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Abstract

Return-Oriented Programming (ROP) has emerged as
one of the most widely used techniques to exploit soft-
ware vulnerabilities. Unfortunately, existing ROP pro-
tections suffer from a number of shortcomings: they
require access to source code and compiler support, fo-
cus on specific types of gadgets, depend on accurate
disassembly and construction of Control Flow Graphs,
or use hardware-dependent (microarchitectural) charac-
teristics. In this paper, we propose EigenROP, a novel
system to detect ROP payloads based on unsupervised
statistical learning of program characteristics. We study,
for the first time, the feasibility and effectiveness of us-
ing microarchitecture-independent program characteristics
— namely, memory locality, register traffic, and memory
reuse distance — for detecting ROP. We propose a novel
directional statistics based algorithm to identify devia-
tions from the expected program characteristics during
execution. EigenROP works transparently to the pro-
tected program, without requiring debug information,
source code or disassembly. We implemented a dynamic
instrumentation prototype of EigenROP using Intel Pin
and measured it against in-the-wild ROP exploits and on
payloads generated by the ROP compiler ROPC. Overall,
EigenROP achieved significantly higher accuracy than
prior anomaly-based solutions. It detected the execution
of the ROP gadget chains with 81% accuracy, 80% true
positive rate, only 0.8% false positive rate, and incurred
comparable overhead to similar Pin-based solutions.

1 Introduction

Since its introduction by Shacham in 2007 [38], Return-
Oriented Programming (ROP) has become an increas-
ingly popular technique for bypassing Data Execution
Prevention (DEP) defenses on modern operating sys-
tems. DEP ensures that all writable memory pages of a
program are non-executable, which prevents the execu-

tion of any input data, effectively mitigating all classic
code injection attacks. In a ROP attack, on the other hand,
the attacker does not inject new code. Instead, existing
sequences of instructions in the process executable mem-
ory, called gadgets, are chained together to perform the
intended computation. While the traditional Address
Space Layout Randomization (ASLR) randomizes the
location of most libraries and executables, ROP attacks
can still bypass ASLR by finding a few code segments
in statically known locations, or through brute-forcing
and de-randomization by exploiting memory disclosure
vulnerabilities.

Over the past few years, research in ROP defenses
has become an arms race, where emerging defenses are
countered by new subtle variations of ROP attacks. De-
fenses can be categorized into two broad categories. The
first category attempts to prevent ROP attacks at compile
time, by eliminating gadgets from binaries [32] or enforc-
ing Control-Flow Integrity (CFI) [9]. The second category
aims at detecting ROP attacks at runtime, by monitoring
the execution of programs [33, 13, 15, 30, 16, 41].

Defenses in the second category can further be clas-
sified based on the detection approach into signature-
based and anomaly-based. Signature-based solutions
detect ROP attacks by identifying static signatures (pat-
terns) in the execution trace of programs. The most
common method is to detect gadgets execution by en-
forcing predefined constraints over the program counter
and the call stack, either through dynamic instrumen-
tation [15, 23, 18] or by leveraging existing hardware
branch tracing features [13]. These solutions incur very
low overhead, but the employed signatures are often
incomplete due to strong constraints on the ROP struc-
ture, allowing the defenses to be bypassed by attack-
ers [14, 12, 19].

Anomaly-based detection, on the other hand, learns a
baseline of normal (clean) behavior and detects attacks
by measuring statistical deviations from the normal be-
havior. This approach has the significant advantage of
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being able to protect against a broad spectrum of attacks,
including zero-day. Until recently, anomaly-based ap-
proaches have only leveraged software characteristics,
e.g., network traffic and system call sequences [31, 24].
Meanwhile, attacks have increased in complexity, becom-
ing stealthier and harder to detect. Therefore, researchers
have explored the potential of using hardware character-
istics, such as instruction mixes and branch prediction
rate, to detect ROP attacks [30, 16, 33, 41, 34].

Using hardware characteristics has a major advantage
over software characteristics: it is harder for attackers
to gain sufficient control over the hardware in order to
evade detection. For example, it is easy to craft ROP
payloads that mimic the behavior of clean software exe-
cution by chaining gadgets that invoke benign sequences
of system calls, while still executing the attack payload.
On the other hand, it is hard to craft payloads that, while
still attacking the system, maintain precise control of the
branch prediction rate of the hardware. This is because
attacks, by definition, have to go against the normal flow
of the program, inevitably resulting in misprediction of
branches and returns by the hardware branch predictor.

Prior work that utilized hardware characteristics used
two classes of characteristics: 1) architectural characteris-
tics, which are dependent on the instruction set architec-
ture (ISA), such as the number of load and store instruc-
tions retired. And, 2) microarchitectural characteristics,
meaning characteristics that depend on the underlying
microarchitecture configurations, such as branches mis-
prediction rate and cache misses. These characteristics
were typically measured by reading the hardware per-
formance counters (HPC) of the underlying processor.
However, a common pitfall is that characteristics mea-
sured using HPC may actually hide the underlying pro-
gram behavior, making the HPC-based metrics appear
similar for inherently different behaviors [20, 45].

In this paper, we introduce EigenROP, a novel system
for detecting ROP attacks. We study, for the first time,
the feasibility and value of using microarchitecture-in-
dependent program characteristics for the detection of
ROP attacks. We propose a new type of anomaly-based
ROP detectors that leverages microarchitecture-indepen-
dent program characteristics, including memory reuse
distance [47], register traffic load [17], memory local-
ity [27], among others, in addition to traditional hard-
ware characteristics (see Section 4).

EigenROP employs a novel anomaly detection algo-
rithm that builds on concepts from directional statistics.
The fundamental idea is that strong relationships among
the different program characteristics will appear as prin-
cipal axes in some high-dimensional space. Since ROP
executes against the control flow of the program, it is
reasonable to assume that it causes some unexpected
changes in the relationships between the program char-
acteristics learned from benign runs. Such changes can
be detected as statistically significant deviations in the
directions of the axes in the high-dimensional space. We

investigate if and to what extent ROP causes changes in
program characteristics, and verify our hypothesis with
extensive experiments using multiple in-the-wild ROP
payloads and payloads generated by the ROPC ROP
compiler.

