
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Design and Experimentation of an Automated Performance
Evaluation Testbed for Self-Healing and Self-Adaptive

Distributed Software Systems

Jason Porter
jporte10@gmu.edu

Daniel A. Menascé
menasce@gmu.edu

Hassan Gomaa
hgomaa@gmu.edu

Emad Albassam
ealbassa@gmu.edu

Technical Report GMU-CS-TR-2017-2

Abstract

Evaluating the performance of distributed software sys-
tems is very challenging especially in the presence of
failures and adaptation. Of particular interest to this
paper is self-healing and self-adaptation middleware
that detects failures of distributed software systems, an-
alyzes their root causes, devises plans to recover from
these failures, and executes these plans. Recovery plans
may trigger software architecture adaptations, which
may be also initiated by the need to maintain perfor-
mance and availability goals. This paper focuses on the
evaluation and testing of recovery and adaptation frame-
works (RAF) for distributed component-based software
systems. We present TESS, a testbed for automatically
generating distributed software architectures and their
corresponding runtime applications, deploying them to
the nodes of a cluster, running many different types of
experiments involving failures and adaptation, and col-
lecting in a database the values of a variety of failure
recovery and adaptation metrics. Queries can then be
run against the database to provide a thorough and sci-
entific analysis of the efficiency and/or effectiveness of
a RAF. Additionally, this paper presents a case study
of the use of TESS for the evaluation of a specific RAF,
called DARE, developed by our group.

1 Introduction

Evaluating the performance of distributed software sys-
tems is very challenging especially in the presence of
failures and adaptation. This challenge is exarcerbated
by the lack of global state knowledge, by the possibility
of multiple concurrent failures of networks and nodes,
and by delays in message transmission. Of particular
interest to this paper is the performance evalutation of

self-healing and self-adaptation frameworks that detect
failures of distributed software systems, analyze their
root causes, devise plans to recover from these failures,
and execute these plans, according to the well-known
MAPE-K (Monitor, Analyze, Plan, and Execute based
on Knowledge) model for autonomic computing [1]. In
the context of software systems, self-healing is the ca-
pability of a software system to automatically detect
failures and then recover to a consistent state so that
it can resume normal execution. Self-adaptation is the
capability of the software system to automatically adapt
its architecture by adding, removing, or replacing com-
ponents seamlessly at run-time in response to changes
in operational environment or user requirements (see
e.g. [2]). This paper deals with the complex problem
of performance testing and measurement of distributed
middleware frameworks that support failure recovery
and adaptation of distributed software systems.

The work reported here was developed in the context
of the Resilient Autonomic Software Systems (RASS)
project 1 aimed at designing, developing, and eval-
uating a framework to support highly decentralized
component-based software systems. As part of the
work on the RASS project, our team developed DARE
(Distributed Adaptation and REcovery middleware), an
architecture-based, decentralized middleware that pro-
vides both self-configuration and self-healing properties
to large and highly dynamic component-based software
architectures [3]. We previously described the operation
of DARE using an emergency response system appli-
cation as an example. In the process of our validation,
we felt the need for a testbed that would automatically
generate distributed architectures and applications, de-
ploy them in the nodes of a cluster, run many different
types of experiments, and collect in a database the val-
ues of a variety of metrics. A distributed application

1www.cs.gmu.edu/˜menasce/rass/

1

consists of a distributed software architecture, consisting
of components and connectors, and its implementation.
Subsequently, queries can be run against the database so
that a thorough and scientific analysis of the efficiency
and/or effectiveness of a recovery and adaptation frame-
work, such as DARE, can be carried out.

We designed and implemented such a testbed, called
TESS, a Testbed for Evaluation of Self-Healing and Self-
Adaptive Distributed Software Systems. TESS was de-
signed and developed so that it can be used by other re-
covery and adaptation frameworks (RAF) besides DARE.
TESS interacts with a RAF through two event logs gen-
erated by a RAF and processed by TESS. One of the
logs captures the value of core metrics on recovery and
adaptation events that are common to any RAF and the
second log captures the values of metrics that are spe-
cific to the operation of a given RAF. We decided to use
logs as opposed to an API as a communication mecha-
nism between a RAF and TESS to decouple as much as
possible these two layers.

The specific and unique contributions of this paper
are: (1) a detailed design and implementation of TESS,
(2) a definition of metrics to evaluate recovery and adap-
tation frameworks for distributed software systems, and
(3) a description and discussion of the results of using
TESS for the evaluation of DARE. It should be noted that
while we use DARE as an example of a recovery and
adaptation framework for our experimentation, TESS
can be used by other RAFs as long as they generate the
logs in the format expected by TESS.

This paper is organized as follows. Section 2 discusses
the main functionalities assumed for recovery and adap-
tation frameworks and how a RAF interacts with TESS.
Section 3 provides an overview of the three phases of
TESS: architecture generation; application generation;
and application execution and data collection. Sections 4
through 6 describe in detail each of these three phases.
Section 7 describes our implementation of TESS in a
computer cluster. Section 8 describes the DARE frame-
work and Section 9 describes the experimental procedure
used to evaluate DARE using TESS. The results of these
experiments are described in section 10. Section 11 dis-
cusses related work and Section 12 provides concluding
remarks.

2 Recovery and Adaptation Frame-
work (RAF)

TESS is designed to work with recovery and adaptation
frameworks (RAF) that provide the services described in
this section and interface with TESS through two metric
logs (see Fig. 1). The first log, called Core Events Log,
stores data on (1) component and node failure events
and (2) recovery and adaptations events. TESS reads
these event data from this log in order to analyze and
generate reports as described in Section 3.

