
1

Department of Computer Science 4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530 George Mason University Technical Reports

Unity: A NoSQL-based Platform for Building Decision

Guidance Systems from Reusable Analytics Models

Mohamad Omar Nachawati
mnachawa@gmu.edu

Alexander Brodsky
brodsky@gmu.edu

Juan Luo
jluo2@gmu.edu

Technical Report GMU-CS-TR-2016-4

Abstract

Enterprises across all industries increasingly depend on

decision guidance systems (DGSs) to facilitate decision-

making across all lines of business. Despite significant

technological advances, current DGS development

paradigms lead to a tight-integration of the analytics models,

methods and underlying tools that comprise these systems,

often inhibiting extensibility, reusability and interoperability.

To address these limitations, this paper focuses on the

development of the first NoSQL decision guidance

management system (NoSQL-DGMS), called Unity, which

enables decision-makers to build DGSs from a repository of

analytics models that can be automatically reused for

different analytics methods, such as simulation, optimization

and machine learning. In this paper, we provide the Unity

NoSQL-DGMS reference architecture, and develop the first

implementation, which is centered around a modular

analytics engine that symbolically executes and

automatically reduces analytics models, expressed in

JSONiq, into lower-level, tool-specific representations. We

conduct a preliminary experimental study on the overhead of

OPL optimization models automatically generated from

JSONiq using Unity, compared with manually-crafted OPL

models. Preliminary results indicate that the execution time

of OPL models that are automatically reduced from JSONiq

is within a small constant factor of corresponding, manually-

crafted OPL models.

1 Introduction

Enterprises across all industries increasingly depend on

decision guidance systems (DGS) to facilitate decision-

making across all lines of business. DGSs are an advanced

class of decision support systems (DSS) that are designed to

provide actionable recommendations using a variety of

different analytics models, algorithms and data. These

systems are often built on top of a variety of different lower

level tools that provide decision-makers with the full gamut

of business analytics, from descriptive to diagnostic to

predictive to prescriptive analytics [1]. While DSSs are

traditionally classified into five different categories

according to underlying technology, namely data-driven,

model-driven, knowledge-driven, document-driven and

communications-driven [2], state-of-the-art DGSs often

combine multiple approaches into one integrated system to

solve complex analytical problems [1].

 However, despite significant technological advances,

current DGS development paradigms lead to a tight-

integration of the analytics models, tasks and underlying

tools that comprise these systems, often inhibiting

extensibility, reusability and interoperability. As stated in [1],

the development of DGSs are typically one-off, hard-wired

to specific problems, and usually require significant

interdisciplinary expertise to build. This is similar to how

database systems were developed long before the invention

of the first DBMS. Consequently, DGSs end up being highly

complex, costly, and non-extensible, and non-reusable.

These deficiencies originate mainly from the diversity of the

required analytics tools and algorithms, which are each

designed for a specific analytics task, such as data

manipulation, predictive what-if analysis, decision

optimization, statistical learning and data mining. These tools

each may require the use of a different mathematical

abstraction and language to construct analytics models,

which inhibits the interoperability such models across

different analytics tools and tasks [1].

 Overcoming the aforementioned difficulties faced when

building DGSs is an important research problem [1]. These

difficulties can be attributed to a diverse, low level

abstractions provided by current paradigms, which preclude

the reuse of analytics models across different analytics tasks.

Thus the same underlying reality must often be modeled

multiple times using different mathematical abstractions to

support different tasks, instead of being modeled just once,

uniformly [1]. Also, the modeling proficiency required by

these languages is typically not within the realm of expertise

of many of the users of a DGS, including the stakeholders,

business analysts and application developers. Consequently,

DGS development projects often require a team with diverse

interdisciplinary expertise, are prone to budget overruns and

2

unexpected delays, and often result in software that is highly-

proprietary, non-reusable, non-extensible, and locked-in to

specific tool vendors [1].

 To date, there has been extensive research focusing on the

application of DGSs to solve complex problems in a variety

of different domains [3]–[5]. However, far less effort has

been expended on surmounting the above-mentioned

obstacles encountered in the development of DGSs in

general, and thus several research gaps still exist. An initial

step forward was made in [6] with the introduction of a new

type of platform that they refer to as a decision guidance

management system (DGMS), which was designed to

simplify the development of DGSs by seamlessly integrating

support for data acquisition, learning, prediction, and

optimization on top of the data query and manipulation

capabilities typically provided by a DBMS [6]. While the

work in [6] laid the foundation for additional research [1],

[7]–[10], it did not address the technical challenges

surrounding the development of a DGMS. In particular, the

work in [6] did not provide any underlying algorithms to

support the decision guidance capabilities provided by the

proposed DGMS, such as simulation, optimization and

learning. The proposed architecture was also limited to the

relational model, and lacked support for developing analytics

models on top of NoSQL data stores for semi-structured data

in more flexible formats, such as XML or JSON.

Furthermore, due to the inherent limitations of SQL, to

repurpose the language for decision guidance modeling and

analysis, a number of non-standard syntactic extensions were

developed, collectively called DG-SQL. Introducing new

language dialects, however, can break the interoperability of

existing development tools and inhibit wide-spread adoption

[11] and also affect the reusability of existing code [12].

 Further progress was made in [1], [10] with the proposal

of the Decision Guidance Analytics Language (DGAL)

designed as an alternative to DG-SQL for developing DGSs

over NoSQL data stores. Instead of SQL, DGAL is based on

the more expressive JSON Query Language (JSONiq), which

itself is based on XQuery. JSONiq is a popular query

language for JSON document-oriented NoSQL data stores,

and provides highly-expressive query capabilities centered

around the original FLWOR construct of XQuery [13].