EigenROP operates in two phases: a learning phase
and a detection phase. During the learning (offline)
phase, programs are executed over benign inputs un-
der EigenROP, where it collects different characteristics.
The characteristics are measured periodically, every N
instructions retired. A model is then constructed using
Kernel Principal Component Analysis (KPCA) [36] and
directional statistics (see Section 5). EigenROP uses a
temporal model, where both the current snapshot of
characteristics and the history are taken into account.
This concludes the learning phase. In the detection
phase, EigenROP monitors the execution of the target
program, collects the characteristics, and tests for devia-
tion from the trained model.

We implemented a prototype of EigenROP on Linux,
using the dynamic instrumentation framework Pin [29].
We conducted several experiments to quantify the accu-
racy of EigenROP, the effect of involved parameters and
the incurred performance overhead (see Section 7). In
our experiments, microarchitecture-independent charac-
teristics resulted in 11% increase on average in detection
accuracy, relative to using only microarchitectural char-
acteristics. EigenROP achieved an overall accuracy of
81%, 80% true positive rate, and only 0.8% false positive
rate. The incurred performance overhead decayed expo-
nentially as the sampling interval increases, and faster
than the deterioration in accuracy. Overall, the overhead
incurred matches with prior Pin-based solutions (see
Section 9).

To summarize, we make the following contributions:

• We study the effectiveness of combining microarchi-
tecture-independent program characteristics with
typical hardware characteristics for the detection of
ROP attacks.

• We propose a novel anomaly detection algorithm us-
ing directional statistics of program characteristics,
embedded in high-dimensional space.

• We present EigenROP, a working prototype of our
approach.

• We quantify the security effectiveness of Eigen-
ROP using in-the-wild ROP attacks against common
Linux programs.

• We quantify the runtime accuracy-performance
tradeoff of EigenROP.
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2 Background

2.1 Return-Oriented Programming

Return Oriented Programming (ROP) [38] enables at-
tackers to execute arbitrary code without injecting new
code into the victim process, by returning to arbitrary
instruction sequences in the executable memory of the
program.

The basic idea is to use indirect jumps (e.g., ret in-
structions) to return to arbitrary points in the executable
process memory that execute sequences of instructions
ending in another indirect jump instruction. The last
indirect jump instruction allows executing one such se-
quence after another. Multiple sequences can be com-
bined into “gadgets” that perform an atomic task, such
as load, store and system call. The attacker then “chains”
the gadgets together, to perform the intended malicious
functionality. Typically, gadgets end with a ret instruc-
tion, which returns to the stack. The attacker chains the
gadgets by hijacking the stack and writing appropriate
addresses to the beginning of the desired instruction
sequence.

A typical ROP attack operates as follows: first, the
attacker overwrites the stack contents with addresses of
the desired ROP gadgets. Once the ret instruction of the
current routine is executed, the first return address of
the current stack frame is used as a return target. Instruc-
tion sequences at that address will execute, till the next
ret instruction. Upon execution of the ret instruction,
control is transferred to the next gadget. This process
repeats, jumping from one gadget to the next, till the
gadget chain terminates.

In Fig. 1, we give an example of a gadget that stores a
constant 0x1 at the target memory address 0xa0de1b6e.
The gadget starts by loading the constant 0x1 from the
stack to the register eax. It then loads the target memory
address to register ebx. Finally, it moves the contents of
eax back to the memory pointed at by ebx.

Conventional ROP attacks use ret instructions to
chain the gadgets [38]. In [11], a ROP variant was pre-
sented that uses indirect jump (e.g., jmp eax) instruc-
tions to chain the gadgets. While we mainly evaluate
EigenROP using conventional ROP attacks, our solution
is applicable regardless of how the gadgets are chained.
We discuss in Section 8 how different variants of ROP
payloads can be detected by EigenROP.

It has been shown that ROP can perform Turing-
Complete computations if the attacker can find sufficient
gadgets to perform memory, arithmetic, logical opera-
tions and system calls [42]. An infamous example on
that is the recent ROP-only Adobe Reader exploit [1].
We refer the reader to [38, 35] for more details on ROP.

Finally, it is worth mentioning that overwriting the
return address on the stack is not the only way to hijack
the execution of the target process. Other vulnerabilities
such as format string and integer overflow vulnerabil-

Figure 1: Example of a ROP gadget that stores a constant
value 0x1 at memory location 0xa0de1b6e.

ities can allow the attackers to write arbitrary values
to function pointers that are used as jump targets by
the program, thereby redirecting the execution to the
attacker’s instructions of choice. For example, a very
common approach is overwriting the Global Offset Ta-
ble on Linux systems, which holds absolute addresses to
functions in dynamically linked libraries.

2.2 Microarchitecture-independent Charac-
teristics

It has been shown that microarchitecture-indepen-
dent characteristics have higher discrimination power
between different inherent program behaviors, com-
pared to architectural and microarchitectural character-
istics [20, 45]. Microarchitecture-independent character-
istics are program characteristics that are unique to a
given instruction set architecture (ISA) and a given com-
piler but are independent of a given microarchitecture.
In other words, the characteristics are invariant of the
underlying hardware cache size, pipeline size, branch
predictors size and algorithm, number of cores and their
configurations, and so on. In the context of ROP detec-
tion, several microarchitecture-independent characteris-
tics can prove useful in discriminating between benign
execution behavior and gadget execution, such as mem-
ory locality and reuse distance, and register traffic (see
Section 4 for details). Note that while characteristics
dependent on the ISA, i.e., architectural characteristics,
can be regarded as a subset of microarchitecture-inde-
pendent characteristics, we keep them distinct in this
work as is the trend in prior program characterization
work [20, 45, 30, 41].

The main downside of using microarchitecture-inde-
pendent characteristics is that it requires runtime instru-

3



mentation to measure the characteristics. However, the
overhead decays over time as more efficient algorithms
and tools are developed [8].

In the following section, we outline the big picture of
how EigenROP works.

