* set of labels */
3 V< {} /*set of vertices */

4 E <+ {} /*setof edges */

5 foreach (c;, ¢j, pattern, dt) € AML do

6 V+«VU {Ci, C]}

7 E < EU {(cj, ¢j, pattern, dt)}

8 end

messages. All the communication between nodes uses
Java sockets.

We use the application described in Fig. 3, whose ar-
chitecture is known, and show that DeSARM converges
exactly to that known architecture. Table 3 shows the
mapping between nodes, components, and physical ma-
chines for this architecture. As discussed above, the
known and recovered architectures are represented as
graphs; we compare the similarity between the two (the
known and current version of the recovered architec-
ture) over time. For that, we use the graph comparison
algorithms proposed in [28][64][15] and a graph similar-
ity metric that ranges from 0 to 1, where 0 indicates no
similarity and 1 indicates that the two graphs are identi-
cal. We plot the evolution of the similarity metric over
time to display the convergence speed of the discovery
mechanism.

Figure 5 shows how the architecture converges over
time to the known architecture at each of the nodes
shown in Table 3 under a no-failure case. Different nodes
converge at different rates but at time 80 sec all have con-
verged to the correct software architecture. Nodes 6 and
9 are the first to converge and node 7 is the last. Note
that in our implementation of gossiping, each time a
node i sends a gossip message to node j, node j replies
with a gossip message. This way, two components will
exchange AMLs more often, leading to faster conver-
gence. Because of the random nature of peer selection
in the gossip protocol, some components may gossip
more often with interconnected components, leading to
different convergence rates among nodes.

Figure 6 shows the evolution of the architecture sim-
ilarity in the first 80 seconds of the experiments when
component failures start to occur. As the figure shows,
the architecture does not converge within that interval
even though all components come close to that: all nodes
have a similarity metric equal to 0.9375 (i.e.,, < 1) at
t = 80 sec. The failure probability of each component,
while processing, is set at 20% (a relatively high value)
and the average component down time is set at 180 sec-
onds. Thus, at approximately t = 260 sec, the failed
components will start to recover from the failure and

0.9
A /i /
5 08 h
2 a
z s, /i /
° 7
g [[/
£ [L) /
s ! 4
2 0.5 D 7 y
2 04 7, ! -
7
1/ : /
S /% !
S 0.2 Ly /5
3 A4 / B
0.1 o =
0.0
10 20 30 40 50 60 70 80
Time (sec)
——Node 1 ~4-Node 2 —e—Node 3 —= Node 4 -#-Node 5
——Node 6 ——Node 7 = -Node 8 —#—Node 9

Figure 5: Architecture similarity at the 9 nodes as a func-
tion of time with no failures.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Architecture Similarity (failures)

0.2

0.1

0.0

0 10 20 30 40 50 60 70 80 90
Time (sec)
=0~ Node 1 -4~- Node 2 =o=Node 3 —= -Node 4 === Node 5
——Node 6 —>—=Node 7 —~—Node 8 —#—Node 9

Figure 6: Architecture similarity at the 9 nodes as a func-
tion of time with component failures.

will continue to send messages. DeSARM automatically
resumes its message collection and gossiping of newly
updated AMLs when components start to recover. When
that happens, convergence is achieved as illustrated in
Table 4, which shows the instants at which nodes 1-9 con-
verge after failure recovery. These instants are spread
between ¢t = 340 sec and t = 400 sec.

Table 5 shows the number of gossip messages sent and
received per node until convergence is achieved in the
case failures do not occur and in the case failures occur.
As the table shows, the number of sent and received
gossip messages when no failures occur is about 1/3 of
the corresponding number when there are failures.

For illustration and debugging purposes, each node
collected an event log (not part of DeSARM) during the
experiments. Entries in these logs are timestamped in
nanoseconds and correspond to events such as sending
application-level messages, sending/receiving DeSARM
gossip messages, and computing architecture similar-
ity metrics. At the end of the experiment, the event

Table 3: Mapping of nodes to components and physical machines.