The second log, called RAF-specific Events Log,
records information about events specific to the RAF.
Some examples of RAF-specific metrics may include the
number of messages sent and received by the RAF to
achieve its functionality as well as the time taken to per-
form specific tasks related to failure recovery and adap-
tation. To enable TESS to have access to the RAF-specific
log, a RAF uses a file to be read by TESS to register the
set of RAF-specific events and the format of this log.
TESS processes and enters the information contained in
the two logs into its Metrics DB, which is later used by
TESS to provide detailed analysis of the experiments.

Entries in both logs have the same common prefix:
timestamp, event type, event parameters. The core event
types can be one of {component failure (CF), node failure
(NF), component recovery (CR), node recovery (NR),
adaptation start (AS), adaptation completion (AC)} and
they have parameters associated with them that depend
on the event type as illustrated in Table 1. For example, a
component failure event has as parameters the id of the
component that failed and the id of the node in which
the component was running. Note that it is possible
for a component to fail without the node on which it
is running to fail. A node failure event generates one
component failure event for each component running
on the failed node in addition to the node failure event.
All CF events generated by a NF event have the same
timestamp. A component recovery event is generated by
a RAF when a component is recovered and instantiated
in the same node, if the node did not fail, or in another
node, in case the node failed. The node id parameter for
the component recovery event indicates the node where
the failed component was re-instantiated after recovery.
The adaptation start event requires the RAF to generate
a unique number to be used as an adaptation id as well
as the adaptation goal, which consists of a set of one or
more components and their interconnections that need
to be replaced by a set of one or more interconnected
components. Finally, the adaptation end event indicates

TESS	

Recovery	and		
Adapta2on		

Framework	(RAF)	Core	Events	
Log	

RAF-specific	
Events	Log	

Metrics	
DB	

Architecture	
DB	

Figure 1: Architecture of a RAF and its Interaction with
TESS

2

when a previously started adaptation ended.
All the events recorded by a RAF in the two logs are

timestamped so that they can be properly merged by
TESS and stored into its Metrics DB. As indicated in
Fig. 1, TESS also keeps an Architecture DB that stores all
the architectures to be used during an experiment.

Table 2 provides an example of a few entries for the
Core Events Log. The example shows that component
C1 running at node N2 failed at time 101 and it was
recovered at the same node at time 120. Then, node N4
failed at time 130 and components C2 and C3 that were
running at that node also failed. Component C2 was
recovered at time 135 at node N5 and component C3
was recovered at node N6 at time 137. The example also
shows that node N4 recovered at time 152.

Table 1: Example of parameters for core recovery and
adaptation events.

Event type Parameters
Component Failure (CF) ComponentId,

NodeId
Node Failure (NF) Node Id
Component Recovery (CR) ComponentId,

NodeId
Node Recovery (NR) Node Id
Adaptation Start (AS) AdaptationId,

AdaptationGoal
Adaptation End (AE) AdaptationId

Table 2: Exampe of a Core Events Log.
timestamp Event type Event Parameters

101 CF C1 N2
120 CR C1 N2
...

130 NF N4
130 CF C2 N4
130 CF C3 N4
...

135 CR C2 N5
137 CR C3 N6
...

152 NR N4

A RAF is assumed to exhibit the following functional-
ities:

• Recovery from component failures: creates a new in-
stance of a failed component and logs event data on
component failure detection and recovery events in
the Core Metrics Log.

• Recovery from node failures: creates a new instance
of each component that was executing on the failed
node on a new node and logs event data on node

failure detection and corresponding recovery events
in the Core Events Log.

• Adaptation: adapts the software architecture by re-
placing one or more interconnected components
with one or more interconnected components.
Adaptation typically includes quiescing compo-
nents to be disconnected from the application, re-
moving these components, adding new compo-
nents, and then interconnecting these components
with the application.

To start a set of experiments a user must launch the
Start script that interacts with the user to request (1) an
id for the RAF (2) the name of a configuration file used
by TESS to drive the process of generating architectures
and conducting experiments (see Section 3), (3) the name
of the file that contains the Core Metrics Log, and (4) the
name of the file that contains the RAF-specific Metrics
Log. Upon receiving these parameters, TESS starts the
experiments.

3 Architecture of TESS

Figure 2 depicts the architecture of the TESS testbed,
which consists of three stages: architecture generation,
application generation, and application execution and
data collection. During the first stage, TESS automati-
cally generates a user-specified number of software ar-
chitectures, which are stored in a database (step 1). Users
can also add software architectures to the architecture
database through a user interface. Each architecture
consists of a number of components and connectors
among the components. Each generated architecture
specifies a set of static attributes for the components.
These attributes are used at run-time to determine the
behavior of components as explained later. For example,
these attributes determine if a component is enabled to
send and/or receive messages and of which type (syn-
chronous or asynchronous). These attributes also specify
the probability that the component sends a message of a
given type at set points during its execution as well as
the probability that a component fails at run-time.

The application generation step (step 2) uses a univer-
sal component template, discussed later in detail, and the
static attributes of the components generated in step 1
to generate the application to be tested. The component
template provides a probabilistic profile for the run-time
behavior of components.

The generated application is then deployed accord-
ing to a deployment configuration map that indicates
how software components are mapped to nodes of a
distributed system (see step 3).

The third stage of TESS monitors the execution of the
distributed application (step 4), collects the values for
a variety of metrics related to failures and their recov-
ery, as well as adaptation, and stores these values in a

3

Configuration
File

Architecture
Generation

Architecture
Database

Component
Template

Deployment

Deployment
Configuration

Execute
Application

Data
Collection Metrics Analysis

Architecture
Generation

Application
Generation

Application
Execution and

Data Collection

User Interface

Application

Report

1

2

3

4 5 6

Application
Generation

stop

Yes

No

Figure 2: TESS Design

relational database (step 5). This database is analyzed
during this stage and produces results based on all ap-
plications executed during the experiment but also for
specific clusters of architectures based on their complex-
ity (step 6). However, because, as it is usually the case,
a user may request that more than one architecture be
generated. So, after metrics are collected in step 5 for one
of the architectures, TESS checks if other applications
need to be generated. In the affirmative case, TESS goes
back to step 2. After all experiments are run for the gen-
erated architectures, TESS proceeds to step 6 to perform
a complete statistical analysis of the results.