3 Overview of EigenROP

The key idea of EigenROP is to identify anomalies in pro-
gram characteristics, due to the execution of ROP gad-
gets. In this context, it is difficult to precisely define what
anomalies are since that depends on the characteristics
of both the monitored program and the ROP. However,
it is reasonable to assume that some unexpected change
occurs in the relationships among the different program
characteristics due to the execution of the ROP. By ex-
tracting and learning arbitrary relationships among the
program characteristics, EigenROP detects ROP by look-
ing for unexpected changes in the learned relationships.

Given our definition of anomaly, strong relationships
among the measured program characteristics should ap-
pear as principal directions in some high-dimensional
space [36]. Such directions can be extracted using Ker-
nel Principal Component Analysis (KPCA) [36]. More
specifically, the principal component vectors of the mea-
surements mapped into the high-dimensional space can
be interpreted as the relationships among the program
characteristics.

The general workflow of EigenROP is illustrated in
Fig. 2. First, the target program is loaded and executed.
During execution, EigenROP takes a snapshot of the
different program characteristics, every N instructions
retired. Each snapshot is a d−dimensional vector of
characteristics. The snapshots are pushed to a buffer
that EigenROP iterates over using a sliding window.

In the learning phase, the target program is executed
over benign inputs. For each window of measured char-
acteristics, EigenROP maps the measurements into a
high-dimensional space and extracts the principal com-
ponents of the measurements in that space. EigenROP
then estimates a representative direction from all the prin-
cipal components, and estimates the density of the dis-
tances of all principal components around the represen-
tative direction. Recall, the idea here is that any strong
relationships among the measured characteristics will
appear as principal components in the high-dimensional
space. In the detection phase, EigenROP computes the
distances of the principal components of incoming mea-
surements, in the high-dimensional space, to the repre-
sentative direction. If the distance exceeds some thresh-
old, then an alarm is raised.

In the following, we define the characteristics used
by EigenROP and explain in detail how learning and
detection work.

4 Which Characteristics to Mea-
sure?

To choose the most relevant characteristics for ROP detec-
tion, we conducted several experiments to collect clean
and infected measurements from a variety of programs
and exploits (see Section 7.3). We considered most of the
characteristics used in previous program characteriza-
tion work [20, 45, 30, 41]. Then, we used the Fisher Score
to quantify the discriminative power of each characteris-
tic. The following is the shortlisted categories of charac-
teristics we measured. The letters between brackets de-
note the type of the characteristics: Architectural [A], Mi-
croarchitecture-Independent [I], and Microarchitectural
[M]. We emphasize that all the characteristics used in
this work are computed in software.

• Branch predictability [M]. Since ROP attacks dis-
turb the normal control flow of execution, they may
increase the number of mispredicted branches by
the processor branch predictor.

• Instruction mix [A]. This is a traditional architec-
tural characteristic that measures the frequency of
different classes of instructions (branch, call, stack,
load and store, arithmetic, among others). Since
ROP attacks depend on chaining blocks of instruc-
tions that load data from the hijacked program stack
to registers, and for returning to the stack, they may
exhibit different usage of ret and call instructions
as well as stack pop and push instructions.

• Memory locality [I]. Given a set of instructions,
memory locality is the difference in the data ad-
dresses between subsequent memory accesses [27].
Here, it is typical that a distinction is made between
memory reads (loads) and writes (stores). Since
ROP attacks depend on chaining gadgets from ar-
bitrary memory locations, the attacks may exhibit
low memory locality when compared to clean exe-
cution. The memory distance between subsequent
reads and writes may indicate the execution of a
ROP attack.

• Register traffic [I]. Two useful register traffic char-
acteristics can be measured [17]: 1) the average num-
ber of register input operands to an instruction; and
2) the register reuse distance, i.e., the number of
instructions between writing a register and reading
it. ROP attacks load data from the hijacked stack to
registers typically using pop instructions that take
a single operand. Therefore, the number of instruc-
tion operands could be an indicator of the presence
of a gadget chain. Additionally, the usage degree
of the registers themselves could be different from
that of clean execution.

• Memory reuse [I]. This is an important metric that
characterizes the cache behavior of programs. It
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Figure 2: Workflow of EigenROP. EigenROP periodically interrupts the monitored process to measure the character-
istics. It embeds each window of measurements into a high-dimensional space and extracts the principal directions
in that space. Then, in the learning phase, it computes a representative (mean) direction and estimates the density of
distances of all principal directions to the mean direction. In the detection phase, the principal directions of incoming
measurements are compared to the mean direction for significant deviation.

measures the number of unique cache blocks refer-
enced between subsequent memory reads [47]. For
each memory read, the corresponding cache block
is retrieved (assuming LRU cache). For each cache
block, the number of unique cache blocks accessed
since the last time it was referenced is determined.
Since ROP attacks operate by using the stack for
chaining the gadgets, and the gadgets are typically
spread out across the memory of the program, they
shall exhibit abnormal reuse of the same memory
blocks when compared to clean execution.

Table 1 shows the top 15 characteristics, ranked by
their Fisher scores. For each characteristic i, its Fisher
Score is computed by:

scorei =
m(+)

(
x̄(+)

i − x̄i

)2
+ m(−)

(
x̄(−)i − x̄i

)2

m(+)s2(+)
i + m(+)s2(−)

i

, (1)

where (+) and (−) are the infected and clean classes
of measurements, respectively; x̄(y)i and s2(y)

i are the
mean and variance of characteristic i in class y ∈ {+,−},
and x̄i is the overall mean of feature i over both the in-
fected and clean measurements. The Fisher Score is a
widely established feature filtering method that assigns
higher scores to features that result in greater separation
between the means of clean and infected samples. Note
that we used infected and clean measurements here to
quantify the discriminative power of the selected charac-
teristics. The infected measurements are not used during
the learning phase of EigenROP.

Table 1: Top 15 characteristics sorted by discrimination
power (highest to lowest). Chosen characteristics are
marked with ?. Types A, I and M stand for “architec-
tural,” “microarchitecture-independent” and “microar-
chitectural,” respectively. All counts are for instructions
(insns) retired.
Rank Type Name Description

? 1 A INST RET # leave and ret insns.
? 2 A INST CALL # near call insns.
? 3 I MEM REUSE Memory reuse distance.
? 4 A INST STACK # pop and push insns.
? 5 I MEM RDIST Memory read distance.

