
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Stochastic Optimization for Steady State Production Processes
based on Deterministic Approximations

Mohan Krishnamoorthy
mkrishn4@gmu.edu

Alexander Brodsky
brodsky@gmu.edu

Daniel A. Menascé
menasce@gmu.edu

Technical Report GMU-CS-TR-2017-3

Abstract

We consider steady-state production processes that pro-
duce a product and have feasibility constraints and met-
rics of cost and throughput that are stochastic functions
of process controls. We propose an efficient stochas-
tic optimization algorithm for the problem of finding
process controls that minimize the expectation of cost
while satisfying deterministic feasibility constraints and
stochastic steady state demand for the output product
with a given high probability. The proposed algorithm is
based on (1) a series of deterministic approximations to
produce a candidate set of near-optimal control settings
for the production process, and (2) stochastic simulations
on the candidate set using optimal simulation budget
allocation methods. We demonstrate the proposed algo-
rithm on a use case of a real-world heat-sink production
process that involves contract suppliers and manufactur-
ers as well as unit manufacturing processes of shearing,
milling, drilling, and machining, and conduct an exper-
imental study that shows that the proposed algorithm
significantly outperforms four popular simulation-based
stochastic optimization algorithms.

1 Introduction

This paper considers steady-state production processes
that produce a product and have feasibility constraints
and metrics of cost and throughput that are stochastic
functions of process controls. We are concerned with
the development of a one-stage stochastic optimization
algorithm for the problem of finding process controls
that minimize the expectation of cost while satisfying de-
terministic feasibility constraints and stochastic steady
state demand for the output product with a given high
probability. These problems are prevalent in manufac-
turing processes, such as machining, assembly lines, and
supply chain management. There is an increasing need

for process analysis and optimization to solve this prob-
lem efficiently as companies want to be competitive and
need to reduce their cost and improve efficiency of oper-
ations in the face of increased global competition.

Stochastic optimization have typically been performed
using simulation-based optimization techniques (see [1]
and [2] for a review of such techniques). Tools like
SIMULINK [3] and Modelica [4, 5] allow users to run
stochastic simulations on models of complex systems
in mechanical, hydraulic, thermal, control, and electri-
cal power. Tools like OMOptim [6], Efficient Traceable
Model-Based Dynamic Optimization (EDOp) [7], and
jMetal [8] use simulation models to heuristically-guide a
trial and error search for the optimal answer. However,
the general limitation of simulation-based approaches is
that simulation is used as a black box, and the underly-
ing mathematical structure is not utilized.

From the work on Mathematical Programming (MP),
we know that, for deterministic problems, utilizing the
mathematical structure can lead to significantly better re-
sults in terms of optimality of results and computational
complexity compared to simulation-based approaches
(see e.g., [1] and [9]). For this reason, a number of ap-
proaches have been developed to bridge the gap between
stochastic simulation and MP. For instance, [10] propose
an integrated approach that combines simulation with
MP where the MP problem is constructed from the origi-
nal stochastic problem with uncertainties being resolved
to their mean values by using a sample of black-box
simulations. This strategy of extracting an MP from the
original problem is also used by [11] to solve the op-
timal capacity planning problem by incorporating the
original objective function augmented with a penalty on
the sensitivity of the objective function to various types
of uncertainty. The authors of [12] propose an ordinal
transformation framework, consisting of a two-stage op-
timization framework that first extracts a low fidelity
model using simulation or a queuing network model
using assumptions that simplify the original problem

1

and then uses this model to reduce the search space over
which high fidelity simulations are run to find the opti-
mal solution to the original problem. Other stochastic
optimization approaches in the literature try to extract
the mathematical structure of the original problem using
similar techniques; more details are provided in section
7. However, extraction of the mathematical structure
through sampling using a black-box simulation is com-
putationally expensive, especially for real-world produc-
tion processes composed of complex process networks.