TESS was designed to run on a cluster of distributed
nodes and uses a MySQL database for storing architec-
tural information and experimental results. Additionally,
TESS was designed to be a general purpose environment
for the thorough evaluation and testing of self-healing
and self-adaptive distributed applications. Details of
each stage of TESS are discussed in the next three sec-
tions.

4 Architecture Generation

The architecture generation stage of TESS involves the
dynamic generation of random architectures represented
as labeled directed graphs. Nodes are associated with
component types; edges correspond to connectors and
indicate the types of communication between compo-
nents. We consider the following types of communica-
tion patterns between components: (1) A sends a syn-
chronous (SY) message to B; this implies that A blocks
while waiting for a reply from B. (2) A sends an asyn-

chronous (AS) message to component B; component A
can continue processing after sending the message and
no reply is expected. We call it a unicast asynchronous
message. (3) A sends an asynchronous (AS) message to
multiple destinations (MD); component A can continue
processing after sending these messages and no reply is
expected from any of the recipients. We call this a mul-
ticast asynchronous message. Thus, the three possible
labels for an edge are: (SY, SD), (AS, SD), and (AS, MD).

During initialization, TESS reads from a configuration
file several user-specified parameters such as the num-
ber of architectures to be generated, the minimum and
maximum number of components in the architectures, as
well as other parameters necessary for the experimental
process as discussed later.

The generation of architecture random graphs uses an
adjacency matrix A whose cell A[i, j] has a null value
if components i and j do not communicate and has a
communication pattern label L if i and j communicate.
The possible values for the label L are: (AS,SD) for asyn-
chronous single destination messages, (AS,MD) for asyn-
chronous multi-destination messages and (SY,SD) for
synchronous single destination messages. For further
details on representing architectures as labeled directed
graphs see [4]. For the graph to be connected we ensure
that N − 1 ≤ E ≤ N(N − 1) where N is the number of
nodes and E the number of edges of the graph.

Although the architecture generation process has sig-
nificant randomness, there are constraints that are en-
forced to avoid generating architectures that are non-
sensical. Examples of such constraints include: (1) each
component must communicate with at least one other
component, (2) there must be some servers present in

4

the architecture, (3) multicast messages can only be sent
as asynchronous and (4) a component can only send a
multicast message after it receives a message.

5 Application Generation

The application generation phase of TESS uses a uni-
versal component template, shown in Algorithms 1
through 3 and described in what follows, to drive the be-
havior of the components of the architecture. The static
attributes of the components for a given architecture are
obtained from the Architecture DB (see previous sec-
tion). Because many of these attributes are probabilities,
components exhibit different behaviors at run time ac-
cording to the random numbers generated as explained
below. We now describe Algorithm 1 from the point
of view of a component S that receives a message m
from component C. Depending on the component type
attribute obtained from the Architecture DB for compo-
nent S, that component may be classified as a sender
(lines 3-6), receiver (lines 7-17), sender-receiver (lines
18-30), or receiver-sender (lines 31-43).

If a component is a sender, it potentially sends an asyn-
chronous message and potentially sends a synchronous
message (lines 4-5). We say “potentially sends a mes-
sage” because algorithms 2 and 3, to be explained below,
only send messages based on a randomly selected value
that is compared with a static probability of that compo-
nent sending asynchronous or synchronous messages. It
should also be understood that sending a synchronous
message is a blocking primitive.

If component S is a receiver, it receives message m
(line 8) and may fail with a probability determined by a
static attribute of the component as determined in the
Architecture DB (see lines 9-12). If the component does
not fail, it waits for a random amount of time to simulate
the time taken by the component to process the message
and act on it (line 26). If message m is synchronous,
component S replies to component C (lines 27-29).

If component S is a sender-receiver, it potentially
sends an asynchronous message and potentially sends a
synchronous message (lines 19-20), receives a message
m and, as explained above, may or may not fail, pro-
cesses the received message and replies to it if it is a
synchronous message (lines 21-29).

Finally, if S is a receiver-sender, it receives a message
and, as above, may or may not fail (lines 32-36), pro-
cesses the received message (line 37), potentially sends
an asynchronous message and potentially sends a syn-
chronous message (lines 38-39), and replies to message
m if it is a synchronous message (lines 40-42).

Algorithm 2 shows the algorithm used for potentially
sending an asynchronous message. This algorithm is
used in lines 4, 19, and 38 of Algorithm 1. A uniformly
distributed random number p between 0 and 1 is gener-
ated (line 1). If this number is less than or equal to the

Algorithm 1: Universal Template
Input : Component attributes from the

Architecture Database
1 while application running do
2 switch Component.type do
3 case Sender do
4 SendAsyncMessage
5 SendSyncMessage
6 end
7 case Receiver do

/* a message is received */

8 Receive message m from component C
/* should component fail? */

9 p← rand(0..1)
10 if p ≤ Component.FailureProbability then
11 the component fails
12 end

/* msg. processing time */

13 wait (AvgMsgProcTime)
14 if m.type = SYN then
15 Send Reply Message to C
16 end
17 end
18 case Sender-Receiver do
19 SendAsyncMessage
20 SendSyncMessage
21 Receive message m from component C

/* should component fail? */

22 p← rand(0..1)
23 if p ≤ Component.FailureProbability then
24 the component fails
25 end

/* msg. processing time */

26 wait (AvgMsgProcTime)
27 if m.type = SYN then
28 Send Reply Message to C
29 end
30 end
31 case Receiver-Sender do
32 Receive message m from component C

/* should component fail? */

33 p← rand(0..1)
34 if p ≤ Component.FailureProbability then
35 the component fails
36 end

/* msg. processing time */

37 wait (AvgMsgProcTime)
38 SendAsyncMessage
39 SendSyncMessage
40 if m.type = SYN then
41 Send Reply Message to C
42 end
43 end
44 end
45 end

5

probability that the component sends an asynchronous
message (line 2), then the component will either send a
unicast message (lines 5-6) or a multicast message (lines
8-9). When sending a unicast asynchronous message, a
random destination component D consistent with the
generated architecture is selected and the message is
sent. In the case of multicast messages, the message is
sent to the multicast group prescribed by the architecure.