6 A INST LOAD # memory read insns.
? 7 I REG OPS Avg. # register operands.
? 8 M MISP CBR Mispredicted branches.

9 A INST ARITH # arithmetic insns.
? 10 M MISP RET Mispredicted ret insns.

11 A INST STORE # memory write insns.
? 12 I MEM WDIST Memory write distance.
? 13 A INST NOP # nop insns.

14 I REG REUSE Register reuse distance.
15 I ILP Instruction level

parallelism.
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Since the Fisher Score ignores mutual information,
some of the scored characteristics might be redundant.
Therefore, we picked 10 features out of the top 15 as
follows. First, we excluded Instruction Level Paral-
lelism (a measure of how many instructions of a pro-
gram can be executed in parallel) since it added signifi-
cant performance overhead and is highly dependent on
the type of application. For example, cryptography ap-
plications may exhibit low instruction level parallelism,
while a scientific computation program may exhibit high
parallelism. Similarly, we excluded INST LOAD and
INST ARITH. Via experimentation, we found that REG -
REUSE does not increase the accuracy of the model, so
we excluded it as well.

5 Learning and Detection

Given a sequence T of d-dimensional measurements, we
divide T into n subsequences using a sliding window of
width m. Let us denote the resulting subsequences by:

S(j) =


xT(j)

1
xT(j)

2
...

xT(j)
m

 , (2)

for j = 1 . . . n. Note that each x(j)
i is a vector of d

measured characteristics.
Next, each S(j) is embedded (implicitly mapped) into

a higher dimension spaceH with Φ : Rd → H, and the
principal component vectors of S(j) in H are extracted.
This is done using Kernel PCA [36], which solves the
following eigenvalue problem:

λ
(j)
i v(j)

i = Kv(j)
i , (3)

where λ
(j)
i are the eigenvalues of K, v(j)

i are the nor-
malized eigenvectors of K, and K is the m × m kernel
matrix

[
k
(

x(j)
i , x(j)

l

)]
for i = 1 . . . m; l = 1 . . . m. Here, k

is the kernel function, which we set to the Radial Basis
Function (RBF) given by:

k(x1, x2) = Φ(x1)Φ(x2)
T (4)

= exp
(
−γ ‖x1 − x2‖2

)
, (5)

where γ = 1
d . We assume K is centered [36], i.e., K =

K− 1mK− K1m + 1mK1m, where 1m is an m×m matrix
for which each element takes the value 1

m .
Using the eigenvalues and eigenvectors in H, the re-

sultant direction v(j) of the data S(j), embedded inH, is
then computed by:

v(j) = c
m

∑
i=1

λ
(j)
i v(j)

i , (6)

where c is a normalizing factor such that v(j)Tv(j) =
1. This direction can be perceived as a representative
direction of all the principal axes of S(j) in the kernel
spaceH.

We then compute the mean direction µµµ of T by:

µµµ =
∑n

j=1 v(j)∥∥∥∑n
j=1 v(j)

∥∥∥ . (7)

The direction µµµ is the representative direction for the
entire trace of characteristics, where the extracted direc-
tions v(j) distribute around µµµ.

Hence, the following similarity vector Z is con-
structed:

Z =


v(1)Tµµµ

v(2)Tµµµ
...

v(n)Tµµµ

 , (8)

where each row corresponds to the angular distance
between each direction v(j) and µµµ.

Next, a kernel density is estimated over Z using the
standard normal kernel density estimator, given by:

fh(z) =
1

nh

n

∑
i=1

N

(
z− zi

h

)
, (9)

where h is the smoothing parameter (the bandwidth),
zi ∈ Z, and N is the standard normal function. In our im-
plementation, we chose the value of h using grid search.

We expect the resulting density to be close to expo-
nential since the directions extracted from clean mea-
surements are expected to be concentrated (tightly dis-
tributed around µµµ), resulting in a skewed density with
a peak around high similarity values. Therefore, we
reduce the skewness of fh by applying the following
logarithmic transform:

f̂h(z) = fh(z) log ( fh(z)) , (10)

where the area under the curve of f̂h(z) gives the en-
tropy η of f̂h. This transforms the bulk of the density
towards the peak, resulting in a shorter (easier to thresh-
old) tail.

This concludes the learning phase. The following sub-
section explains the anomaly metric and the detection
phase of EigenROP.

5.1 Anomaly Metric

Given an incoming subsequence of measurements S′(j),
an anomaly is detected if the direction of S′(j), in theH
space, is significantly different from the learned direc-
tions around µµµ. The decision r is computed by:
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v′(j) from Eq. (6) (11)

z′(j)
= v′(j)T

µµµ (12)

ζ =
∫ z′(j)

−1
f̂h(z) dz (13)

r = sgn(ζ − θη) , (14)

where θ ∈ (0, 1) is the detection threshold, which sets
the fraction of the entropy that the model leaves out for
detecting attacks. This concludes the detection phase.

To summarize, EigenROP operates as follows:

Learning Phase

1. Periodically, collect program characteristics
{S(j)}n

j=1 of the target program.

2. Extract the principal directions {v(j)}n
j=1 in a

higher-dimension kernel space.

3. Compute a representative direction µµµ from
{v(j)}n

j=1.

4. Estimate η of the distance between the principal
directions and µµµ.

Detection Phase

5. Repeat steps 1 and 2.

6. Compute the anomaly metric r, if r equals−1 then
an attack is present.

5.2 Detection Time and Space Complexity

Computing the anomaly metric requires performing the
KPCA computation (Eq. (3)) in O(m3) [36]. Computing
the resultant vector (Eq. (6)) takes O(m2). The distance
in Eq. (12) is computed in O(m). Thus, it takes a to-
tal time of O(m3) to compute the anomaly metric. Our
model requires space m · d for the incoming measure-
ments window S(j), m for the representative direction
µµµ, and c for the transformed density (Eq. (10)), where
c is the number of points of the density. Thus, it takes
a total space of O(md + c). Note that all terms in our
prototype implementation of EigenROP are bounded:
d = 10, m ≤ 10 and c ≤ 1000.