Instead of extracting the mathematical structure us-
ing black-box simulation, in [13], we used the extraction
of mathematical structure from a white-box simulation
code analysis as part of a heuristic algorithm to solve a
stochastic optimization problem of finding controls for
temporal production processes with inventories as to
minimize the total cost while satisfying the stochastic
demand with a predefined probability. Similar to the
previous approaches, the mathematical structure was
used for approximating a candidate set of solutions by
solving a series of deterministic MP problems that ap-
proximate the stochastic simulation. However, the class
of problems considered in [13] is limited to processes
described using piece-wise linear arithmetic. Whereas,
many production processes, particularly in manufactur-
ing, have models based on physics-based equations with
non-linear arithmetic. This paper tries to close the gap
for stochastic optimization problems for steady-state pro-
duction processes described using non-linear arithmetic.

More specifically, the contributions of this paper are
three-fold: First, we propose a heuristic algorithm called
Stochastic Optimization Algorithm based on Determin-
istic Approximations (SODA) to solve the problem of
finding production process controls that minimize the
expectation of cost while satisfying the deterministic
process feasibility constraints and stochastic steady state
demand for the output product with a given high prob-
ability. The proposed algorithm is based on (1) a se-
ries of deterministic approximations to produce a can-
didate set of near-optimal control settings for the pro-
duction process, and (2) stochastic simulations on the
candidate set using optimal simulation budget alloca-
tion methods (e.g., see [14], [15]). Second, we demon-
strate the proposed algorithm on a use case of a real-
world heat-sink production process that involves con-
tract suppliers and manufacturers as well as unit man-
ufacturing processes of shearing, milling, drilling, and
machining with models from the literature that use non-
linear physics-based equations. Third, we conduct an ini-
tial experimental study using the heat-sink production
process to compare the proposed algorithm with four
popular simulation-based stochastic optimization algo-
rithms viz., Nondominated Sorting Genetic Algorithm 2
(NGSA2) [16], Indicator Based Evolutionary Algorithm
(IBEA) [17], Strength Pareto Evolutionary Algorithm 2
(SPEA2) [18], and Speed-constrained Multi-objective Par-
ticle swarm optimization (SMPSO) [19]. The experimen-

tal study demonstrates that SODA significantly outper-
forms the other algorithms in terms of optimality of
results and computation time. In particular, running
over a 12-process problem using a 8-core server with
16GB RAM, in 40 minutes, SODA achieves a production
cost lower than that of competing algorithms by 61%; in
16 hours SODA achieves 29% better cost; and, in 3 days
it achieves 7% better cost.

The rest of this paper is organized as follows. Section
2 formally describes the stochastic optimization problem
over steady-state production processes. SODA, includ-
ing deterministic approximations, is presented in section
3. Section 4 describes the model of a real world manu-
facturing use case of a heat-sink service network, which
is used in the experimental study presented in section
5. Key observations and extensions are discussed in sec-
tion 6. Section 7 further discusses related work. Finally,
section 8 concludes with some future research directions.

2 Optimization of Stochastic Pro-
duction Processes with Closed-
form Non-linear Arithmetic

The stochastic optimization problem for steady state
production processes considered in this paper assumes
a stochastic closed-form arithmetic (SCFA) simulation of
the following form. A SCFA simulation on input variable
~X is a sequence y1 = expr1, . . . , yn = exprn
where expri, 1 ≤ i ≤ n is either

(a) An arithmetic or boolean expression in terms of a
subset of the elements of ~X and/or y1, . . . , yi−1. We
say that yi is arithmetic or boolean if the expri is
arithmetic or boolean correspondingly.

(b) An expression invoking PD(~P), which is a func-
tion that draws from a probability distribution (e.g.,
gaussian, exponential, uniform) using parameters
~P that are a subset of the elements of ~X and/or
y1, . . . , yi−1.