Algorithm 2: SendAsyncMessage
Input :Component attributes from the

Architecture Database
1 p← rand(0..1)
2 if p ≤ Component.ProbSendAsync then
3 p← rand(0..1)
4 if p ≤ Component.ProbSendUnicast then
5 Select random destination D consistent with

the architecture
6 Send asynchronous message to D
7 else
8 Send messages to all components in the

multicast group specified in the architecture
9 end

10 end

Algorithm 3, used in lines 5, 20, and 39 of Algorithm 1,
describes how synchronous messages are potentially
generated. A uniformly distributed random number p
between 0 and 1 is generated (line 1). If this number is
less than or equal to the probability that the component
sends a synchronous message (line 2), a random des-
tination component D consistent with the architecture
is selected and a synchronous message is sent to that
destination (lines 3-4).

Algorithm 3: SendSyncMessage
Input :Component attributes from the

Architecture Database
1 p← rand(0..1)
2 if p ≤ Component.ProbSendSync then
3 Select random destination component D

consistent with the architecture
4 Send synchronous message to D
5 end

As described above, different components behave
differently from each other because they have differ-
ent static attributes (e.g., Component.type, Compo-
nent.ProbSendAsyn, and
Component.ProbSendSync) generated during the archi-
tecture generation phase and because of the random
values of the probabilities generated at run-time.

6 Application Execution and Data
Collection

The various components of the application are deployed
in the various nodes of a distributed system (a computer
cluster in our experiments). Once the application starts
to execute, the RAF records core events and RAF-specific
events in the logs described above. These logs are then
merged at the end of each experiment into a single log at
a master node that controls the experiments and stores
it into the databases used by TESS. From this merged
log, metrics are gathered and stored in the Metrics DB
for later analysis.

As mentioned previously, metrics are classified into
core metrics and RAF-specific metrics. The core metrics
gathered during experimentation include:

• Component Recovery Time: time elapsed from
when a component failure was detected to when
the failed components were recovered.

• Node Recovery Time: time elapsed from when a
node failure was detected to when the failed compo-
nents located at that node were recovered to a new
node.

• Adaptation Time: time elapsed from the initiation
to the completion of an adaptation procedure.

These metrics allow for an effective evaluation of the
performance of the self-healing and self-adaptation pro-
cess of any RAF.

Figure 3 depicts the UML class diagram that models
the Architecture, Component and Metrics classes, which
are mapped to the TESS database(s). The attributes of
the Architecture class describe the main elements of a
software architecture, which is captured as a directed
graph. The Architecture class has 1-to-many associa-
tions with the Component and Experiment classes. A
given architecture consists of one or more instances of
the Component class, the attributes of which describe the
characteristics of a given component. Since a given archi-
tecture can be mapped to one or more experiments, each
instance of the Experiment class describes the results
of running an experiment for the specific architecture
with which it is associated. The Experiment class has a
subclass called RAF-specific Experiment that describes
experimental results associated with user defined RAF-
specific metrics

6.1 The Architecture DB

The Architecture DB consists of two tables: Architecture
(contains information for the generated architectures)
and Components (contains information for the individual
components of each architecture). which are described
below.

The Architecture table has the following columns:

6

Figure 3: UML Class Diagram for TESS databases

• ArchitectureId: unique id for the architecture (pri-
mary key).

• NumComponents: number of components of the ar-
chitecture.

• NumEdges: number of edges (connections) of the
architecture.

• NumSyncMessages: total number of synchronous
message interfaces for this architecture.

• NumAsyncMessages: total number of asynchronous
message interfaces for this architecture.

• NumUnicastMessages: total number of unicast mes-
sages interfaces for this architecture.

• NumMulticastMessages: total number of multicast
message interfaces for this architecture.

• ArchComplexity: architecture complexity computed
as:

Complexity = # components + # edges +
edges/# components +
synchronous messages/# edges +
multicast messages/# edges.

This complexity metric is inspired by the cyclomatic
complexity for computer programs [5] and was
adapted by us to software architectures. Here we
consider component-type as opposed to component-
instance architectures. Other complexity metrics
can be used. We used this metric in our experiments
to cluster architectures into simple, moderate, and
complex, using K-means clustering with K = 3.

• ClusterId: id of the cluster in which this architecture
belongs.

The columns of the Component table are:

• ComponentId: unique id of a component (primary
key).

• Type: identifies the type of component (for e.g.
sender, receiver, sender-receiver, receiver-sender).

• ArchitectureId: unique id for the architecture (foreign
key).

• FailureProbability: probability that a component fails
after receiving a message.

• AvgMessageProcessingTime: average time elapsed af-
ter a component receives a message and the compo-
nent sends a message in reply.

• ProbSendSyncMessage: probability that a message
sent by a component is synchronous. This is used to
determine the frequency with which a component
sends a synchronous vs asynchronous message.

• ProbSendAsyncMessage: probability that a message
sent by a component is asynchronous. This is used
to determine the frequency with which a component
sends an asynchronous vs synchronous message.

• SendSync: Boolean expression identifying whether
a component sends synchronous messages.

• SendAsync: Boolean expression identifying whether
a component sends asynchronous messages.