5.3 Handling Multiple Runs

The algorithm discussed so far focused on a single run
of the monitored program. To handle multiple runs, we
proceed as follows. Given a set {T(i)}k

i=1 of sequences,
where each T(i) corresponds to a different run of the
monitored program, we compute the family of sets of
directions {{v(j)}n(i)

j=1}k
i=1, then compute µµµ over the en-

tire family. Here, storing the entire set of directions is

Figure 3: Architecture of EigenROP within Pin.

not necessary, since µµµ and the distance density can be
computed iteratively using online (streaming) mean and
density algorithms.

6 Implementation

We implemented a proof-of-concept prototype of Eigen-
ROP on top of MICA [21], a Pintool for collecting pro-
gram characteristics. The EigenROP module is imple-
mented in ∼700 lines of Python, with the aid of the
SciKit-Learn [6] machine learning toolkit. Pin [29] is a
generic dynamic instrumentation framework with a rich
API that Pintools use to specify own instrumentation
code. Pintools are written in C/C++. We chose Pin since
it achieves the best performance among various dynamic
instrumentation platforms [29].

Fig. 3 shows the architecture of EigenROP within Pin.
MICA uses the instrumentation API of Pin to specify its
own instrumentation code, which computes the different
characteristics. As the program executes, the JIT com-
piler in Pin intercepts the program traces and compiles
the instrumentation code into the program, where the
characteristics are computed over the program traces.
A program trace is a chain of multiple basic blocks that
end with an unconditional jump. The measurements
reported by MICA are stored in a d-dimensional circular
buffer, one row at a time. The EigenROP module con-
sumes and processes the buffer using a sliding window
as explained in Section 5. Finally, the learned directions
and densities are stored on disk for usage in the detec-
tion phase, where the same procedure is followed in
addition to computing the anomaly metric. If a ROP is
detected, EigenROP logs an alarm and terminates the
target process.

7 Evaluation

We evaluate the security effectiveness, the added value
of using microarchitecture-independent characteristics,
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and the tradeoff between runtime overhead and the de-
tection accuracy of EigenROP. For security evaluation,
we conducted several experiments using in-the-wild
ROP attacks and attacks generated by the ROPC [5]
compiler. For performance evaluation, we used the
UnixBench [7] systems benchmark. We ran our experi-
ments on an Intel Core i7-4870HQ 2.5 GHZ machine with
4 GB of RAM, running 32-bit Linux Ubuntu 12.04, Intel
Pin version 2.14, MICA version 0.40 and GCC version
4.6.3.

7.1 Evaluation Metrics

To evaluate our approach, we use Receiver Operating
Characteristics (ROC) curves and the area under the
curve (AUC) scores. The x-axis of the ROC curve gives
the false positive rate (FPR), and the y-axis gives the
true positive rate (TPR). The FPR (eqv. with 1− speci-
ficity) represents the probability of false alarm, i.e., the
likelihood of mislabeling a clean execution as an attack,
given by FP/(FP+ TN). The TPR (eqv. with sensitivity)
represents the probability of correct detection of ROP
execution, given by TP/(TP + FN). Each point on the
ROC curve corresponds to the FPR and TPR, for a spe-
cific value of θ ∈ (0, 1). The area under the curve (AUC)
of the ROC is also computed, which provides a quantita-
tive single value measure of the accuracy of the system
for a variable θ. The higher the AUC, the higher the
detection accuracy. The AUC reaches its best value at 1
and its worst at 0.

Table 2: Data set used in our experiments.

Program Avg. Payload Length # of Samples

cmp 800 80
cpio 650 210
diff 910 140
file 700 315
grep 631 150
hteditor 60 100
openssl 1021 195
php 400 265
sed 570 350
sort 712 110
stat 673 110
wget 813 90

Total Samples: 2115

7.2 Dataset and Evaluation Procedure

We used two publicly available ROP exploits: OSVDB-
ID:87289 [2] and OSVDB-ID:72644 [4], for the Linux Hex
Editor (hteditor) version 2.0.20 and PHP version 5.3.6,
respectively. We also used a number of exploits gener-
ated by the ROP gadgets finder and compiler ROPC [5],

for common Linux programs (4 different exploits per
program). Table 2 shows the programs used in our eval-
uation, the average payload length (the number of in-
structions) of each exploit, and the number of samples
per program.

We collected clean samples for each target program
by running the functionality tests that shipped with the
program. In the case of hteditor, as it did not ship with
functionality tests, we ran it on 100 random PDF files
downloaded from the web. We collected infected sam-
ples following a similar approach to [13, 34]: assume
that the attacker had successfully compromised the tar-
get process, and inject code into the target process to
load a given exploit payload into memory and execute it.
The payload (gadgets) is executed by directly jumping
to the beginning of the payload at random points during
the execution of the process. Each payload execution
was considered an infected (attack) sample.

For each program, we used 5-fold cross-validation:
4 clean folds for training, and 1 clean fold for testing
along with infected samples. We used the same number
of clean and infected samples in the testing fold. The
mean of the resulting five TPRs and FPRs is then used in
computing the ROC and its AUC. We stress that labeled
measurements were collected strictly for testing; Eigen-
ROP uses only the clean measurements for training.

7.3 Detection Accuracy

7.3.1 Hteditor OSVDB-ID:87289 and PHP OSVDB-
ID:72644

EigenROP successfully detected the hteditor ROP ex-
ploit with sampling intervals up to 16k instructions re-
tired and detected the PHP ROP with sampling intervals
up to 32k. In both cases, EigenROP resulted in zero false
positives. We emphasize that the focus here is on the de-
tection of the ROP stage of the exploits, i.e., the execution
of a gadget chain, rather than the execution of a shell
code or a different process (both were shown to be easily
detectable [41, 30]). Despite the very small ROP length
(only ∼60 instructions in the case of hteditor) when
compared to the sampling window size, EigenROP still
detected the deviation in the programs characteristics.