We say that yi, 1 ≤ i ≤ n is stochastic if, recursively,

(a) expri invokes PD(~P), or

(b) expri uses at least one stochastic variable yj, 1 ≤ j <
i

If yi is not stochastic, we say that it is deterministic. Also,
we say that a SCFA simulation S computes a variable v
if v = yi, for some 1 ≤ i ≤ n.
To clarify, consider a simple SCFA simulation example
that consists of the following sequence of expressions:

1: stochSpeed := speed + N (0,σ)
2: stochTime := f (stochSpeed)
3: throughput := 1/ stochTime

4: cost := throughput × pricePerUnit

5: C := lb ≤ speed ≤ ub

2

In this example, the SCFA simulation computes the
stochastic arithmetic variables of cost and throughput as
well as the deterministic boolean variable C. The vari-
able speed is deterministic (e.g., machine speed) and it
should be bounded within some lower bound (lb) and
upper bound (ub). The boolean variable C describes
whether speed is bounded. Also, the effects of speed is
stochastic (stochSpeed) due to normally distributed ran-
dom noise N (0, σ). For the sake of brevity, say that the
stochastic time to produce one item (stochTime) is ob-
tained from a function described in terms of stochSpeed.
Then, throughput is computed as the inverse of stochTime
and cost is computed as the product of throughput and
a fixed parameter of price to produce one unit of item
(pricePerUnit).

This paper considers the stochastic optimization prob-
lem of finding process controls that minimize the cost
expectation while satisfying deterministic process con-
straints and steady state demand for the output product
with a given probability. More formally, the stochastic
optimization problem is of the form:

minimize
~X∈~D

E(cost(~X))

subject to C(~X)∧
P(thru(~X) ≥ θ) ≥ α

(1)

where ~D = D1 × · · · × Dn is the domain for decision
variables ~X

~X is a vector of decision variables that range over
~D

cost(~X) is a random variable defined in terms of
~X

thru(~X) is a random variable defined in terms of
~X

C(~X) is a deterministic constraint in ~X i.e., a func-
tion C : ~D → {true, f alse}

θ ∈ R is a throughput threshold
α ∈ [0, 1] is a probability threshold, and
P(thru(~X) ≥ θ) is the probability that thru(~X) is

greater than or equal to θ

Note in this problem that upon increasing θ to some
θ′, the size of the space of alternatives that satisfy the
stochastic demand constraint in equation 1 increases
and hence it can be said that the best solution, i.e., the
minimum expected cost is monotonically improving in
θ′. We assume that the random variables, cost(~X) and
thru(~X) as well as the deterministic constraint C(~X) are
expressed by an SCFA simulation S that computes the
stochastic arithmetic variable (cost, thru) ∈ ~R2 as well as
the deterministic boolean variable C ∈ {true, f alse}.

While we exemplified the SCFA simulation using a
very simple example in this section, many complex real-
world processes can be formulated as SCFA simulation
such as the use case described in section 4.

3 Stochastic Optimization Algo-
rithm based on Deterministic
Approximations

This section presents the Stochastic Optimization Algo-
rithm based on Deterministic Approximations (SODA).
The problem of optimizing stochastic production pro-
cesses can be solved using simulation-based optimiza-
tion approaches by initializing the control settings and
performing simulations to check whether the through-
put satisfies the demand with sufficient probability. But
such an approach is inefficient because the stochastic
space of this problem is very large and hence this ap-
proach will typically converge very slowly to the opti-
mum solution. So, the key idea of SODA is that instead
of working with a large number of choices in the stochas-
tic space, we use deterministic approximations to gen-
erate a small set of candidate control settings and then
validate these control settings in the stochastic space
using simulations.

An overview of SODA is shown in Fig. 1 and a cor-
responding pseudo code is given in Algorithm 1. To
generate a small set of candidate control settings, SODA
performs deterministic approximations of the original
stochastic problem. SODA achieves this by defining a
deterministic computation S0 from the SCFA simulation
S described in section 2 by replacing every expression
that uses a probability distribution PD(~P) with the ex-
pectation of that distribution. The deterministic approx-
imations cost0(~X) and thru0(~X) of cost(~X) and thru(~X),
respectively can be expressed using S0. To optimize this
reduced problem, a deterministic optimization problem
that approximates the stochastic optimization problem
shown in equation 1 is used as a heuristic. This determin-
istic optimization problem can be described as follows:

minimize
~X∈~D

cost0(~X)

subject to C(~X)∧
thru0(~X) ≥ θ′

(2)

where θ′ ≥ θ is a conservative approximation of θ.
This deterministic approximation is performed itera-

tively such that the control settings found in the current
iteration are more likely to generate throughputs that
satisfy demand with the desired probability than in the
previous iterations. This is possible because of the inflate
phase (left box of Fig. 1) and the deflate phase (middle
box of Fig. 1) of SODA.