• RecSync: Boolean expression identifying whether a
component receives synchronous messages.

• ProbSendUnicastMessage: probability that a message
sent by a component is unicast. This is used to
determine the frequency with which a component
sends a unicast vs multicast message.

• ProbSendMulticastMessage: probability that a mes-
sage sent by a component is multicast. This is used
to determine the frequency with which a component
sends a multicast vs unicast message.

6.2 The Metrics DB

The Metrics DB consists of a single table, called Experi-
ment, which contains the values of the metrics gathered
from each run of an experiment. The columns of this
table are:

• ExperimentId: unique id of the experiment (primary
key).

• ArchitectureId: unique id for the architecture (foreign
key).

7

• StartTime: start time of the experiment.

• Duration: duration of the experiment.

• ComponentRecoveryTime: the component recovery
time metric.

• NodeRecoveryTime: the node recovery time metric.

• AdaptationTime: the adaptation time metric.

• NumCompFailures: number of component failures
during the experiment.

• NumNodeFailures: number of node failures during
the experiment.

• NumAdaptations: number of adaptations during the
experiment.

Whilst the Architecture table consists of a single en-
try for each generated architecture and the Components
table consists of a single entry for each component of a
particular architecture, the Experiments table consists of
multiple entries for metrics associated with a given archi-
tecture. In other words, for each architecture, multiple
experiments would be conducted and numerous values
for each type of metric would be collected and stored for
later analysis. As an architecture is associated with an
experiment by its ArchitectureId, one may then execute
queries to derive results for metrics for either a specific
architecture or for all architectures of a specific type. As
an example, say we generated n architectures of which r
were complex architectures and we wanted information
on adaptation times for all architectures of this type. If
we conducted 10 experiments on each architecture, we
would have 10 r results for complex architectures in the
Experiment table. We can then execute a query to gather
the adaptation times for all complex architectures by
joining the Experiment and Architecture tables. Further
analysis may be conducted by finding the average, coef-
ficient of variation, range and other statistical measures
on the results.

7 TESS Implementation

Figure 4 depicts the implementation of TESS in a com-
puter cluster that consists of a master node, which acts
as a gateway, and is connected via a network to the other
nodes. The master node hosts the main components of
the testbed: a MySQL database for TESS databases, the
architecture generation module, the application gener-
ation module, and the data collection module. Addi-
tionally, the master node stores the merged log used to
collate all the events from the event logs from all exper-
iments. All other nodes host the RAF, components of
the distributed application generated by the application
generation module, as well as local copies of the core
and RAF-specific events logs.

8 The DARE Middleware

DARE is based on a decentralized version of the MAPE-
K loop model. Every node in the distributed system runs
an identical instance of the DARE middleware, which is
responsible for:

• Keeping track of the current configuration map of
the software system, including the mapping of com-
ponents to nodes and maintaining the current con-
figuration map of the software system.

• Automatically discovering the current architecture
of the software system and rediscovering the archi-
tecture after dynamic adaptation. DARE relies on
gossiping and message tracing techniques for dis-
covering and disseminating the current software
architecture (consisting of components and connec-
tors) in a decentralized fashion [4].

• Monitoring and detecting node failures.

• Analyzing the cause of node failures.

• Planning for dynamically adapting the architecture
and recovery of failed nodes.

• Executing a reconfiguration template consisting of
reconfiguration commands that handle instantiating
components on healthy nodes and establishing the
connections between application components.

• Adapting and recovering components after run-
time node and/or component failures.

• Communicating with recovery and adaptation con-
nectors (RACs) that handle the recovery of failed
transactions and steer application components to a
quiescent state in order to carry out dynamic adap-
tation [6] [7].

Figure 4: TESS Deployment on a Cluster

8

9 Experimental Process

We conducted detailed experiments using DARE in or-
der to evaluate TESS. These experiments allowed us
the added benefit of not just assessing the testbed, but
also gaining valuable insight into the performance of
DARE. We implemented TESS in Java, and generated
100 random architectures and clustered them according
to complexity into three categories (complex, moderate,
and simple). The experiments were then conducted on
10, 15, and 20 nodes of a computer cluster, where for
complex architectures each node hosted approximately
three components, for moderate architectures each node
hosted approximately two components and for simple
architectures each node hosted a single component.

Two types of experiments were conducted: self-
healing and self-adaptation. The self-healing experi-
ments included both component failures and node fail-
ures. For component failures, each component randomly
fails during execution according to its failure probabil-
ity, specified in the Components table. With regards to
node failures, a random node was selected then taken
down accordingly [3]. Component recovery is done by
the RAC by instantiating the failed component at an-
other node and replaying the messages (stored in the
RACs message queues) that were in transit to/from that
component. The self-adaptation experiments involved
removing a randomly selected component and replac-
ing it with a load balancing architectural pattern. This
entailed adding a load balancing component along with
2 or more replicas of the original component. For fur-
ther details on DARE’s approach to failure recovery and
adaptation readers are directed to [3]. As mentioned
in Section 2, all relevant events from these experiments
were written to the Core Events Log for later analysis.

10 Experimental Results

The experiments reported in this section are related to
the core metrics (component recovery time, node recov-
ery time, and component adaptation time). TESS gath-
ered 30 observations of each metric for each architecture
complexity type (complex, moderate, and simple) for
three node counts (10, 15, and 20). This data was then
used by TESS to calculate the mean and 95% confidence
intervals (CI) for these metrics. Also, for each metric a
two-factor statistical ANOVA procedure was conducted
(see e.g., [8] for a description of ANOVA). Here, the fac-
tors are architecture complexity with three levels: simple,
moderate, and complex and node count with three lev-
els: 10, 15, and 20 nodes. The hypotheses for the ANOVA
experiments are:

H0: (a) the architecture complexity has no impact on
the given metric (equivalently, the metric average is the
same for all complexity levels), (b) node count has no

impact on the given metric (equivalently, the metric av-
erage is the same for all node counts), and (c) there is
no interaction between the architecture complexity and
node count.