Rather than extending the syntax of an existing language, as

what was done in DG-SQL, DGAL is, by design,

syntactically equivalent to JSONiq. To support decision

guidance, a number of analytics services, such as for

optimization and learning, are proposed in [1]. While these

services are exposed as regular functions in JSONiq, they

require a non-standard interpretation of the language to

implement. Thus, while DGAL is syntactically equivalent to

JSONiq, the analytics services it provides have semantics that

extend that of the JSONiq language. However, while [1]

focused on proposing DGAL as a language for developing

DGSs, it did not provide a reference architecture or

implementation of a DGMS developed around DGAL, nor

did it address the problem of compiling DGAL analytics

models into lower-level, tool-specific representations.

 Lifting the aforementioned limitations is exactly the

focus of this paper. Specifically, the contributions of this

paper are as follows. First, we propose a reference

architecture for DGSs that is based on Unity NoSQL-DGMS

operating as a middleware to connect higher-level decision

guidance applications and their clients to the lower-level

tools needed for supporting different analytics tasks. The

uniqueness of this architecture is that it centered around a

knowledge base of DGAL analytics models, which can be

reused for various analytics tasks such as prediction,

optimization and statistical learning without the need to

manually create lower level task-specific models.

 Second, we develop Unity NoSQL-DGMS, the first

system of its kind, which is designed to enable decision-

makers to build DGSs from a repository of DGAL analytics

models that can be automatically reused for different

analytics tasks. Unity’s uniqueness lies in its core analytics

services, including optimization and learning, which do not

require lower-level level models (e.g., in AMPL for

optimization problems), but rather automatically generate the

lower-level task- and tool-specific models from the higher

level task- and tool-independent analytics models in the

AKB.

 Third, as part of Unity NoSQL-DGMS, we develop

algorithms for its execution engine based on a symbolic

computation to reduce analytics models in the knowledge

base into a JSON-based intermediate representation. This

intermediate representation is then translated into tool-

specific representations. The execution engine is used to

provide analytics services for deterministic optimization

against DGAL analytics models using mathematical

programming (MP). To implement these services, we

develop a code generator from the intermediate

representation that targets both AMPL and OPL to support a

wide range of different optimization solvers.

 Finally, we conduct a preliminary experimental study on

the overhead of automatically generated task- and tool-

specific models. Our evaluation is currently limited to just the

execution time overhead of OPL optimization models that are

automatically generated from DGAL analytics models using

the deterministic optimization service developed in this

paper. Initial results indicate that the execution time of

automatically derived OPL optimization models is within a

constant factor of the execution time of corresponding,

manually-crafted OPL optimization models.

 The rest of this paper is organized as follows. In the next

section, we present the Unity NoSQL-DGMS reference

architecture, and describe each of its major layers and

components. In the following section, we provide an

overview of the DGAL language, and show how to use

develop a DGS using DGAL and Unity. Then we move on to

describe the prototype implementation of Unity, to include

the DGAL execution engine, intermediate representation, and

implementation of the argmin and argmax services for

performing deterministic optimization against DGAL

analytics models. Finally, we describe the preliminary

experimental study and then conclude the paper with some

brief remarks on future work.

3

2 Unity NoSQL-DGMS Reference
Architecture

In this section, we describe the Unity NoSQL-DGMS

reference architecture, which is depicted in figure 1. The

boundary of Unity is enclosed in a black rectangle in the

diagram. Unity serves as a middleware between the client

layer and external tool layer of a typical DGS, and is

internally comprised of three-layers, namely the application

management layer, the analytics management layer, and the

tool management layer. As a middleware, Unity simplifies

connecting these different clients and the users they support

to external tools. Similar to the original DGMS vision

presented in [6], Unity is designed to provide seamless

support for data acquisition, learning, prediction, and

optimization. However, unlike former, which uses DG-SQL

for analytics modeling and analysis, Unity replaces the role

of DG-SQL with DGAL. Specifically, in the Unity, DGAL

serves as both a language for defining reusable analytics

models, and for executing analytics services against those

models. As a middleware, Unity provides DGAL as a unified

abstraction to hide the complexities of dealing with a diverse

range of lower-level tools that are needed to implement a

DGS.

 Unity supports six primary user roles typical of a DGS,

namely stakeholders, contributors, analysts, modelers,

developers, and administrators. The roles are not mutually

exclusive, and therefore a single user may serve different

roles. Stakeholders consist of decision-makers at all levels of

an organization, from supervisors to the board of directors. A

stakeholder is the end-user of the actionable, decision-guided

recommendations provided by a particular DGS.

Contributors provide data-entry and manage the domain

models, data marts, and ontologies in the analytics

knowledgebase. Analysts are advanced business users that

manage the analytics models of the knowledgebase, and

additionally is able to design new views, dashboards, forms

and reports. Analysts can also design workflows and business

rules for automating repetitive decisions based on the

actionable recommendations provided by a particular DGS.

Modelers are technical users with an operations research

background that develop the metrics and constraints

equations for new analytics models. While an analyst may not

have the technical expertise to develop new analytics models

from scratch, they can mash up new models by composing

and specializing existing models in the knowledge base.

Developers are technical users with experience in software

Data Storage
& Retrieval

Data Analytics
& Manipulation

Statistical &
Machine
Learning

Business Process
Execution

Business Rules
and Reasoning

MP/CP
Optimization

A
P

P
LI

C
A

TI
O

N
M

G
M

T
TO

O
L

M
G

M
T

U
N

IT
Y

 N
O

SQ
L-

D
G

M
S

EXTERNAL
TOOLS

Analytics Knowledge
Management

Custom Application
Management

View & Dashboard
Management

Workflow & Rule
Management

USER/CLIENT INTERFACE

Stakeholders Contributors Analysts Developers AdministratorsModelers

Extract,
Transform &

Load (ETL)

Form & Report
Management

Web-based
User Agents

Information
Visualization Tools

Model-Driven
Architecture (MDA)

Tools

Integrated
Development

Environments (IDEs)

Enterprise / M2M
Integration

A
N

A
LY

TI
C

S
M

G
M

T

APPLICATION PROGRAMMING INTERFACE

Execution Engine

Discovery

Execution

Analytics Knowledgebase

Domain
Models

Analytics
Models

Data
Marts

Ontologies

Analytics Services

Simulation

Prediction

Correlation

Optimization

Learning

...