The inflate phase is intuitively trying to increase the
throughput to satisfy the demand with the desired prob-
ability. When the current candidate control settings do
not generate the throughput that satisfies the original
user-defined demand with a desired probability, the de-
mand parameter itself is exponentially inflated. This
inflation yields higher controls for the machines and

3

Generate candidates with deterministic optimization

Run stochastic simulation

Heuristically
(exponentially)

inflate the demand
bound as a function

of the demand
satisfaction difference

Calculate exp. cost and demand
satisfaction probabilities

Is avg. cost min
until now?

Store run

Store candidate as
the best so far

Is
likelihood
of demand
sat. suff.

high?

yescan't say

Calculate discrete demand between when likelihood of
demand sat. was suff. high and when it was not / can't say

Store run

no

For all discrete demands

Generate candidates with deterministic optimization

Run stochastic simulation

Calculate exp. cost and demand
satisfaction probabilities

Is avg. cost min
until now?

Store run

Store candidate as
the best so far

Is
likelihood
of demand
sat. suff.

high?

yescan't say

Store run

Inflate Deflate

For all Stored Runs

Run stochastic simulation for the
number of simulations allocated

Calculate exp. cost and demand
satisfaction probabilities

Is avg. cost min
until now?

Store candidate as
the best so far

Is
likelihood
of demand
sat. suff.

high?

yesno

Remove candidate
from candidate set

Refine Candidates using OCBA-CO

Simulation budget allocation
based on OCBA-CO

Figure 1: Overview of SODA

Algorithm 1: Stochastic Optimization of Steady-state NL Process

Input : actualDemand, ~�,
��!
min,��!max,�

ConfigParams: storeSize, totalIterations, �cost, �restart, noSimulations, probabilityBound, finalConfidence, refuteConfidence,
maxAccRejBudget, budgetDelta, budgetThreshold

Output : candbest, bestCost

1 bestCost, candSet1, canSet2 InflateDeflate (actualDemand, ~�,
��!
min,��!max,�, storeSize, totalIterations, �cost, �restart,

noSimulations, probabilityBound, finalConfidence, refuteConfidence, maxAccRejBudget) // Algorithm 2
2 candbest, bestCost RefineCandidates (candSet1, canSet2, actualDemand, ~�, bestCost, noSimulations, probabilityBound,

finalConfidence, refuteConfidence, budgetDelta, budgetThreshold, maxAccRejBudget) // Algorithm 5
3 return candbest, bestCost

1

thus increases the overall throughput. However, this
may result in the throughput overshooting the demand
in the stochastic setting, which degrades the objective
cost.

To overcome this, in the deflate phase, SODA scales
the demand back by splitting it into a number of points,
separated by a small epsilon, in the interval between the
inflated demand where throughput overshot the original
demand and the previous demand at which the last
inflation occurred. Deterministic approximations are run
for this lower demand to check whether the throughput
still satisfies the demand with desired probability while
yielding a better objective cost. In this way, the inflate and
deflate phases find a more optimum demand threshold
for which it can get the right balance between optimum
cost and demand satisfaction with desired probability.

After the iterative inflate and deflate procedure, more
simulations may be needed to check if a promising can-
didate that currently is not a top candidate could be the
optimal solution or to choose an optimal solution from
multiple candidates. To resolve this, these candidates are
further refined in the refineCandidates phase (right box in
Fig. 1) where a number of simulations are allocated to
each candidate as obtained from an optimal simulation
budget allocation method. These simulations are run on
these candidates to check if this produces a new optimal
solution.

In this way, SODA uses the model knowledge in inflate,
deflate, and refineCandidates phases to provide optimal
control settings of the non-linear processes that a process
operator can use on the manufacturing floor in a stochas-
tic environment. The phases of SODA are explained in
greater detail with the help of their pseudo-code in the
subsections below.