7.3.2 Overall Detection Accuracy

Fig. 4 shows the overall ROC of all experiments, for
a sampling interval of 16k instructions. EigenROP
achieved an overall accuracy (AUC) of 81%. The best
point of performance had 80% TPR and 0.8% FPR. Note
that EigenROP focuses on the detection of ROP. This is
different from relevant prior work [41, 30], where it was
assumed that the attacks undergo multiple stages such
that only the first stage is a ROP chain, while the rest are
normally injected code or a different process. Since the
ROP chain length is usually in the order of a few hun-
dred instructions, it is significantly more challenging for
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Figure 4: Overall ROC of EigenROP. The sampling inter-
val was set to 16k instructions. The AUC is 0.81.

it to be detected. While the authors in [41, 30] detected
the non-ROP stages of the attack with high accuracy, and
as they noted, their proposed models performed poorly
in the detection of the ROP chains alone (AUC ranged
from 49% to 68%). In contrast, EigenROP focuses on the
detection of the execution of the ROP gadget chain itself.

7.3.3 Sampling Granularity

The breakdown of the detection accuracy for different
sampling intervals is shown in Fig. 5. As expected, the
accuracy drops for very large sampling intervals, given
the small number of instructions of the attacks. Out of
all the programs, wget had the worst detection accuracy
due to excessive use of signals, which exhibits poor local-
ity and reuse (see Section 8 for discussion). The density
estimate of wget was very heavy-tailed, which resulted
in low discrimination between clean runs and attacks.
On the other hand, openssl had the highest detection
accuracy, as its characteristics had higher concentration
around the mean direction. The bulk of the distribution
of the AUC curves neared the best accuracy curve (the
AUC was skewed towards the worst accuracy curve),
indicating that the behavior of wget was possibly an
outlier.

7.3.4 Microarchitecture-independent vs. Other Char-
acteristics

Fig. 6 shows the difference in accuracy with and with-
out the microarchitecture-independent characteristics.
By including microarchitecture-independent characteris-
tics, an increase of 9% to 15% in accuracy was achieved.
This indicates that microarchitecture-independent char-
acteristics contribute significantly to the detection per-
formance of EigenROP.
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Figure 5: AUC for different sampling intervals. The
higher the AUC curve, the better the detection accuracy.
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Figure 6: AUC for different sampling intervals, with and
without the microarchitecture-independent characteris-
tics.

7.3.5 Sliding Window Size

Fig. 7 shows the effect of changing the sliding window
size m on the detection accuracy. Note that the window
size controls the amount of temporal information avail-
able to the model. We observe that the effect of the win-
dow size on accuracy goes through three stages. First,
too small window sizes hurt the detection accuracy, since
small windows give higher variances in principal direc-
tions, resulting in higher FPR. Second, as the window
size increases, the detection accuracy improves since the
directions become more stable around µµµ. Finally, the
accuracy deteriorates for too large window sizes since
the influence of clean measurements on the principal
directions dominates that of the ROP payload, resulting
in lower TPR.

7.4 Overhead-Accuracy Tradeoff

We quantified the overhead of EigenROP for different
sampling intervals by measuring the overall percent-
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Figure 7: AUC for different sliding window sizes. Both
too small and too large windows result in lower detec-
tion accuracy.

age slowdown in execution of UnixBench [7]. Fig. 8
shows the overhead and accuracy tradeoff. The over-
head incurred by EigenROP exponentially decreases as
the sampling interval increases. We also observe that
the reduction in overhead outpaces the decay in accuracy.
The overhead incurred by MICA is approximately con-
stant as MICA analyzes the individual instructions of
target programs, and the total number of instructions
of each execution is invariant of the sampling interval.
Overall, the incurred runtime overhead is comparable
to similar dynamic instrumentation and HPC-based de-
fenses [15, 34, 41]. Note that we did not perform any
optimization attempts to reduce the overhead of Eigen-
ROP or MICA. Our work is orthogonal to how the pro-
gram characteristics are collected. While we used MICA
and Pin in our prototype implementation of EigenROP,
they may not be the best tools for full build-out and full
production. Finally, we emphasize that the memory and
space overhead incurred by EigenROP are bounded and
negligible (see Sections 5.2 and 6).

8 Discussion and Improvements

8.1 False Positives and Negatives

The detection approach of EigenROP (and relevant HPC-
based solutions [30, 16, 41]) is based on the hypothesis
that programs exhibit characteristics that are relatively
concentrated around some statistic – in our case, the
mean direction. However, if a program exhibits behavior
that has a large spread, it becomes harder to separate
anomalies from benign executions, resulting in a higher
false positive rate (or a lower true positive rate).

From our experience with EigenROP, we observed
that programs that use far jumps (e.g., setjmp/longjmp,
signal) or extensively multiplex between data sources
(e.g., using select for socket multiplexing) are more
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Figure 8: Overhead-accuracy tradeoff. The runtime over-
head of MICA is measured relative to the overhead of
Pin.

likely to suffer from false positives. The reason is that
such programming constructs access far code and data,
which inherently exhibits poor branch predictability,
memory locality, and reuse. A possible workaround is to
identify the entry and exit points of such code sites and
build a separate model for the characteristics exhibited
by those code sites. ROP chains missed by EigenROP
were very short chains (<40 instructions) with small gad-
gets (2-4 instructions per gadget). This is mainly due to
the relatively large sampling interval compared to the
chain size. To handle such very short chains, EigenROP
can be complemented by low-overhead solutions that
target short gadgets and chains (e.g., kBouncer [33] and
ROPecker [13]).

8.2 ROP Variants

In our evaluation of EigenROP, we used conventional
ROP payloads that use return instructions to chain the
gadgets. However, several variants of ROP were dis-
covered by researchers. For example, in [11], Jump-
Oriented Programming (JOP) was introduced where in-
direct jumps are employed to chain the gadgets rather
than using return instructions. In [37], COOP was intro-
duced where a loop in the program code that invokes
attacker-controlled virtual function calls in C++ binaries
is used to dispatch and chain the gadgets.