[Node | Software Component | Machine |
Node 1 | Monitoring Sensor Component (MSC) Machine 1
Node 2 | Monitoring Sensor Component 2 (MSC2) | Machine 1
Node 3 | Monitoring Sensor Component 3 (MSC3) | Machine 1
Node 4 | Remote System Proxy (RSP) Machine 1
Node 5 | Operator Presentation (OP) Machine 2
Node 6 | Alarm Service (ArmS) Machine 2
Node 7 | Remote System Proxy 2 (RSP2) Machine 1
Node 8 | Monitoring Data Service (MDS) Machine 2
Node 9 | Remote System Proxy 3 (RSP3) Machine 2

Table 4: Convergence instants of nodes 1-9 when compo-
nents fail.

1 2 3 4 5 6 7 8 9

390 | 380 | 390 | 360 | 340 | 340 | 400 | 340 | 380

Table 5: Number of gossip messages sent per node.
1[2[3[4]5]6]7][8]9
Messages Sent - No failures
24 [22]20[22[21[22]25[22]21
Messages Received - No failures
14[15[22[14[19][21][11[32]21
Messages Sent - Failures
61 |59 [63]60][39]60][65]50] 63
Messages Received - Failures
36 [52 [50 [55 |54 | 68]69]59]59

logs of all nodes were sort-merged offline to produce
a single log. Figure 7 shows a few excerpts of this log.
The first two entries of this log show application-level
messages sent by component MSC at Node 1 to com-
ponents ArmS (at Node 6) and MDS (at Node 8). The
next two entries correspond to similar messages sent
by MSC2 at Node 2, to components ArmS and MDS.
Later in time, DeSARM at Node 1 sends a gossip mes-
sage to Node 8 with Node 1’s current view of the AML,
namely [(MSC,ArmS,AS,SD), (MSC,MDS,AS,SD)]. This
view only reflects the messages that component MSC at
Node 1 sent to nodes 6 and 8. Later in time, DeSARM
at Node 8 receives the following gossip message from
Node 4: [(RSP,ArmS,AS,SD), (RSP, MDS,AS, SD), (MDS,
OP, AS, MD), (MSC3,MDS,AS,SD), (MSC2,MDS,AS,SD),
(ArmS,OP,AS,MD), (MSC3, ArmS, AS, SD), (OP, ArmS,
SY, SD), (MSC2, ArmS, AS, SD)]. As a result, Node 8's
similarity metric becomes 0.6875. Later in time, Node
8 receives a gossip message from Node 9 with an AML
that reflects Node 9’s current view of the architecture.
This AML is aggregated with Node 8’s AML resulting
in an AML that reflects the entire software architecture.
When the similarity metric for Node 8 is next computed,

it shows a value of 1, indicating convergence at Node 8.

To test the scalability of the approach we tested De-
SARM on Argo [5], a high performance computing clus-
ter operated by the Office of Research Computing at
George Mason University. For that purpose we put to-
gether a synthetic application with 30 components, each
one of them residing in a different node of the research
cluster. Some components export a synchronous inter-
face only, sending and receiving only synchronous mes-
sages, some have an asynchronous interface only, send-
ing and receiving only asynchronous messages, while
others comprise both synchronous and asynchronous
interfaces, sending synchronous messages and receiving
asynchronous messages or vice versa. All communica-
tion between components take place at a random time
intervals to emulate local processing between message
exchanges.

Each component communicates with only two other
components so that the initial AML at each node is a
very small fraction of the complete AML. Therefore, the
value of the similarity metric is very small to being with.
It starts at zero in some cases, when components on a
node send a synchronous message to another component
and have to wait for the reply. This way, the DeSARM
instance at each node would take longer to learn the
communication patterns at each of the other 27 nodes.

The convergence time at the 30 nodes varied signifi-
cantly due to the randomness in message exchange. The
node that took the longest time to converge converged
in 260 sec (i.e., 4.3 minutes) as shown in Table 6. This
table shows the progression of the similarity metric over
time. The table also shows that the rate of convergence,
roughly defined as the increase in convergence over time
is slower at the beginning and faster at the end. For ex-
ample, after 58% of the time, the similarity metric has
only achieved the value of 0.27. At 85% of the time, the
similarity metrics achieved 0.73. While the slowest node
to converge took over four minutes, the fastest took 30
seconds.