3.1 Inflate and Deflate Phase

The pseudo-code for the InflateDeflate procedure is
shown in Algorithm 2. The deterministic approxima-
tion by first inflating the demand to find the accepted
candidate is performed in lines 8-25. In this part, first
a number of candidate control settings with different
objective costs are obtained by running a deterministic
optimization with a constraint on the current demand
(θ′) in the GenerateCandidates procedure (line 9). Then,
the confidence of demand satisfaction is obtained into
the result variable in the AcceptRejectCandidate procedure
by running stochastic simulations on the candidate that
yielded the least cost among the generated candidates
(line 10). If the confidence is higher than the threshold
(α), i.e., result is accept or if the confidence is high enough
so that the candidate is not refuted, i.e., result is not-
reject, then the candidate control settings that yielded the
least cost is put into candSet1 and the other candidates

4

Algorithm 2: InflateDeflate

Input : actualDemand, ~�,
��!
min,��!max

ConfigParams: �, storeSize, totalIterations, �cost, �restart, noSimulations, probabilityBound, finalConfidence, refuteConfidence,
maxAccRejBudget

Output : bestCost, candSet1 = {cand1, . . . , candp}, candSet2 = {
�!
X 1, . . . ,

�!
X q}, p storeSize; where 8i2{1,...,p} candi =

(
�!
X i, candExpCosti, candCostStddevi candProbi, candProbStddevi, candNoSimsi, confi)

1 noCandidates 1
2 noIterations 1
3 bestCost 1
4 repeat
5 currentDemand actualDemand + Z ⇠ N(0,) // < 0.5
6 lastInflateDemand currentDemand
7 result unknown
8 repeat

// Inflate from currentDemand

9 ((
�!
X1, cost1), . . . , (

�!
Xk, costk)) GenerateCandidates (currentDemand,

��!
min,��!max, �cost, �restart) // Algorithm 3

// Algorithm 4
10 result, (candExpCost, candCostStddev, candProb, candProbStddev, candNoSims, conf) AcceptRejectCandidate

(
�!
X 1, actualDemand, ~�, noSimulations, probabilityBound, finalConfidence, refuteConfidence, maxAccRejBudget)

11 if result is accept or not-reject then
12 candSet1 candSet1[{(

�!
X 1, candExpCost, candCostStddev, candProb, candProbStddev, candNoSims, conf)}

13 candSet2 candSet2[{
�!
X2, . . . ,

�!
Xk}

14 noCandidates noCandidates + k
15 if result is accept and expCost bestCost then
16 bestCost expCost
17 end
18 end
19 if result is reject or not-reject then
20 probDiff probabilityBound - candProb
21 increment currDemand * expDensity (�, probDiff)
22 currDemand currDemand + increment
23 lastInflateDemand currentDemand
24 end
25 until result is accept

// Result is accept. So deflate from currentDemand to lastInflateDemand
26 discreteDemandSeq Calculate discrete demands in [lastInflateDemand, currentDemand] separated by a small ✏
27 foreach demandi from discreteDemandSeq do

// Algorithm 3

28 ((
�!
X1, cost1), . . . , (

�!
Xk, costk)) GenerateCandidates (demandi,

��!
min,��!max, �cost, �restart) // Algorithm 3

// Algorithm 4
29 result, (candExpCost, candCostStddev, candProb, candProbStddev, candNoSims, conf) AcceptRejectCandidate

(
�!
X 1, actualDemand, ~�, noSimulations, probabilityBound, finalConfidence, refuteConfidence, maxAccRejBudget)

30 if result is accept or not-reject then
31 candSet1 candSet1[{(

�!
X 1, candExpCost, candCostStddev, candProb, candProbStddev, candNoSims, conf)}

32 candSet2 candSet2[{
�!
X2, . . . ,

�!
Xk}

33 noCandidates noCandidates + k
34 if result is accept and expCost bestCost then
35 bestCost expCost
36 end
37 end
38 end
39 noIterations noIterations + 1
40 until noIterations > totalIterations or noCandidates > storeSize
41 return bestCost, candSet1, candSet2