R
O

LE
S

C
LI

EN
TS

Integration

Pareto Analysis

What-If Analysis

Model Selection

Figure 1. Unity NoSQL-DGMS Reference Architecture

4

development that build custom applications that provide

extended functionality to meet domain-specific requirements.

 We envision that Unity would support client layer of

diverse, domain-specific clients that used in conjunction with

DGSs to support the different types of user that interact with

a DGS. Unity provides out-of-the-box support for web-based

user agents for managing DGSs developed using Unity.

Unity also provides a REST-based API for integrated third-

party clients ranging from information visualization tools,

model-driven architecture (MDA) tools, integrated

development environments and for integrating with other

information systems. Another objective Unity is to facilitate

the development of DGSs by allowing users to work at

different levels of abstractions according to their skills and

expertise. These abstractions support the seamless integration

of different analytical models, tools and data. For example,

modelers and developers can use the full power of

mathematical constraints in DGAL to create reusable

analytics models, which are interoperable and composable

and extensible, while analysts and non-technical users are

able to compose these expertly crafted analytics models to

precisely model problems they need to analyze.

 The application management layer provides a number of

services to support the rapid development of DGS. Analytics

knowledge management supports the creation, querying, and

modification of the different artifacts housed in the analytics

knowledgebase. View and dashboard management provides

tools for creating analytics views and templates for the rapid

development of interactive dashboards. Analytics views are

similar to regular database views, except that they are based

on one or more analytics models and services. Form and

report management supports the development and use of

forms for data collection and reporting. Workflow and rule

management supports the development and execution of

rules and workflows for building automated decision systems

(ADS). Finally, custom application management provides

tools for building domain-specific DGS-based applications.

 The analytics management layer hides the complexity of

dealing with the different external tools that provide the

essential analytics and other capabilities of a DGS. This layer

is comprised of the analytics knowledge base, the execution

engine and a variety of different analytics services. At the

core of the architecture, the knowledge base provides uniform

access to the different analytics artifacts that together

constitute the domain-specific knowledge used for decision

guidance. The different types of analytics artifacts include,

but are not limited to analytics models, domain models and

instances, ontologies.

 The Unity reference architecture is designed to support

three kinds of analytics models, namely white-box, black-box

and grey-box models. With white-box analytics models, the

DGAL source code of the analytics model is stored in the

knowledge base, and the execution of such models is

performed locally by the execution engine. While white-box

analytics models can help decision-maker better understand

the logic behind the computation of metrics and constraints,

they would not be suitable for models containing proprietary

knowledge. On the other hand, with black-box analytics

models the DGAL source code is not provided, and instead

are stored in the knowledge base as web service descriptions,

were the execution of such models would occur remotely.

While this can support proprietary models, it does not provide

a way for the client to reuse the models for different analytics

tasks. It also requires users to send possibly sensitive data to

third parties for processing. Finally, gray-box models are like

black-box models in the execution occurs remotely, however

the gray-box models are capable of returning its results in

symbolic form. While this exposes part of the logic at a low

level (akin to assembly), it allows clients to easily reuse

remote models for different types of analytics.

 The execution engine serves as a bridge between

analytics models in the knowledge base, analytics services,

such as simulation and optimization, and the lower-level tool

used to implement them. The execution engine is built on top

of external tools, such as Zorba for JSONiq query processing

and AMPL for MP-based optimization, which are managed

in the tool management layer. The execution engine includes

a compiler for translating DGAL analytics model into lower-

level, tool specific models. Rather than directly translating

DGAL analytics models into different tool-specific models,

such as AMPL, the approach we use to implement the

analytics model compiler involves a symbolic execution

using a standard JSONiq query processor to first lower the

analytics model in DGAL into a simpler, JSON-based

intermediate representation. We discuss the details of the

intermediate representation in the following section. While

JSONiq query processors support complex data queries and

even simple analytical operations they do not directly support

the advanced analytics services that DGAL provides, such as

optimization and learn. Executing DGAL queries that depend

on such services require the use of specialized algorithms to

implement, which are often readily available as third-party

tools. By utilizing a simpler intermediate representation,

support for new third-party tools can be developed without

having to re-implement the entire DGAL language.

 Finally, the tool management layer manages the external

tools that are needed to implement the various analytics

services, as well as to provide other capabilities of the

NoSQL-DGMS. It provides a uniform access to the different

tools, ranging from data storage and retrieval, data analytics

and manipulation, statistical and machine learning, MP/CP

optimization and business process and rule execution and

reasoning.

3 Reusable Analytics Modeling
with Unity and DGAL

In this section we provide a brief overview of DGAL and

show how one can use DGAL in conjunction with Unity to

develop a reusable analytics model for order analytics to

support the development of intelligent supply chain

management systems. In the interest of space, we will limit

our discussion to analytics modeling, simulation and

deterministic optimization. For more information on DGAL

and other analytics services, such as statistical learning and

stochastic optimization, we refer the reader to our work in [1].

5

 As mentioned earlier, current DGS development

paradigms lead to a tight-integration of the analytics models,

tasks and underlying tools that comprise these systems, often

inhibiting extensibility, reusability and interoperability. As

illustrated on left in figure 2, the task-specific analytics

modeling paradigm requires a specialized analytics model for

each analytics task, such as those for descriptive, predictive

or prescriptive analytics. This inhibits composition,

specialization, generalization and reuse of analytics models.

Overcoming these limitations by way of a paradigm shift

from non-reusable, task-dependent modeling to task-

independent modeling was the motivation for the

development of DGAL [1]. As shown on the right in figure

2, DGAL supports a task-independent approach to modeling

analytics knowledge where a single model can be used for

multiple analytics tasks, such as simulation, optimization and

learning.