Application level

179685193795859 MSC sent post(alarm) message to ArmS
messages

179685193894754 MSC sent post(event) message to MDS
179689825419431 MSC2 sent post(alarm) message to ArmS
179689825482009 MSC2 sent post(event) message to MDS
179693396016812 The similarity metric at Node 1 is: 0.125
179703196204824 Node 1 sent gossip message to: Node 8 with AML: [(MSC,ArmS,AS,SD),
(MSC,MDS,AS,SD)]

Gossip message
from node 4

179748312574363 Node 8 received gossip message from: Node 4 with AML [(RSP,ArmS,AS,SD),
(RSP,MDS,AS,SD), (MDS,0P,AS,MD), (MSC3,MDS,AS,SD), (MSC2,MDS,AS,SD), (ArmS,0P,AS,MD),
(MSC3,ArmsS,AS,SD), (OP,ArmS,SY,SD), (MSC2,ArmS,AS,SD)]

Gossip message
from node 9

179753548639003 Node 8 received gossip response message from: Node 9 with AML
[(RSP3,ArmS,AS,SD), (RSP3,MDS,AS,SD), (MSC3,ArmS,AS,SD), (MSC3,MDS,AS,SD), (MSC2,ArmS,AS,SD),
(MSC2,MDS,AS,SD), (MSC,ArmS,AS,SD), (MSC,MDS,AS,SD), (RSP2,ArmS,AS,SD), (RSP2,MDS,AS,SD),

(ArmS,0P,AS,MD), (OP,ArmS,SY,SD), (RSP,ArmS,AS,SD)]
""" :! Node 8 converged
179763484983706 The similarity metric at Node 8 is: 1.0

Figure 7: Excerpts of event trace.

Table 6: Slowest convegence rate in the 30-node experiment.

Time (sec)

0-110 | 120 | 130 | 140 | 150 | 160-170 | 180 | 190-200 | 210-220 | 230-250

260

Similarity

Metric | 0.00 | 0.10 | 0.13 | 0.20 | 0.27 0.30 0.47 0.57 0.73 0.97

1.00

10

6 Concluding Remarks

This report presented DeSARM, a completely decentral-
ized and automated approach for software architecture
discovery of distributed systems based on gossiping and
message tracing. Through message tracing, the tech-
nique is able to identify important architectural charac-
teristics such as components and connectors in addition
to synchronous and asynchronous communication pat-
terns. Furthermore, through the use of gossiping, De-
SARM exhibits the properties of scalability, global con-
sistency among participating nodes, self-organization,
and resiliency to failures. These properties were demon-
strated through small and large scale experiments, with
and without component failures. These experiments as-
sessed the rate of convergence of the DeSARM nodes to-
wards the software architecture being recovered. These
experiments showed that DeSARM is resilient and is
able to recover the architecture even in the presence of
failures, albeit at a lower pace than the one when no
failures occur. DeSARM was implemented in Java using
a multi-threaded architecture.

We are currently examining how DeSARM can be
adapted to recover architectures that change over time
as in the case of software dynamic adaptation [19, 18].

Acknowledgements

This work was partially supported by the AFOSR grant
FA9550-16-1-0030.

References

[1] Alvisi, Lorenzo, and Keith Marzullo. “Message log-
ging: Pessimistic, optimistic, causal, and optimal.”
Software Engineering, IEEE Tr., 24.2 (1998): 149-159.

[2] Andritsos, Periklis, and Vassilios Tzerpos.
“Information-theoretic software clustering.” Soft-
ware Engineering, IEEE Tr., 31.2 (2005): 150-165.

[3] Anquetil, Nicolas, and Timothy C. Lethbridge. “Re-
covering software architecture from the names of
source files.” J. Software Maintenance 11.3 (1999):

201-221.

Antoniol, Giuliano, Massimiliano Di Penta, and
Michele Zazzara. “Understanding web applications
through dynamic analysis.” Program Comprehen-
sion, Proc. 12th IEEE Intl. Workshop on. IEEE, 2004.

[4]

[5]

http:/ /orc.gmu.edu/research-computing/argo-
cluster/

[6] Bojic, Dragan, and Dusan Velasevic. A use-case
driven method of architecture recovery for program
understanding and reuse reengineering.” CSMR.