25

generated by GenerateCandidates are put into candSet2.
Also, the optimum cost (bestCost) is updated if the ac-
cepted candidate yielded a lower cost (lines 12-17). On
the other hand, if the candidate is refuted, i.e., result is
reject or even if the confidence is high enough so that
the candidate is not refuted, i.e., result is not-reject, then
the demand setting θ′ is heuristically inflated (lines 19-
24). The inflation amount is decided by an exponential
distribution with parameter λ for the difference in the
probability of demand satisfaction. This ensures that
if the probability of demand satisfaction was very low,
this heuristic will increase the demand exponentially so
that the deterministic optimization solver can adjust the
control settings of the processes accordingly in the next
iteration. This would then increase the probability of de-
mand satisfaction in the next iteration thereby resulting
in a greater likelihood of satisfying the demand in the
stochastic setting.

The deterministic approximation performed while de-
flating the demand is shown in lines 26-38. After the
first accepted candidate is obtained during inflation, the
interval between the last non-accepted candidate’s de-
mand (lastInflateDemand) and the accepted candidate’s
demand (currentDemand) is discretized, separated by a
small ε (line 26). Then, each discrete demand setting
is considered in descending order for the deterministic
approximation, similar to that performed during infla-
tion (lines 27-38). The idea here is that since the demand
setting at lastInflateDemand was not accepted and that at
currentDemand was accepted during inflation, the sweet
spot of the deflated demand for finding the candidate
with minimum expected cost with sufficient probability
of demand satisfaction lies between these two demands.
A number of deterministic approximations may need
to be performed here especially if ε is very small. But
the heuristics used during inflation allows for significant
reduction of the search space to a set of close to optimal
solutions, i.e., those obtained by performing a determin-
istic approximation for the demand interval between
lastInflateDemand and currentDemand that give a better
solution with fast convergence.

To generate candidate control settings on the current
demand, InflateDeflate uses the GenerateCandidates proce-
dure. The pseudo-code for this procedure is shown in
Algorithm 3. Since the processes considered here have
non-linear objectives that may not necessarily be convex,
the iterative procedure chooses a random starting point
for all the decision variables (line 6). Then, the problem
is abstracted into a deterministic model such as the one
shown in equation 2 by ignoring its stochastic compo-
nents and then this model is optimized using a deter-
ministic non-linear optimization solver (line 7). Since the
optimization is being run using different starting points
in each iteration, it is possible that the deterministic non-
linear optimization solvers give different controls with
the same or different objective cost in some iterations. If
the obtained objective cost is within the accepted limit,

the different control setting obtained is collected into
the candidate set (lines 8-15). This procedure continues
until there is little or no change in the objective cost for
a specified number of iterations (line 17).

To check the confidence of demand satisfaction in the
stochastic setting for the candidates that were generated
in GenerateCandidates, InflateDeflate uses the AcceptReject-
Candidate procedure. The pseudo-code for this proce-
dure is shown in Algorithm 4. In this procedure, first a
number of simulations are run on the candidate to ob-
tain some statistics for this candidate in the stochastic
setting (line 5). Using these statistics, the confidence
of demand satisfaction with sufficient probability is ob-
tained (lines 6-7). Finally, the result variable is created
for this candidate and this value assumes accept for con-
fidence of demand satisfaction being above the finalCon-
fidence threshold, reject for the candidate being refuted
and not-reject for any candidate that is neither accepted
nor rejected (lines 11-17). Thus the result variable is used
to evaluate the quality of the generated candidate in the
stochastic setting.

3.2 Candidate Refinement Phase

After generating the candidate sets using deterministic
approximations, SODA refines these candidates by run-
ning Monte Carlo simulations on them in this phase. To
maximize the likelihood of selecting the best candidate,
i.e., candidate with the least cost and sufficient probabil-
ity of demand satisfaction, this phase uses the Optimal
Computing Budget Allocation method for Constraint
Optimization (OCBA-CO) [15] to allocate the budget
among the candidates so that the greatest fraction of the
budget is allocated to the most promising candidates in
the candidate set. This phase is performed iteratively
for some delta budget that is allocated among the can-
didates using OCBA-CO and in each iteration, the addi-
tional simulations on the candidates can yield a better
objective cost or a higher confidence of demand satisfac-
tion. In each subsequent iteration, OCBA-CO can use
the updated estimates to find new promising candidates
and allocate a greater fraction of the delta budget to them
to check if these candidates can be further refined.