 DGAL is based on the JSON Query Language (JSONiq),

which itself is based on XQuery. JSONiq is a popular query

language for JSON document-oriented NoSQL data stores,

and provides highly-expressive query capabilities centered

around the original FLWOR construct of XQuery [13].

Rather than extending the syntax of JSONiq, DGAL is by

design, syntactically equivalent to JSONiq. To support

decision guidance, a number of analytics services, such as for

optimization and learning, are proposed in [1]. While these

services are exposed as regular functions in JSONiq, they

require a non-standard interpretation of the language to

implement. Thus, while DGAL is syntactically equivalent to

JSONiq, the analytics services it provides have semantics that

extend that of the JSONiq language.

 In DGAL, an analytics model is implemented as a regular

function in JSONiq. Such function must accept its input as a

single JSON object, and must return a JSON object that

contains a top-level constraint property evaluating to true

if the constraints of the model are satisfied for a particular

input and false otherwise. It can also contain any number of

metrics, which are numerically or logically-typed properties

that are computed and derived from the input to the function.

The input to the function can have certain numerically or

logically-typed properties replaced with decision variables or

learning parameters, which can then be solved for by

invoking one or more of the analytics services provided by

Unity. Restrictions on the properties of the input that can be

replaced with decision variables or learning parameters

depend on the analytics service invoked. In the case of

deterministic optimization, for example, decision variables

are restricted to only those properties that contribute to the

computation of either the objective metric or constraint. For

more details on DGAL analytics models we direct the reader

to [1].

"suppliers": [{
 "sid": "supplier1",
 "supply": [
 { "upc": "47520-81452", "ppu": 10.99, "qty": 500 },
 { "upc": "32400-24785", "ppu": 19.99, "qty": 400 }]
 },{
 "sid": "supplier2",
 "supply": [
 { "upc": "47520-81452", "ppu": 11.99, "qty": 1500 },
 { "upc": "32400-24785", "ppu": 18.99, "qty": 1295 },
 { "upc": "14752-47748", "ppu": 29.99, "qty": 2500 }]
 }],
"customers": [{
 "cid": "customer1",
 "demand": [
 { "upc": "47520-81452", "qty": 1475 },
 { "upc": "14752-47748", "qty": 475 }]
 },{
 "cid": "customer2",
 "demand": [
 { "upc": "32400-24785", "qty": 874 },
 { "upc": "47520-81452", "qty": 254 },
 { "upc": "14752-47748", "qty": 987 }]
 }],
"orders": [{
 "sid": "supplier1",
 "cid": "customer1",
 "items": [{ "upc": "47520-81452", "qty": 500 }]
 }, ...

Dataset #1

Predictive
Analytics

Descriptive
Analytics

Prescriptive
Analytics

Descriptive
Analytics

Model

Predictive
Analytics

Model

Prescriptive
Analytics

Model

Dataset #2

Dataset #3

Dataset #1

Predictive
Analytics

Descriptive
Analytics

Prescriptive
Analytics

Reusable
Analytics

Model

Dataset #2

Dataset #3

Task-Dependent Analytics Modeling Task-Independent Analytics Modeling

Figure 2. Paradigm Shift from Task-Dependent to Task-Independent Analytics Modeling

6

 In our ordering system scenario, we track a group of

suppliers that each supply zero or more items, as well as a

group of customers that each have a demand for zero or more

items. We also maintain a list of orders that represent the flow

of items from suppliers to customers. We can represent this

information using a JSON object that will serve as the input

to our DGAL analytics model, an example of which is shown

above. Based on the data model that can be derived from the

above example, we can now define the metrics and

constraints for our analytics model that we will then proceed

to implement. While a single analytics model can support

multiple metrics, for the purposes of our discussion we will

limit our model to only compute the total cost of all orders,

which can be computed using the following JSONiq

expression (assuming that the variable $input holds the input

to our analytics model):

let $orders := $input.orders[]
let $items := $input.items[]
let $suppliers := $input.suppliers[]

let $cost :=
 for $order in $orders, $item in $items
 return
 fn:sum(
 $suppliers[$$.sid eq
$order.sid].supply[][$$.upc eq $item.upc].ppu *

$item.qty
)

 We now need to define the constraints of our analytics

model. In our order analytics model, we have two basic

constraints. The first constraint is a supply constraint on

orders that stipulates that for each supplier, the quantity of

each item in stock is greater than or equal to the sum of the

order quantities of that item across all orders to that supplier.

The second constraint is a demand constraint on orders that

stipulates that for each customer, the quantity of each item

requested is equal to the sum of the order quantities of that

item across all orders from that customer. We can express

these constraints in JSONiq as follows:

let $suppliers := $input.suppliers[]
let $customers := $input.customers[]
let $orders := $input.orders[]

let $supplyConstraint :=
 for $supplier in $suppliers, $item in
$supplier.supply[]
 return $item.qty ge fn:sum($orders[$$.sid eq
$supplier.sid].items[][$$.upc eq
$item.upc].qty)

let $demandConstraint :=
 for $customer in $customer, $item in
$customer.demand[]
 return $item.qty eq fn:sum($orders[$$.cid eq
$customer.cid].items[][$$.upc eq
$item.upc].qty)

 We finish the implementation of our DGAL analytics

model for order analytics by wrapping the JSONiq

expressions for computing metrics and constraints inside a

JSONiq function:

declare function
scm:OrderAnalyticsModel($input)
{
 let $cost := ...
 let $supplyConstraint := ...
 let $demandConstraint := ...
 let $constraints :=
 $supplyConstraint and $demandConstraint
 return {
 cost: $cost
 constraints: $constraints
 }
};

 Using our reusable analytics model for order analytics,

implemented in DGAL, we can perform a variety of different

tasks, such as simulation, optimization and learning, without

having to redevelop new task-specific models for individual

task. The work of reducing DGAL analytics models into tool-

specific models for execution and analysis is handled

seamlessly by Unity. Simulation in DGAL involves the

computation of the metrics and constraints for an input

object. We can compute the metrics and constraints by simply

invoking the scm:OrderAnalyticsModel function on that

input object:

scm:OrderAnalyticsModel($input)

 In this case, the output JSON object that is returned from

the invocation of that function contains only numerically or

logically-typed values for metric properties, and a value of

either true or false for the constraints property, depending if

the constraints were satisfied for the given input object.