IEEE, 2000.

11

[7] Corazza, Anna, et al. “Investigating the use of lex-
ical information for software system clustering.”
Software Maintenance and Reengineering (CSMR),
2011 15th European Conf. IEEE, 2011.

Corazza, Anna, Sergio Di Martino, and Giuseppe
Scanniello. ”A probabilistic based approach to-
wards software system clustering.” Software Main-
tenance and Reengineering (CSMR), 2010 14th Eu-
ropean Conf. IEEE, 2010.

Demers, Alan, et al. “Epidemic algorithms for repli-
cated database maintenance.” Proc.Sixth Annual
ACM Symp. Principles of distributed computing.
ACM, 1987.

[10] De Silva, Lakshitha, and Dharini Balasubramaniam.
”Controlling software architecture erosion: A sur-

vey.” J. Systems and Software 85.1 (2012): 132-151.

[11] Ducasse, Stphane, and Damien Pollet. “Software
architecture reconstruction: A process-oriented tax-
onomy.” IEEE Tr. Software Engineering 35.4 (2009):

573-591.

[12] Dulman, Stefan, and Eric Pauwels. ”Self-Stabilized
Fast Gossiping Algorithms.” ACM Tr. Autonomous

and Adaptive Systems (TAAS) 10.4 (2015): 29.

[13] Esfahani, Naeem, Eric Yuan, Kyle R, Canavera and
Sam Malek. ”“Inferring Software Component In-
teraction Dependencies for Adaptation Support.”
ACM Tr. Autonomous and Adaptive Systems

(TAAS) 10.4 (2016): 26.

[14] Ewing,J. and D.A. Menascé, “A Meta-controller

method for improving run-time self-architecting
in SOA systems,” Proc. 5th ACM/SPEC Intl. Conf.
Performance Engineering (ICPE 2014), Dublin, Ire-
land, March 23-26, 2014.

[15] Foggia, Pasquale, Carlo Sansone, and Mario Vento.

” A performance comparison of five algorithms for
graph isomorphism.” Proc. 3rd IAPR TC-15 Work-
shop on Graph-based Representations in Pattern
Recognition. 2001.

[16] Garcia, Joshua, Igor Ivkovic, and Nenad Medvi-
dovic. ”A comparative analysis of software archi-
tecture recovery techniques.” , 2013 IEEE/ACM
28th Intl. Conf. Automated Software Engineering

(ASE).

[17] Garcia, Joshua, et al. “Enhancing architectural re-
covery using concerns.” Proc. 2011 26th IEEE/ ACM

Intl. Conf. Automated Software Engineering, 2011.

[18] Gomaa, H., Hashimoto, K., 2012. “Dynamic self-
adaptation for distributed service-oriented transac-
tions, Proc. 7th Intl. Symp. Softw. Eng. for Adap-
tive and Self-Managing Systems, SEAMS 12. IEEE

Press, Piscataway, NJ, USA, pp. 1120.

[19] Gomaa, H., Hashimoto, K., Kim, M., Malek, S.,
Menascé, D.A., 2010. “Software adaptation patterns
for service-oriented architectures,” Proc. 2010 ACM
Symp. Applied Computing, New York, NY, USA,
pp. 462469. doi:10.1145/1774088.1774185.

[20] Harris, David R., Howard B. Reubenstein, and

Alexander S. Yeh. "Reverse engineering to the ar-

chitectural level.” Proc.17th Intl. Conf. Software en-

gineering, ACM, 1995.

[21] Holt, Richard C., et al. "GXL: A graph-based stan-

dard exchange format for reengineering.” Science

of Computer Programming 60.2 (2006): 149-170.

[22] Huang, Gang, Hong Mei, and Fu-Qing Yang. "Run-

time recovery and manipulation of software archi-

tecture of component-based systems.” Automated

Software Engineering 13.2 (2006): 257-281.

[23] Israr, Tauseef, Murray Woodside, and Greg Franks.

”Interaction tree algorithms to extract effective ar-

chitecture and layered performance models from

traces.” J. Systems and Software 80.4 (2007): 474-

492.