The pseudo-code for the RefineCandidates procedure is
given in Algorithm 5. Since the confidence of demand
satisfaction is only obtained for the candidates from can-
dSet1 in the InflateDeflate phase, the RefineCandidates pro-
cedure first finds the confidence of demand satisfaction
into the result variable using the AcceptRejectCandidate
procedure for the candidates in candSet2 (line 4). Then,
similar to the code in InflateDeflate, the candidate is either
removed from the set or it is stored along with its base
statistics if the result is reject or not, respectively (lines
5-12). Then, all the candidates from candSet1 and cand-
Set2 are combined into a single candSet (line 14). Then,
this phase uses the ExtendedOCBA procedure, which is
based on OCBA-CO, to iteratively allocate a fraction of

6

Algorithm 3: GenerateCandidates

Input : currentDemand,
��!
min,��!max

ConfigParams: �cost, �restart

Output : ((
�!
X1, cost1), . . . , (

�!
Xk, costk)) ordered by increasing order of cost

1 noOfRestarts 1
2 bestCost 1
3 outputSeq ()
4 ✏ 0.0001
5 repeat
6

�!
S random vector uniformly chosen between

��!
min and ��!max inclusive

7 (~X, cost) DetOpt (~S, currentDemand)
8 if cost <= bestCost or (cost - �cost) < bestCost then
9 if cost < bestCost then

10 bestCost cost
11 end
12 if outputSeq does not already contain (~X, cost) then
13 outputSeq outputSeq + (~X, cost)
14 end
15 end
16 noOfRestarts noOfRestarts +1
17 until bestCostnoOfRestarts - bestCostnoOfRestarts��restart

< ✏
18 return outputSeq

Algorithm 4: AcceptRejectCandidate

Input : ~X, actualDemand, ~�
ConfigParams: noSimulations, probabilityBound, finalConfidence, refuteConfidence, maxAccRejBudget
Output : result 2 {accept, reject, not-reject}, (candExpCost, candCostStddev candProb, candProbStddev, candNoSims,

conf); where candExpCost is the candidate’s expected cost, candCostStddev is the standard deviation of the
cost, candProb is its probability of demand satisfaction, candProbStddev is the standard deviation of demand
satisfaction, candNoSims is the total number of simulations run on the candidate, and conf is the confidence on
candProb.

1 conf 0
2 refConf 0
3 budget 1
4 repeat
5 expCost, costStddev, probabilityFound, probabilityStddev MonteCarloSimulation (~X, actualDemand, ~�, noSimulations)
6 conf Confidence (candProb >= probabilityBound)
7 refConf Confidence (p <= (probabilityBound - ✏)) // ✏ ⌧ probabilityBound. e.g.,✏ = 0.15
8 candExpCost, candCostStddev, candProb, candProbStddev, candNoSims UpdateStats (expCost, costStddev,

probabilityFound, probabilityStddev, noSimulations)
9 budget budget + noSimulations

10 until conf > finalConfidence or refConf > refuteConfidence or budget > maxAccRejBudget
11 if conf > finalConfidence then
12 result accept
13 else if refConf > refuteConfidence then
14 result reject
15 else
16 result not-reject
17 end
18 return result, (candExpCost, candCostStddev, candProb, candProbStddev, candNoSims, conf)

3

Algorithm 3: GenerateCandidates

Input : currentDemand,
��!
min,��!max

ConfigParams: �cost, �restart

Output : ((
�!
X1, cost1), . . . , (

�!
Xk, costk)) ordered by increasing order of cost

1 noOfRestarts 1
2 bestCost 1
3 outputSeq ()
4 ✏ 0.0001
5 repeat
6

�!
S random vector uniformly chosen between

��!
min and ��!max inclusive

7 (~X, cost) DetOpt (~S, currentDemand)
8 if cost <= bestCost or (cost - �cost) < bestCost then
9 if cost < bestCost then