H1: (a) the architecture complexity has an impact on
the given metric (equivalently, the metric average is not
the same for all complexity levels), (b) node count has
an impact on the given metric (equivalently, the metric
average is not the same for all node counts), and (c)
there is interaction between between the architecture
complexity and node count.

Tables 3 and 4 show statistics (average, 95% CI, and
range) for the number of components and number of
connections between components for each architecture
complexity type. The values in these tables help explain
the observed behavior when we analyze the metrics
described in what follows.

Table 3: Mean, 95% CIs and Range for No. of Compo-
nents

complexity mean 1/2 CI range
complex 26.2 ± 0.88 21-30
moderate 20.9 ± 0.69 17-25

simple 13.8 ± 0.91 10-20

Table 4: Mean, 95% CIs and Range for No. of Connec-
tions

complexity mean 1/2 CI range
complex 109.9 ± 4.1 94-151
moderate 83.5 ± 2.6 69-95

simple 50.3 ± 3.5 32-65

10.1 Core Metrics

The metrics reported here are: component recovery time,
node recovery time, and component adaptation time.

10.1.1 Component Recovery Time

The aim of this experiment was to assess the impact of
both architecture complexity and different node counts
on component recovery time within DARE. The mean
and 95% confidence intervals for component recovery
time for each architecture complexity are shown in Ta-
bles 5, 6 and 7 for 10, 15 and 20 nodes, respectively.
Table 8 shows the results of the two-factor ANOVA for
architecture complexity and node count for component
recovery time, and Fig. 5 shows component recovery
time by architecture complexity and node count. For
architecture complexity, F > Fcrit results in the rejec-
tion of the null hypothesis that architecture complexity
does not impact component recovery time. The reason
for this is that as architecture complexity increases a

9

component will communicate with a larger number of
neighboring components, resulting in a larger number
of re-connections required by DARE after recovery. For
node count, F > Fcrit results in the rejection of the null
hypothesis that node count has no impact on component
recovery time. This is due to the fact that for smaller
node counts more components would be hosted per
node for the same architectures than for a larger node
count. As a consequence, there would be more overhead
per node for smaller node counts which impacts DARE’s
component recovery mechanism. For factor interaction,
F < Fcrit results in a failure to reject the null hypothesis
that there is no interaction between the two factors.

Table 5: Mean and 95% CIs for Component Recovery
Time (10 Nodes)

complexity mean (sec) 1/2 CI (sec)
complex 31.2 ± 2.83
moderate 28.9 ± 4.30

simple 23.0 ± 2.39

Table 6: Mean and 95% CIs for Component Recovery
Time (15 Nodes)

complexity mean (sec) 1/2 CI (sec)
complex 22.0 ± 1.32
moderate 21.2 ± 1.13

simple 18.5 ± 1.05

Table 7: Mean and 95% CIs for Component Recovery
Time (20 Nodes)

complexity mean (sec) 1/2 CI (sec)
complex 18.0 ± 0.91
moderate 16.9 ± 0.95

simple 15.2 ± 0.98

10.1.2 Node Recovery Time

The aim of this experiment was to assess the impact of
both architecture complexity and node count on node
recovery time within DARE. The mean and 95% confi-
dence intervals for node recovery time for each architec-
ture complexity are shown in Tables 9, 10 and 11 for 10,
15 and 20 nodes, respectively. Table 12 shows the results
of the two-factor ANOVA for architecture complexity
and node count for node recovery time, and Fig. 6 shows
node recovery time by architecture complexity and node
count. For architecture complexity, F > Fcrit results in
the rejection of the null hypothesis that architecture com-
plexity does not impact node recovery time. This is due
to the fact that more complex architectures consist of a
higher number of components (see Table 3) being hosted
per node resulting in larger node recovery times.

Table 8: Two-Factor ANOVA for Component Recovery
Time

Source of Variation F P-value F crit
Architecture Complexity 16.702 1.49E-07 3.030
Node Count 82.306 1.93E-28 3.030
Interaction 2.065 0.0858 2.406

Figure 5: Component Recovery Time by Architecture
Complexity and Node Count

For node count, F > Fcrit results in the rejection of the
null hypothesis that node count has no impact on node
recovery time. As mentioned in the previous experiment,
smaller node counts host more components per node
than larger node counts for the same architectures. This
is due to fact that if the number of components within
an architecture is fixed, but the number of nodes used to
host the architecture is reduced, more components will
have to be hosted per node to enable the reduced node
count. This in effect results in longer recovery times
for smaller node counts. For factor interaction, F > Fcrit
results in the rejection of the null hypothesis that there is
no interaction between the two factors. This is due to the
fact that: (a) more (less) complex architectures implies
more (less) components hosted per node for the same
node count and (b) a larger (smaller) node count implies
less (more) components hosted at a node for the same
architectural complexity.