[24] Johnson, David B., and Willy Zwaenepoel. “Recov-
ery in distributed systems using asynchronous mes-
sage logging and checkpointing.” Proc. 7th Annual
ACM Symp. Principles of distributed computing.
ACM, 1988.

[25] Kephart, Jeffrey O., and David M. Chess. “The vi-
sion of autonomic computing.” IEEE Computer 36.1
(2003): 41-50.

[26] Kermarrec, Anne-Marie, and Maarten Van Steen.
”Gossiping in distributed systems.” ACM SIGOPS
Operating Systems Review 41.5 (2007): 2-7.

[27] Koschke, Rainer. ”Architecture reconstruction.”

Software Engineering. Springer Berlin Heidelberg,

2009. 140-173.

[28] Koutra, Danai, et al. Algorithms for graph similarity
and subgraph matching. Technical Report Carnegie-
Mellon-University, 2011.

[29] Kuhn, Adrian, Stphane Ducasse, and Tudor Grba.
”Semantic clustering: Identifying topics in source
code.” Information and Software Technology 49.3
(2007): 230-243.

[30] Langelier, Guillaume, Houari Sahraoui, and Pierre
Poulin. ”Visualization-based analysis of qual-
ity for large-scale software systems.” Proc. 20th
IEEE/ACM Intl. Conf. Automated software engi-
neering. ACM, 2005.

12

[31] Lethbridge, Timothy C., Sander Tichelaar, and
Erhard Pldereder. “The dagstuhl middle meta-
model: A schema for reverse engineering.” Elec-
tronic Notes in Theoretical Computer Science 94
(2004): 7-18.

[32] Lungu, Mircea, Michele Lanza, and Tudor Grba.
"Package patterns for visual architecture recovery.”
Software Maintenance and Reengineering, 2006.

CSMR 2006. Proc. 10th European Conf. IEEE, 2006.

[33] Magbool, Onaiza, and Haroon A. Babri. “"Hierarchi-
cal clustering for software architecture recovery.”
IEEE Tr. Software Engineering, 33.11 (2007): 759-

780.

[34] Marcus, Andrian, et al. ”An information retrieval
approach to concept location in source code.”
Proc.11th IEEE Working Conf. Reverse Engineer-

ing, 2004.

[35] Menascé, D.A., J. Ewing, H. Gomaa, S. Malex,
and J.P. Sousa, “A framework for utility-based
service-oriented design in SASSY,” First Joint
WOSP/SIPEW Intl. Conf. Performance Engineer-

ing, San Jose, CA, USA, January 28-30, 2010.

[36] Menascé, D.A., and L. Kanchanapalli. “Probabilis-
tic scalable P2P resource location services.” ACM
SIGMETRICS Performance Evaluation Review 30.2

(2002): 48-58.

[37] Menascé, D.A., et al. “SASSY: A framework for self-
architecting service-oriented systems.” Software,

IEEE 28.6 (2011): 78-85.

[38] Mendonga, Nabor C., and J. Kramer. ” Architecture
recovery for distributed systems.” SWARM Forum
at the Eight Working Conf. Reverse Engineering.

2001.

[39] Mirakhorli, Mehdi. “Software architecture recon-
struction: Why? What? How?.” Software Analysis,
Evolution and Reengineering (SANER), 2015 IEEE
22nd Intl. Conf. Software Analysis, Evolution and

Reengineering, 2015.

[40] Misra, Janardan, et al. “Software clustering: Uni-
fying syntactic and semantic features.” , 2012 19th
IEEE Working Conf. Reverse Engineering (WCRE),

2012.

[41] Murphy, Gail C., David Notkin, and Kevin Sulli-
van. “Software reflexion models: Bridging the gap
between source and high-level models.” ACM SIG-
SOFT Software Engineering Notes 20.4 (1995): 18-

28.

[42] Naseem, Rashid, Onaiza Magbool, and Siraj
Muhammad. "Improved similarity measures for

software clustering.” , 2011 15th IEEE European

[43]

(44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

Conf. Software Maintenance and Reengineering
(CSMR), 2011.

Pinzger, Martin, and Harald Gall. ”Pattern-
supported architecture recovery.” , 2002. Proc. 10th
Intl. IEEE Workshop on Program Comprehension.
2002.