 What if we wanted to find the optimal item order

quantities, qty, for each supplier such that the total cost is

minimized? To do this, we can annotate our original input

object with decision variable objects in place of numeric

values for each qty property to indicate that we want Unity

to solve for the values of those properties. A decision variable

object is a JSON object that contains one of the following

properties corresponding to its type: integer?, decimal?,

or logical?. The corresponding property value indicates

the decision variable identifier, which if set to null will

replaced with a UUID. Two different decision variable

objects that contain identical identifiers refer the same

decision variable in the underlying optimization problem.

The decision variable annotated input is shown below:

"orders": [{
 "sid": "supplier1",
 "cid": "customer1",
 "items": [{ "upc": "47520-81452", "qty": {
"integer?": null } }]
}]

7

 Invoking the scm:OrderAnalyticsModel function

directly on the decision variable annotated input would,

however, result in undefined behavior. This is because the

function that implements the analytics model is expecting a

numerically-typed value for the qty property, but we provide

a decision variable object instead. Rather, we can invoke an

analytics service provided by Unity for deterministic

optimization against the analytics model and annotated input

to find specific values for qty that minimizes the cost

metric as follows:

let $ instantiatedInput := dgal:argmin({
 varInput: $annotatedInput,
 analytics:
"Q{http://example.org/scm}OrderAnalyticsModel",
 objective: "cost"
})

 In maintaining complete syntactic equivalence with

JSONiq, all analytics services provided by Unity are exposed

as a regular JSONiq functions by DGAL. For deterministic

optimization, DGAL provides the dgal:argmin function

which simply serves as a wrapper around the analytics service

for deterministic optimization that is provided by Unity. The

dgal:argmin function takes single JSON object as input

that contains at least three properties, specifically: (1)

varInput: the decision variable annotated input as a JSON

object, (2) analytics: the analytics model as a qualified name

string, and (3) objective: the JSONiq path expression string

to select the property of the objective metric that is computed

by analytics model. If a solution to the resulting optimization

problem is feasible, the dgal:argmin function returns an

instantiation of the annotated object contained in the varInput

property, where all decision variable annotations are

instantiated with values that together minimize the objective

metric. To compute the minimized value of the objective

metric, one simply invokes the analytics model on the

instantiated input object returned from dgal:argmin:

return
Q{http://example.org/scm}OrderAnalyticsModel($i
nstantiatedInput)

4 System Implementation

In this section we describe a prototype implementation of

Unity that follows the reference architecture presented

earlier. The Unity prototype was developed using a

combination of Java, C++ and JSONiq and currently supports

for computation and deterministic optimization of analytics

models implemented in DGAL. We use Java Content

Repository (JCR), as implemented in Apache Jackrabbit, to

store, retrieve and manage the analytics knowledge base

artifacts, such as analytical models, views and data. To

simplify the development of DGAL analytics models, we

developed an initial DGAL IDE based on Eclipse, as shown

in figure 3, as well as a package for Atom containing a macro

for executing DGAL queries from within the IDE.

 The execution engine was developed on top of the Zorba

query processor, which was adapted to operate against the

JCR content repository, rather than from the local file system.

For this purpose, we developed a custom URI resolver for

Zorba in C++. For the application layer, we use Jetty as an

embedded HTTP server and Java servlet container to host a

custom developed Web application that provides support for

executing DGAL queries and manipulating and managing

Figure 3. Eclipsed-based IDE for DGAL Analytics Model Development

8

analytics models and data in the repository. For the client-

tier, the Unity DGMS prototype provides remote access

through a number of different protocols, including

HTTP/HTML, REST/JSON and WebDAV.

 The process provided by Unity that implements the

deterministic optimization function, dgal:argmin, consists

of 6 steps, as shown in figure 4. The process begins with the

analytics model resolution step, where in the fully qualified

analytics model name is resolved against the content

repository to retrieve its implementation as a DGAL source

module. Next, in the source-to-source transformation step,

the DGAL source module is transformed into a symbolically

executable JSONiq library module. Then in the symbolic

execution step, the transformed module is executed as a

regular JSONiq module by the Zorba engine, which generates

its output in an intermediate representation. Next in the

solver-specific model generation step, the output from the

previous step is used to generate a solver-specific model with

associated data. Currently the prototype can generate

optimization models in either OPL or AMPL. The newly

generated model is then dispatched, in the solver specific

execution step, to the solver specified in the configuration

object, such as CPLEX, MINOS or SNOPT. Finally, in the

analytics model input instantiation step the solution obtained

from the solver is merged with the decision variable

annotated input to return an instantiated input, where all

decision variables are replaced with the resultant values in the

solution.

 The prototype implementation is built around an

intermediate representation for analytics models. The

intermediate representation is a JSON-based language that

captures a partially translated analytics model in a way that is

independent of both the source modeling language and the

target, tool-specific language. While we currently support

DGAL for analytical modeling, other languages like DGQL

[7] could also be supported with the development of an

analytics compiler to transform models in other languages

into this intermediate representation.