Table 9: Mean and 95% CIs for Node Recovery Time (10
Nodes)

complexity mean (min) 1/2 CI (min)
complex 6.4 ± 0.85
moderate 4.9 ± 0.59

simple 2.9 ± 0.45

10.1.3 Component Adaptation Time

The goal of this experiment was to assess the impact of
architecture complexity and node count on component

10

Table 10: Mean and 95% CIs for Node Recovery Time
(15 Nodes)

complexity mean (min) 1/2 CI (min)
complex 3.5 ± 0.22
moderate 2.6 ± 0.32

simple 1.6 ± 0.20

Table 11: Mean and 95% CIs for Node Recovery Time
(20 Nodes)

complexity mean (min) 1/2 CI (min)
complex 1.7 ± 0.18
moderate 1.3 ± 0.09

simple 0.8 ± 0.09

adaptation time within DARE. The mean and 95% confi-
dence intervals for component adaptation time for each
architecture complexity are shown in Tables 13, 14 and
15 for 10, 15 and 20 nodes, respectively. Table 16 shows
the results of the two-factor ANOVA for architecture
complexity and node count for component adaptation
time, and Fig. 7 shows component adaptation time by ar-
chitecture complexity and node count. For architecture
complexity, F > Fcrit results in the rejection of the null
hypothesis that architecture complexity does not impact
component adaptation time. This is a consequence of
the fact that a component that has a higher number of
interactions with other components will take longer to
complete these interactions and then transition to the
quiescent state [9], thereby allowing it to be removed
and replaced. For node count, F < Fcrit results in a fail-
ure to reject the null hypothesis that node count does
not impact component adaptation time. From Tables 13
and 14 it can be seen that an increase in node count from
10 to 15 nodes results in an increase in component adap-
tation time, and from 15 to 20 nodes there is a decrease
in component adaptation time (see Tables 14 and 15).
However, these differences are not statistically signifi-
cant because the F value for node count (2.438) is less
than Fcrit (3.030) (see Table 16). For factor interaction, F
< Fcrit results in a failure to reject the null hypothesis
that there is no interaction between the two factors.

11 Related Work

Several research areas are related to our work. First,
is the performance evaluation of distributed systems.

Table 12: Two-Factor ANOVA for Node Recovery Time
Source of Variation F P-value F crit
Architecture Complexity 74.0 3.48E-26 3.030
Node Count 214.642 7.56E-56 3.030
Interaction 11.256 1.93E-08 2.406

Table 13: Mean and 95% CIs for Component Adaptation
Time (10 Nodes)

complexity mean (min) 1/2 CI (min)
complex 4.5 ± 1.31
moderate 3.7 ± 0.78

simple 2.6 ± 0.61

Table 14: Mean and 95% CIs for Component Adaptation
Time (15 Nodes)

complexity mean (min) 1/2 CI (min)
complex 5.1 ± 1.07
moderate 4.1 ± 0.80

simple 3.4 ± 0.71

Table 15: Mean and 95% CIs for Component Adaptation
Time (20 Nodes)

complexity mean (min) 1/2 CI (min)
complex 3.9 ± 2.31
moderate 3.1 ± 0.69

simple 2.5 ± 0.71

Table 16: Two-Factor ANOVA for Component Adapta-
tion Time

Source of Variation F P-value F crit
Architecture Complexity 6.194 0.0024 3.030
Node Count 2.438 0.0893 3.030
Interaction 0.085 0.987 2.406

11

Figure 6: Node Recovery Time by Architecture Complex-
ity and Node Count

Figure 7: Component Adaptation Time by Architecture
Complexity and Node Count

In [10] Mohamed et al. describe the performance eval-
uation of distributed event-based systems. Michael et
al. [11] describe CloudPerf, a framework for the per-
formance evaluation of distributed multi-tenant cloud
environments. Wouw et al. [12] discuss the perfor-
mance evaluation of distributed SQL query engines.
In [13] Apte describes the performance evaluation of dis-
tributed software systems using queueing theory, and
Sachs et al. [14] describe the performance evaluation of
distributed message-oriented middleware.

Also related to our work is the performance evalua-
tion of self-adaptive systems and self-healing systems.
With regards to the former, [15], [16], [17], and [18] all de-
scribe approaches to the performance evaluation of self-
adaptive systems. In the case of the latter, [19] and [20]
both describe the performance evaluation of self-healing
systems.

Another area related to our work is testbeds. In [21],
Younan et al. describe a tesbed environment for evaluat-
ing Internet of Things (IoT) devices. Sakellari et al. [22]
provide a survey of testbeds suitable for various aspects
of research in cloud computing. Also of interest are
testbeds developed for evaluating distributed systems
(see e.g. [23], [24], [25], [26]).

In contrast to the previous, TESS while developed
for distributed software systems, focuses on both self-
healing and self-adaptation frameworks. To the best our
knowledge there does not exist another testbed that pro-
vides an automated approach to the performance evalu-
ation of both self-adaptive and self-healing distributed
software systems.

12 Concluding Remarks

Several recovery and adaptation frameworks have been
proposed for self-healing and self-adaptation of dis-
tributed software systems. In most cases, these frame-
works are evaluated with one or two distributed system
application examples and in many cases little or no quan-
titative evaluation is conducted [27]. For that reason, we
decided to design and implement TESS, described in
detail above, to assist in the quantitative evaluation of re-
covery and adaptation frameworks. TESS was designed
and implemented as a tool that can be used to evaluate
a variety of self-adaptive and self-healing frameworks
such as DARE and others.

TESS follows the well-known principles of experimen-
tal design [8] by generating random architectures that
are clustered into complex, medium, and simple archi-
tectures, and running experiments where node and com-
ponent failures and component adaptations occur ran-
domly. The metrics gathered by TESS are stored in a
database and stored procedures are used to generate a
variety of useful metrics such as averages, confidence
intervals, and statistical procedures such as ANOVA.

Our use of TESS to evaluate DARE illustrates how
TESS can be used for detailed experimental evaluation
of recovery and adaptation frameworks. TESS could be
extended to automatically track and report on detailed
elements of the recovery and/or adaptation times as
long as that information is available in the logs generated
by RAFs. This would allow users to obtain a better
understanding of the major sources of delay in each case.
Additionally, it is possible to extend TESS to consider
additional core metrics such as the ones proposed in [27]
for adaptation.

Acknowledgements

This work was partially supported by the AFOSR grant
FA9550-16-1-0030 and the Office of Research Computing
at George Mason University.

References

[1] J. O. Kephart and D. M. Chess, “The vision of au-
tonomic computing,” Computer, vol. 36, no. 1, pp.
41–50, 2003.