Pinzger, Martin, et al. "Revealer: A lexical pattern
matcher for architecture recovery.” , 2002. Proc. 9th
IEEE Working Conf. Reverse Engineering, 2002.

Pinzger, Martin, Harald Gall, and Michael Fischer.
"Towards an integrated view on architecture and
its evolution.” Electronic Notes in Theoretical Com-
puter Science 127.3 (2005): 183-196.

Qingshan, Li, et al. ” Architecture recovery and ab-
straction from the perspective of processes.” Re-
verse Engineering, 12th Working Conference on.
IEEE, 2005.

Riva, Claudio, and Jordi Vidal Rodriguez. "Com-
bining static and dynamic views for architecture
reconstruction.” Software Maintenance and Reengi-
neering, 2002. Proc. 6th European Conf. IEEE, 2002.

Riva, Claudio, and Yaojin Yang. “Generation of ar-
chitectural documentation using XML.” Reverse
Engineering, 2002. Proc. 9th Working Conf.. IEEE,
2002.

Riviere, Etienne, and Spyros Voulgaris. “Gossip-
based networking for internet-scale distributed sys-
tems.” E-Technologies: Transformation in a Con-
nected World. Springer Berlin Heidelberg, 2011.
253-284.

Sartipi, Kamran, and Nima Dezhkam. “An Amalga-
mated Dynamic and Static Architecture Reconstruc-
tion Framework to Control Component Interactions
259.” Reverse Engineering, 2007. WCRE 2007. 14th
Working Conference on. IEEE, 2007.

Sartipi, Kamran. “Alborz: A Query-based Tool for
Software Architecture Recovery.” IWPC. 2001.

Sartipi, Kamran. "Software architecture recovery
based on pattern matching.” Software Maintenance,
2003. ICSM 2003. Proceedings. International Con-
ference on. IEEE, 2003.

Schmerl, Bradley, et al. “Discovering architec-
tures from running systems.” Software Engineering,
IEEE Transactions on 32.7 (2006): 454-466.

Siff, Michael, and Thomas Reps. “Identifying mod-
ules via concept analysis.” Software Engineering,
IEEE Transactions on 25.6 (1999): 749-768.

13

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Sistla, A. Prasad, and Jennifer L. Welch. “Efficient
distributed recovery using message logging.” Pro-
ceedings of the eighth annual ACM Symposium on
Principles of distributed computing. ACM, 1989.

Taylor, Richard N., Nenad Medvidovic, and Eric M.
Dashofy. Software architecture: foundations, theory,
and practice. Wiley Publishing, 2009.

Tzerpos, Vassilios, and Richard C. Holt. "ACDC:
An algorithm for comprehension-driven cluster-
ing.” wcre. IEEE, 2000.

Vasconcelos, Aline, and Cludia Werner. ”Software
architecture recovery based on dynamic analysis.”
Brazilian Symp. on Softw. Engineering. 2004.

Weyns, Danny, and Tanvir Ahmad. “Claims and
evidence for architecture-based self-adaptation: A
systematic literature review.” Software Architecture.
Springer Berlin Heidelberg, 2013. 249-265.

Wiggerts, Theo A. “Using clustering algorithms in
legacy systems remodularization.” Reverse Engi-
neering, 1997. Proceedings of the Fourth Working
Conference on. IEEE, 1997.

Wu, Xiaomin, et al. “A reverse engineering ap-
proach to support software maintenance: Version
control knowledge extraction.” Reverse Engineer-
ing, 2004. Proceedings. 11th Working Conference
on. IEEE, 2004.

Yeh, Alexander S., David R. Harris, and Melissa P.
Chase. "Manipulating recovered software architec-
ture views.” Proceedings of the 19th international
conference on Software engineering. ACM, 1997.

Yuan, Eric, and Sam Malek. "Mining Software Com-
ponent Interactions to Detect Security Threats at
the Architectural Level.” Proceedings of the 13th
Working IEEE/IFIP Conference on Software Archi-
tecture. 2016.

Zager, Laura A., and George C. Verghese. "Graph
similarity scoring and matching.” Applied mathe-
matics letters 21.1 (2008): 86-94.