 In the intermediate representation, mathematical

expressions whose values depend on decision variables or

learning parameters are encoded as symbolic expression

objects, which are JSON objects that capture the abstract

syntax tree of the expression to be computed, rather than its

computed result. Decision variables are represented in the

intermediate representation as simple JSON objects that

capture the variable’s name, type and optionally its estimated

value, which is often crucial for non-linear optimization

tasks. The property name of a decision variable object

indicates the type of the decision variable and the property

value is a string that holds the identifier of the decision

variable. Unlike in some optimization modeling languages,

such as AMPL and OPL, decision variables in the

intermediate representation are not explicitly defined, rather

they are implicitly defined as part of their usage. For this

reason, care must be taken to ensure that if multiple decision

variable symbols with the same identifier are used within a

single intermediate representation model, the decision

variable types must all be consistent. Just like decision

variables, learning parameters are represented in the

intermediate representation as simple JSON objects that

capture the parameter’s name, type and optionally its

estimated value.

Solver-Specific
Configuration

(JSON)

Analytical Model
Name and

Namespace URI

Objective
Expression

(JSONiq)

Partially Instantiated
Analytical Model

Input (JSON)

Content
Repository

Fully Instantiated
Analytical Model

Input (JSON)

argmin
invocation

Analytical
Model

Resolution

Source-to-
Source

Transformation

Solver-Specific
Model

Generation

Solver-Specific
Execution

Symbolic
Execution

Analytical
Model
Input

Instantiation

argmin
completion

Analytical Model
Implementation
(DGAL)

Symbolically Executable
Analytical Model (JSONiq)

Intermediate Analytical
Representation

(JSON)

Solver-Specific
Model and Data
(OPL / AMPL)

Solution (JSON)

Figure 4. Deterministic Optimization Process

(dgal:argmin)

 Expressions are encoded as single-property JSON objects

where the property name indicates the expression operator

and the corresponding value is a JSON array containing the

values of the operands. The intermediate analytical

representation supports many kinds of expression operators,

including arithmetical, logical, conditional, quantified

expression operators. While user-defined functions are

currently not supported, Unity DGMS provides a number of

built-in functions, such as aggregation and piecewise

functions. For instance, the JSONiq expression 100 + 250
eq 350 can be encoded in the intermediate representation as

follows:

{
 "==": [
 { "+": [100, 250] },
 350
]
}

 While this expression is valid in the intermediate

representation, the analytics engine automatically reduces

9

expressions that do not depend on any decision variables or

learning parameter, and thus can be computed at the time of

symbolic execution. For this expression, the value can be

reduced to simply true.

 As explained before, while syntactically DGAL is

backwards compatible with JSONiq, the execution of

analytics services extends the semantics of JSONiq. Because

of this difference, analytics services cannot be directly

executed on a standard JSONiq query processor, such as

Zorba. One way to support the alternative execution

semantics of DGAL is to re-develop a new JSONiq query

processor that natively supports DGAL. However, as the

objective of Unity is to promote interoperability and reuse,

we opted for a different approach. If JSONiq supported

operator overloading, like in C++, another approach would

be to overload the expression operators supported by DGAL

to re-define their execution semantics. For descriptive

analytic tasks that are supported directly in JSONiq, the

execution semantics would remain unchanged. For predictive

or prescriptive analytic tasks, however, the execution of these

overloaded operators would generate results in the

intermediate analytical representation Unfortunately,

JSONiq does not currently support operator overloading.

 To support advanced analytics using a stock JSONiq

query processor, the analytic model compiler first performs a

source-to-source transformation to redefine the execution

semantics of expression operators by direct modification of

the source code. The main idea behind this approach is that

for each expression operator in the analytical model, a

function call is substituted in its place that when called

returns the result in the intermediate analytical

representation. In cases where the computation of an

expression does not involve a decision variable or learning

parameter, the intermediate analytical representation would

be identical that of a standard interpretation of JSONiq.

 As shown in figure 5, to perform the source-to-source

transformation we first parse the JSONiq source text and

build an abstract syntax tree. For this purpose, we used the

REx parser generator [14] to generate a JSONiq parser in

Java from the EBNF grammar that is provided in the JSONiq

language specification. We then use an XSLT transformation

on the resulting XML syntax tree to replace each JSONiq

expression operator with a corresponding function that

returns its result in the intermediate analytical representation.

Parse and
Generate AST

Validate and
Prune AST

Transform AST

Start

DGAL
Module

Transformed
DGAL Module

DGAL AST

Pruned
DGAL AST

Figure 5. DGAL Source-to-Source Transformation
Process

 For example, consider the supplyConstraint expression

from supply chain analytics example presented in section 2.

After performing the source-to-source transformation, the

sub-expression $supplyItem.qty ge fn:sum(...) is replaced

with a calls to the corresponding dg:ge and dg:sum functions,

as shown below:

let $supplyConstraint :=
for $supplier in $input.suppliers[],
 $supplyItem in $supplier.supply[]
return dg:ge($supplyItem.qty,
 dg:sum($input.orders[][dg:eq($$.sid,

$supplier.sid)].items[][dg:eq($$.upc,
$supplyItem.upc)].qty))

 All such expression functions, like dg:ge and dg:sum, are

implemented completely in JSONiq. The complete JSONiq

definition of the dg:eq function is provided below:

declare function dg:eq($operand1, $operand2)
{
 if ($operand1 instance of object
 or $operand2 instance of object) then
 { "==": [$operand1, $operand2] }
 else
 $operand1 eq $operand2
};

 It takes two parameters, $operand1 and $operand2, which

correspond to the left and right operands of the binary

equality operator in JSONiq. A quick simplification is done

in the event that neither operand depends on a decision

variable or learning parameter, whereby the fully computed

result is returned, otherwise an intermediate analytical

expression tree object is returned.