12

[2] D. Menascé, H. Gomaa, J. Sousa et al., “Sassy: A
framework for self-architecting service-oriented
systems,” Ieee Software, vol. 28, no. 6, pp. 78–85,
2011.

[3] E. Albassam, J. Porter, H. Gomaa, and D. Menascé,
“Dare: A distributed adaptation and failure recov-
ery framework for software systems,” in the 14th
IEEE International Conference on Autonomic Comput-
ing (ICAC), 2017.

[4] J. Porter, H. Gomaa, and D. Menascé, “Desarm: A
decentralized mechanism for discovering software
architecture models at runtime in distributed sys-
tems,” in 11th Intl. Workshop on Models@run.time,
2016.

[5] T. J. McCabe, “A complexity measure,”
IEEE Trans. Softw. Eng., vol. 2, no. 4,
pp. 308–320, Jul. 1976. [Online]. Available:
http://dx.doi.org/10.1109/TSE.1976.233837

[6] E. Albassam, H. Gomaa, and D. Menascé, “Model-
based recovery connectors for self-adaptation and
self-healing,” in Proc. 11th Intl. Joint Conf. Software
Technologies, 2016.

[7] ——, “Model-based recovery and adaptation con-
nectors: Design and experimentation,” Software
Technologies, 2017.

[8] R. Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measure-
ment, Simulation, and Modeling. Wiley-Interscience,
NY, 1991.

[9] J. Kramer and J. Magee, “The evolving philosophers
problem: Dynamic change management,” IEEE Tr.
Software Engineering, vol. 16, no. 11, pp. 1293–1306,
1990.

[10] S. Mohamed, M. Forshaw, N. Thomas, and A. Dinn,
“Performance and dependability evaluation of dis-
tributed event-based systems: A dynamic code-
injection approach,” in Proceedings of the 8th
ACM/SPEC on International Conference on Perfor-
mance Engineering. ACM, 2017, pp. 349–352.

[11] N. Michael, N. Ramannavar, Y. Shen, S. Patil, and
J.-L. Sung, “Cloudperf: A performance test frame-
work for distributed and dynamic multi-tenant en-
vironments,” in Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering.
ACM, 2017, pp. 189–200.

[12] S. v. Wouw, J. Viña, A. Iosup, and D. Epema, “An
empirical performance evaluation of distributed sql
query engines,” in Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering.
ACM, 2015, pp. 123–131.

[13] V. Apte, “Performance analysis of distributed soft-
ware systems: Approaches based on queueing the-
ory,” in Software Architecture, 2007. WICSA’07. The
Working IEEE/IFIP Conference on. IEEE, 2007, pp.
39–39.

[14] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann,
“Performance evaluation of message-oriented mid-
dleware using the specjms2007 benchmark,” Perfor-
mance Evaluation, vol. 66, no. 8, pp. 410–434, 2009.

[15] M. Becker, M. Luckey, and S. Becker, “Model-driven
performance engineering of self-adaptive systems:
a survey,” in Proceedings of the 8th international ACM
SIGSOFT conference on Quality of Software Architec-
tures. ACM, 2012, pp. 117–122.

[16] ——, “Performance analysis of self-adaptive sys-
tems for requirements validation at design-time,”
in Proceedings of the 9th international ACM Sigsoft
conference on Quality of software architectures. ACM,
2013, pp. 43–52.

[17] J. Ehlers, A. van Hoorn, J. Waller, and W. Hassel-
bring, “Self-adaptive software system monitoring
for performance anomaly localization,” in Proceed-
ings of the 8th ACM international conference on Auto-
nomic computing. ACM, 2011, pp. 197–200.

[18] D. Perez-Palacin and J. Merseguer, “Performance
evaluation of self-reconfigurable service-oriented
software with stochastic petri nets,” Electronic Notes
in Theoretical Computer Science, vol. 261, pp. 181–201,
2010.

[19] E. G. Pereira, R. Pereira, and A. Taleb-Bendiab, “Per-
formance evaluation for self-healing distributed ser-
vices and fault detection mechanisms,” Journal of
Computer and System Sciences, vol. 72, no. 7, pp. 1172–
1182, 2006.

[20] E. Grishikashvili, R. Pereira, and A. Taleb-Bendiab,
“Performance evaluation for self-healing distributed
services,” in Parallel and Distributed Systems, 2005.
Proceedings. 11th International Conference on, vol. 2.
IEEE, 2005, pp. 135–139.

[21] M. Younan, S. Khattab, and R. Bahgat, “An inte-
grated testbed environment for the web of things,”
ICNS 2015, p. 83, 2015.

[22] G. Sakellari and G. Loukas, “A survey of mathemat-
ical models, simulation approaches and testbeds
used for research in cloud computing,” Simulation
Modelling Practice and Theory, vol. 39, pp. 92–103,
2013.

[23] T. Buchert, C. Ruiz, L. Nussbaum, and O. Richard,
“A survey of general-purpose experiment manage-
ment tools for distributed systems,” Future Genera-
tion Computer Systems, vol. 45, pp. 1–12, 2015.

13

[24] C. Leng, M. Lehn, R. Rehner, and A. Buchmann,
“Designing a testbed for large-scale distributed sys-
tems,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 400–401, 2011.

[25] L. Leonini, É. Rivière, and P. Felber, “Splay: Dis-
tributed systems evaluation made simple (or how
to turn ideas into live systems in a breeze).” in NSDI,
vol. 9, 2009, pp. 185–198.

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar, “An integrated experimental environ-
ment for distributed systems and networks,” ACM
SIGOPS Operating Systems Review, vol. 36, no. SI, pp.
255–270, 2002.

[27] L. Birdsey, C. Szabo, and K. Falkner, “Identifying
self-organization and adaptability in complex adap-
tive systems,” in 11th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, 2017.

14