The goal is to simulate ret using a sequence of instruc-
tions that pops an address from the stack then jumps to
that address using an indirect jump instruction, i.e., a
pop-jump gadget. To use the pop-jump gadget, other
gadgets have to end in an indirect jmp that transfers con-
trol to the pop-jump gadget, e.g., [add; mov; ...; jmp

eax; pop ebx; jmp ebx;] where [jmp eax;] jumps to
the pop-jump gadget, and [pop ebx; jmp ebx;] exe-
cutes the pop-jump gadget and transfers control to the
next gadget. In EigenROP, we picked the characteristics
that cover the behavior of all ROP variants (branches,
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calls and returns, memory locality and reuse, stack usage,
and nop sleds) regardless of how the gadgets are chained.
Also, it is easy and straightforward to include other rel-
evant characteristics if need be, such as the number of
indirect jump instructions retired. Overall, EigenROP
has the advantage that the detection is robust against at-
tack variations, since it captures the execution behavior
of benign runs, and does not put strong assumptions on
how the gadgets are chained at the ISA level.

8.3 Evasion and Mimicry Attacks

Three recent attack gadgets were presented [12] that
bypass ROP defenses through evasion and mimicry: call-
preceded gadgets, evasion gadgets, and history-flushing
gadgets.

Call-preceded gadgets are constructed from sequences
of instructions that are preceded by a call instruction in
the program memory. Such gadgets violate the assump-
tion made by the majority of defenses [33, 13, 15, 23]
that a sequence ending in ret must be legitimate, if it
was preceded by any call. Since EigenROP does not
depend on branch tracing, it is not vulnerable to attacks
based on call-preceded gadgets. Moreover, the return
address will be mispredicted, regardless of the gadget
type, unless the call-ret are strictly paired. Since Eigen-
ROP takes the misprediction rate of returns into account
(see Section 4), call-preceded gadgets will result in abnor-
mal mispredictions, potentially increasing the detection
accuracy.

Evasion gadgets were introduced for evading ROP
detectors that use heuristics based on the length of the
gadget chain (e.g., [33, 13]). Such detectors detect ROP
by identifying gadget chains within some window of the
execution trace. The heuristics are based on the length
of the gadgets within the chain, with the presumption
that short gadgets are likely part of an executing ROP.
Evasion gadgets violate that assumption by using long
enough gadgets to violate such constraints. Since Eigen-
ROP does not depend on the gadget chain length, rather
on the characteristics of the gadgets, it is not vulnerable
to attacks based on evasion gadgets.

History-flushing gadgets target defenses that only
keep a limited history about execution (typically de-
pendent on the available hardware buffer size where
the history is recorded). History is flushed by utiliz-
ing innocuous gadgets to fill up the history. For exam-
ple, kBouncer [33] uses the Last Branch Record (LBR), a
hardware feature that records the most recent 16 taken
branches by the processor. While kBouncer is very ef-
ficient against short ROP chains, it can be evaded by a
ROP chain that executes any 16 valid indirect jumps to
fill the LBR with legitimate branches completely[12].

In our context, flushing the history means manipulat-
ing all affected characteristics by the ROP, such that they
appear normal. The attacker would need to chain gad-
gets that exhibit similar characteristics to benign code,

in addition to achieving the attack goal. While this is
theoretically possible, we argue that it is hard to realize
such attacks in practice. First, chaining more gadgets
would require larger attacker-controlled memory space.
Second, if the attacker includes benign code in the ROP
to mimic normal behavior, the benign code would be
required to either have no effect on the actual ROP ex-
ecution or be undone by chaining, even more, gadgets.
Third, and As noted in [12, 34], history flushing comes at
the expense of significant slowdown (reported 20-times
slowdown) in the execution of the ROP payload.

Randomization has been proposed as a defense
against evasion and mimicry attacks in anomaly-based
intrusion detection systems [44, 43], and more re-
cently [39] where it was shown that mimicry attacks
could be efficiently detected by judging the quality of
detection using an ensemble of classifiers. In the con-
text of EigenROP, a potential defense strategy is to ran-
domize the set of characteristics measured by EigenROP
and build multiple detectors using different subsets of
characteristics. The detectors can be constructed using
different models, where a subset of the models is chosen
at runtime at random. Additionally, we can randomly
choose between the models at different points in the
program. For example, using 15 characteristics and 5
models where each model randomly uses 5 characteris-
tics, there will be 5 · (15

5 ) = 15015 possible configurations.
Since the attacker does not have direct control over the
program characteristics, she would need to craft ROP
payloads that bypass all possible configurations of detec-
tors and characteristics, significantly increasing the cost
to attack.

8.4 Overhead Reduction

The current downside of using michroarchitecture-inde-
pendent characteristics is the need for dynamic instru-
mentation to compute the characteristics. As shown in
Section 7.4, this may incur a non-negligible overhead
penalty. However, this is an active research area, and
more efficient program characterization algorithms and
tools are being developed [8]. The need for dynamic
instrumentation can be eliminated if the hardware or
the kernel provide support by computing the required
characteristics. Rather than instrumenting the process
in user space, the characteristics can be computed (by
the kernel or the hardware) and written to a memory-
mapped ring buffer that is readable in user space. In
case the buffer is not consumed quickly enough, an inter-
rupt can be triggered to pause the monitored process. A
similar approach is adopted by the Linux performance
counter subsystem [3], which already provides support
for a wide range of architectural and microarchitectural
characteristics.
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8.5 Input Coverage

In the learning phase of EigenROP, the target program is
executed over benign inputs. Sufficient input coverage
could arguably be a challenging task for the deployment
of EigenROP. In our evaluation, we used the positive
functionality tests that shipped with the programs to
train EigenROP, which are integral to the software de-
velopment lifecycle. In addition to functionality tests,
EigenROP models can be constructed from successful
dry runs during internal acceptance and pre-release test-
ing. Additionally, EigenROP can even be trained by end
users. To avoid learning bad behavior, the learned mod-
els can be aggregated from clusters of users and aver-
aged (by computing the mean directions and densities),
then filtered (cleaned) from outliers. Further, EigenROP
can continue learning even after deployment by iter-
atively updating the learned directions and densities.
This can be a privilege that is tied to the user group, for
instance, update the models only from processes owned
by admin users. The effectiveness of training by end
users is currently in our future work.