5 Experimental Evaluation

 While the Unity NoSQL-DGMS prototype that we

described in the previous section demonstrates one approach

for implementing deterministic optimization against

analytics models expressed in DGAL, a vital question is

whether our approach is too computationally inefficient to be

used for real-world, DGSs. In this section, we report on a

preliminary experimental study that we conducted to

investigate the overhead of OPL optimization models

automatically generated from DGAL using Unity, compared

with manually-crafted OPL models that are formally-

equivalent. Our hypothesis is that for OPL models that are

automatically generated from DGAL, the solve time is within

a small constant factor of the time it takes to solve manually

crafted OPL models that are formally equivalent. To test our

hypothesis, we manually translated an AMPL optimization

model for procurement analytics, which we borrow from [8],

into two formally equivalent models, one in DGAL and the

other in OPL, which we refer to as the experimental input and

control input respectively.

 A program was written to randomly generate pairs of

instance data to use for our DGAL and OPL models, which

10

we refer to as the experimental input and control input

respectively. Care was taken to ensure that each input pair

was formally equivalent, or in other words the same

randomly generated value was used for each corresponding

property in the input. We conducted a total of 205 trials,

where for each trial we measured the wall-clock time that the

CPLEX solver took to solve the experimental optimization

problem and the control optimization problem. We only

measured the difference in how long it takes CPLEX to solve

the experimental optimization problem versus the control

problem, so we do not include the time spent on other

associated processes in our measurements, such as the time

spent compiling DGAL models and loading data into

CPLEX.

Figure 6. Execution Time Overhead of Automatically

Generated OPL Models from DGAL (in seconds)

 The Java API provided by CPLEX was used to automate

the execution of the experiment’s 205 trials. The wall-clock

time was measured by subtracting the difference between the

return values of calls to System.currentTimeMillis() placed

immediately after and before the invocation of the CPLEX

solve() method. Within a trial, the experimental optimization

problem consisted of the OPL model and input that was

automatically generated through compilation of the

experimental DGAL model on the experimental input. The

control optimization problem consisted of the control OPL

model and the control input. The number of decision

variables in the resulting optimization problems across all

trials range from 72 to 16,800. The tests were conducted on a

single machine equipped with an Intel® Core™ i5-4210U

processor and 16GB of RAM. To reduce measurement errors

due to interference, we closed all other extraneous

applications and services, and each test was run sequentially.

 The results of this experiment are presented as a scatter

chart in figure 6, where the horizontal axis represents the

wall-clock time that the CPLEX solver took, in seconds, to

solve the control optimization problem, and the vertical axis

shows the wall-clock time that the CPLEX solver took, in

seconds, to solve the experimental optimization problem. A

linear trend line through the time measurement points gives a

slope of 2.3148, which indicates that compiled DGAL

models are on average about 231% slower than manually

crafted OPL. On closer inspection, a value of 0.7644 for the

coefficient of determination, indicates that almost 24% of the

variance in time measurements is not explained by the

independent variable of our experiment, which was the

optimization model used, either the OPL model automatically

generated from DGAL or the manually crafted one. Some

variance is to be expected because the behavior of underlying

algorithms used for MP-based optimization, such as branch

and bound, are often sensitive to how the problem is

formulated.

 While our objective is not to compete with commercial

solvers in terms of faster execution times, but rather to

develop a NoSQL-DGMS based around DGAL to facilitate

the development of DGSs, there are a number of techniques

that could be employed to decrease the overhead of

automatically generated models. The CPLEX solver provides

a number of options to fine-tune the optimization process,

like pre-solve, which need to be investigated in the future.

Also, utilizing a combination of domain-specific pre-

processing techniques, such as the one proposed in [4], to

generate efficient, tool-specific models for certain classes of

problems. However, with regards to our preliminary

evaluation, we view the current optimization time overhead

as a standard tradeoff between user productivity and

computational efficiency. Thus, Unity NoSQL-DGMS would

still be practical in cases where computational efficiency can

be sacrificed to avoid the costly re-development of

specialized analytics models to support different tasks.

6 Conclusion and Future Work

This paper reported on the development of the first NoSQL

decision guidance management system (NoSQL-DGMS) –

Unity, which enables decision-makers to build DGSs from a

repository of analytics models that can be automatically

reused for different analytics methods, such as simulation,

optimization and machine learning. We provided the Unity

NoSQL-DGMS reference architecture, and developed its first

implementation, which is centered around a modular

analytics engine that symbolically executes and

automatically reduces analytics models, expressed in DGAL,

into lower-level, tool-specific representations. We also

demonstrated the use of Unity and DGAL in building a

simple DGS for order analytics. Finally, we conducted a

preliminary experimental study on the overhead of OPL

optimization models automatically generated from DGAL

using Unity, compared with manually-crafted OPL models

y = 2.3148x + 1.7776
R² = 0.7644

0

4

8

12

16

20

24

28

32

0 2 4 6 8 10 12 14 16

CP
LE

X
So

lv
e

Ti
m

e
fo

r
Au

to
m

at
ic

al
ly

 G
en

er
at

ed
 O

PL
 M

od
el

s

CPLEX Solve Time for Manually Crafted OPL Model

11

that are formally-equivalent. Preliminary results indicate that

the execution time of OPL models that are automatically

reduced from DGAL is within a small constant factor of

corresponding, manually-crafted OPL models.

 The possibility of building DGSs from reusable analytics

models by way of a NoSQL-DGMS represents a paradigm

shift from the current approaches, which are task-dependent

and lead to a tight-integration of the analytics models,

methods and underlying tools. Our work opens up new

research questions that we plan to work on in the future.

Particularly, as support for additional analytics tools are

developed, the problem of choosing the most appropriate tool

for a specific task, such as optimization, emerges. Further

research is needed to investigate how a tool recommender

system can be developed to determine the set of candidate

tools feasible for a particular analytics model and task, and

then to rank the set of candidate tools according to some user-

defined objective, such as predicted execution time or

accuracy. Second, more work is necessary to develop

algorithms to automatically reduce the complexity of

analytics models using techniques such as domain-specific

heuristics, pre-processing and relaxation. This is essential

because in DGAL analytics models can use the full

expressive power of JSONiq, which can lead to the

development of analytics models are too complex to be

solved efficiently using MP-based techniques alone.

References

[1] A. Brodsky, J. Luo, and M. O. Nachawati, “Toward

Decision Guidance Management Systems: Analytical

Language and Knowledge Base,” Department of

Computer Science, George Mason University, 4400

University Drive MSN 4A5, Fairfax, VA 22030-4444

USA, GMU-CS-TR-2016-1, 2016.

[2] D. J. Power, “Supporting decision-makers: An

expanded framework,” in e-Proceedings Informing

Science Conference, Krakow, Poland, 2001, pp. 431–

436.

[3] H. Altaleb and A. Brodsky, “A Primary Market for

Optimizing Power Peak-Load Demand Limits,” Int. J.

Decis. Support Syst. Technol. IJDSST, vol. 5, no. 2,

pp. 21–32, 2013.

[4] N. Egge, A. Brodsky, and I. Griva, “Distributed

Manufacturing Networks: Optimization via

Preprocessing in Decision Guidance Query

Language,” Int. J. Decis. Support Syst. Technol., vol.

4, no. 3, pp. 25–42, 33 2012.

[5] C.-K. Ngan and A. Brodsky, “DGLS System:

Decision Guidance for Optimal Load Shedding in

Electric Power Microgrids,” in Proceedings on the

International Conference on Artificial Intelligence

(ICAI), 2013, p. 1.

[6] A. Brodsky and X. S. Wang, “Decision-guidance

management systems (DGMS): Seamless integration

of data acquisition, learning, prediction and

optimization,” in Hawaii International Conference on

System Sciences, Proceedings of the 41st Annual,

2008, pp. 71–71.

[7] A. Brodsky, N. Egge, and X. S. Wang, “Reusing

relational queries for intuitive decision optimization,”

in System Sciences (HICSS), 2011 44th Hawaii

International Conference on, 2011, pp. 1–9.

[8] A. Brodsky, N. E. Egge, and X. S. Wang, “Supporting

agile organizations with a decision guidance query

language,” J. Manag. Inf. Syst., vol. 28, no. 4, pp. 39–

68, 2012.

[9] A. Brodsky, S. G. Halder, and J. Luo, “DG-Query,

XQuery, mathematical programming,” in 16th

International Conference on Enterprise Information

Systems (ICEIS 2014), 2014.

[10] A. Brodsky and J. Luo, “Decision Guidance Analytics

Language (DGAL) - Toward Reusable Knowledge

Base Centric Modeling:,” 2015, pp. 67–78.

[11] R. Lammel and C. Verhoef, “Cracking the 500-

language problem,” IEEE Softw., vol. 18, no. 6, pp.

78–88, 2001.

[12] B. Shneiderman, “Experimental testing in

programming languages, stylistic considerations and

design techniques,” in Proceedings of the May 19-22,

1975, national computer conference and exposition,

1975, pp. 653–656.

[13] J. Robie, G. Fourny, M. Brantner, D. Florescu, T.

Westmann, and M. Zaharioudakis, “Jsoniq the

complete reference,” 2015.

[14] G. Rademacher, REx Parser Generator. .

12

Appendix 1 – Experimental DGAL Analytics Model

jsoniq version "1.0";
module namespace ns = "http://cs.gmu.edu/dgal/procurementAnalytics.jq";

declare function ns:procurementAnalytics($procurementData)
{
 let $Vendors := $procurementData.Vendors[]
 let $Items := $procurementData.Items[]

 let $Locations := $procurementData.Locations[]
 let $Stock := $procurementData.Stock[]
 let $Order := $procurementData.Order[]
 let $total_cost := sum(for $v in $Vendors, $i in $Items, $l in $Locations

 return $Stock[$$.Vendor eq $v].Items[][$$.Item eq $i].PricePerUnit *
 $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor
eq $v].Orders)

 let $available_vs_purchased := every $v in $Vendors, $i in $Items satisfies
 $Stock[$$.Vendor eq $v].Items[][$$.Item eq $i].Available >=
 sum(for $l in $Locations
 return $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].Orders)

 let $requested_vs_delivered := every $l in $Locations, $i in $Items satisfies
 $Order[$$.Location eq $l].Items[][$$.Item eq $i].Requested <=
 sum(for $v in $Vendors
 return $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].Orders)

 let $order_placed := every $l in $Locations, $i in $Items, $v in $Vendors satisfies
 if ($Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].OrderPlaced eq 0)
then
 $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].Orders eq 0

 else
 $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor eq $v].Orders >= 1
 let $items_purchased := every $v in $Vendors, $l in $Locations satisfies

 $Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq $v].ItemsPurchased eq
 sum(for $i in $Items return $Order[$$.Location eq $l].Items[][$$.Item eq $i].ItemOrder[][$$.Vendor
eq $v].OrderPlaced)
 let $vendor_shipped := every $l in $Locations, $v in $Vendors satisfies

 if ($Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq $v].VendorShipped eq 0) then
 $Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq $v].ItemsPurchased eq 0
 else
 $Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq $v].ItemsPurchased >= 1

 let $vendor_restriction := every $l in $Locations satis fies
 sum(for $v in $Vendors return $Order[$$.Location eq $l].LocationOrder[][$$.Vendor eq
$v].VendorShipped) <= 20

 let $constraints := ((((($available_vs_purchased and $requested_vs_delivered) and $order_placed) and
 $items_purchased) and $vendor_shipped) and $vendor_restriction)
 return {
 procurementData: $procurementData,

 procurementCost: $total_cost,
 available_vs_purchased: $available_vs_purchased,
 requested_vs_delivered: $requested_vs_delivered,
 order_placed: $order_placed,

 items_purchased: $items_purchased,
 vendor_shipped: $vendor_shipped,
 vendor_restriction: $vendor_restriction,

 constraints: $constraints
 }
};