9 Related Work

While the literature on ROP is vast, due to space con-
straints we briefly only mention solutions that used hard-
ware or software characteristics, as well as anomaly-
based solutions.

9.1 Binary Rewriting and Instrumentation

Some solutions were presented that used binary rewrit-
ing and dynamic instrumentation to detect ROP attacks.
ROPDefender [15] enforces call-ret pairing by maintain-
ing a shadow stack of call and ret targets. When a
ret instruction is executed, ROPDefender compares the
shadow stack to the actual system stack. If the two stacks
do not match, then a ROP is detected. ROPStop [23] uses
static binary rewriting to insert instrumentations that
check two main constraints on the program counter and
the call stack: 1) the program counter must point to a
valid intended instruction, and 2) the call stack height
is valid. The 2nd constraint is checked by analyzing
the CFG and computing the set of all possible call stack
heights from function entry points to branching points.
If any of the constraints is not satisfied, a ROP is de-
tected.

Similarly, ROPGuard [18] checks a set of constraints
over the call stack, call and ret instructions at entry
points to system calls, e.g., ret instructions must be pre-
ceded by call instructions, the call instruction must
lead back to current entry point, etc. While such solu-
tions are easy to deploy and require no system modifi-
cations, they are limited by some factors: 1) using CFGs
is constrained by the speed and accuracy of binary dis-
assembly and CFG construction. 2) Binary rewriting

breaks self-checksumming and signed code. 3) Frame
pointers that are required to traverse the stack are usually
omitted by compilers during optimization. And, 4) call-
ret pairing restricts valid, commonly used, call-without-
return assembly constructs, e.g., using [setjmp; ...;

longjmp;] for exception handling, and [call; pop;]

for retrieving the program counter.

9.2 Hardware Branch Tracing

Recently, ROP defenses that leverage existing hardware
branch tracing features were introduced. kBouncer [33]
uses the Last Branch Record (LBR) on modern Intel pro-
cessors to check for sequences of consecutive call-ret

instructions. The LBR stores the most recent 4-16 indirect
branches executed by the processor. kBouncer checks,
at the entry of every system call, if 1) call instructions
preceded ret targets, and 2) there is no call-ret se-
quence of length greater than 8. ROPecker [13] extends
kBouncer by also checking at arbitrary points during the
program execution, and counting the number of possi-
ble gadget-like sequences ahead of the program counter.
Similarly, Eunomia [46] utilizes the Branch Trace Store
(BTS) to check for unpaired call-ret sequences. Unfor-
tunately, while these approaches incur very low over-
head, attackers have bypassed them by violating the
length based heuristics [14, 12, 19]. Nevertheless, they
provide a solid defense against very short ROP chains
(due to the limited hardware buffer sizes) and are com-
plementary to this work.

9.3 Anomaly-based Solutions

In [26], Krugel et al. introduced an application specific
approach that uses network traffic to detect malicious
activities. Mazeroff et al. [31] described methods for
inferring and using probabilistic models for detecting
anomalous sequences of API calls. In [24], Jyostna et al.
proposed a system for detecting anomalous program be-
havior by clustering critical system calls. While network
traffic and system call defenses are simple and easy to
deploy, they are susceptible to mimicry attacks [25].

One of the first works on using hardware architectural
characteristics of programs was the work of Malone et
al. [30]. They showed that hardware performance coun-
ters (HPC) could be utilized to detect unauthorized soft-
ware changes. The authors recorded HPC measurements
of the original programs and used linear regression to
detect if the program was modified at runtime. Demme
et al. [16] ported the idea to Android, and proposed hard-
ware modifications to detect malware using HPC mea-
surements from good and malicious samples. Stewin et
al. [40] proposed detecting DMA attacks by monitoring
the number of transactions on the memory bus.

In [41], Tang et al. combined microarchitectural charac-
teristics with architectural characteristics to detect drive-
by attacks. They assumed that attacks consist of three
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stages: ROP stage disables DEP, stage 1 downloads a
malicious program, and stage 2 executes the malicious
program. By training a one-class Support Vector Ma-
chine (oc-SVM) over the architectural and microarchitec-
tural characteristics of benign samples, they showed that
stage 1 of the attacks could be detected with high accu-
racy, while their model performed poorly on stage 2 of
the attacks. This is because the oc-SVM is very sensitive
to tuning parameters, and the chosen features did not
have sufficient discrimination power to detect the exe-
cution of ROP chains. This is different from EigenROP
since we solely focus on stage 2 of the attack. Similarly,
in [10, 34], two solutions were presented that trained a
two-class SVM using the architectural characteristics of
both clean executions and attacks.

In contrast, EigenROP does not require any analysis
of the binaries and operates using measurements only
from clean executions. It does not need source code or
debug information, and does not depend on branch trac-
ing. EigenROP introduces a new class of anomaly-based
detectors that utilize both hardware characteristics and
microarchitecture-independent characteristics of moni-
tored programs.

10 Conclusion

We presented EigenROP, a novel anomaly-based ROP
detector that utilizes program characteristics and direc-
tional statistics. To the best of our knowledge, we are
the first to study the effectiveness of using microarchitec-
ture-independent program characteristics versus typical
architectural and microarchitectural characteristics, in
the detection of ROP. We demonstrated the ability of
EigenROP to detect both in-the-wild and pure ROP ex-
ploits, despite the short payload length. EigenROP is
unsupervised, fully transparent, and does not require
any side information about the protected programs. One
limitation of using microarchitecture-independent char-
acteristics is the need for dynamic instrumentation to
collect the measurements. One potential avenue to sig-
nificantly reduce the overhead is by implementing the
run-time monitors in hardware. Also, hardware sup-
port would probably increase the detection accuracy by
enabling low-cost fine granularity monitoring. While
our work demonstrates that ROP payloads can be de-
tected using simple program characteristics, there are
still needed improvements concerning detection accu-
racy and overhead reduction. Despite that, EigenROP
raises the bar for ROP attacks, and can be easily coupled
with hardware-based defenses to detect ROP transpar-
ently without program changes [28, 22].
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