10 bestCost cost
11 end
12 if outputSeq does not already contain (~X, cost) then
13 outputSeq outputSeq + (~X, cost)
14 end
15 end
16 noOfRestarts noOfRestarts +1
17 until bestCostnoOfRestarts - bestCostnoOfRestarts��restart

< ✏
18 return outputSeq

Algorithm 4: AcceptRejectCandidate

Input : ~X, actualDemand, ~�
ConfigParams: noSimulations, probabilityBound, finalConfidence, refuteConfidence, maxAccRejBudget
Output : result 2 {accept, reject, not-reject}, (candExpCost, candCostStddev candProb, candProbStddev, candNoSims,

conf); where candExpCost is the candidate’s expected cost, candCostStddev is the standard deviation of the
cost, candProb is its probability of demand satisfaction, candProbStddev is the standard deviation of demand
satisfaction, candNoSims is the total number of simulations run on the candidate, and conf is the confidence on
candProb.

1 conf 0
2 refConf 0
3 budget 1
4 repeat
5 expCost, costStddev, probabilityFound, probabilityStddev MonteCarloSimulation (~X, actualDemand, ~�, noSimulations)
6 conf Confidence (candProb >= probabilityBound)
7 refConf Confidence (p <= (probabilityBound - ✏)) // ✏ ⌧ probabilityBound. e.g.,✏ = 0.15
8 candExpCost, candCostStddev, candProb, candProbStddev, candNoSims UpdateStats (expCost, costStddev,

probabilityFound, probabilityStddev, noSimulations)
9 budget budget + noSimulations

10 until conf > finalConfidence or refConf > refuteConfidence or budget > maxAccRejBudget
11 if conf > finalConfidence then
12 result accept
13 else if refConf > refuteConfidence then
14 result reject
15 else
16 result not-reject
17 end
18 return result, (candExpCost, candCostStddev, candProb, candProbStddev, candNoSims, conf)

37

Algorithm 5: RefineCandidates
Input : candSet1 = {cand1, . . . , candp}, candSet2 = {X1, . . . , Xq}, actualDemand, ~�, bestCostUntilNow; where

8i2{1,...,p} candi = (
�!
X i, candExpCosti, candCostStddevi, candProbi, candProbStddevi, candNoSimsi, confi),

and k = p + q
ConfigParams: noSimulations, probabilityBound, finalConfidence, refuteConfidence, budgetDelta, budgetThreshold,

maxAccRejBudget
Output : candbest, bestCost

1 newCandSet2 {}
2 bestCost bestCostUntilNow
3 foreach c 2 candSet2 do

// Algorithm 4
4 result, (candExpCost, candCostStddev, candProb, candProbStddev, candNoSims, conf) AcceptRejectCandidate

(
�!
X c, actualDemand, ~�, noSimulations, probabilityBound, finalConfidence, refuteConfidence, maxAccRejBudget)

5 if result is reject then
6 Remove c from candSet2
7 else
8 newCandSet2 newCandSet2 [{

�!
X c, candExpCost, candCostStddev, candProb, candProbStddev, noSimulations, conf}

9 if result is accept and candExpCost < bestCost then
10 bestCost candExpCost
11 end
12 end
13 end
14 candSet candSet1[newCandSet2
15 budget 1
16 iterationNo 1
17 repeat
18

�!
N iterationNo ExtendedOCBA(

�!
N iterationNo�1, iterationNo, candSet, noSimulations, budgetDelta) // Algorithm 6

19 foreach c 2 candSet do
// Algorithm 7

20 expCost, costStddev, probabilityFound, probabilityStddev MonteCarloSimulation (~Xc, actualDemand, ~�,
N iterationNo

c)
21 candExpCostc, candCostStddevc, candProbc, candProbStddevc, candNoSimsc UpdateStats (expCost, costStddev,

probabilityFound, probabilityStddev, N iterationNo
c)

22 confc Confidence (candProbc >= probabilityBound)
23 refConf Confidence (candProbc <= (probabilityBound - ✏)) // ✏ ⌧ probabilityBound. e.g.,✏ = 0.15
24 if confc >= finalConfidence and candExpCostc < bestCost then
25 bestCost candExpCostc
26 else if refConf > refuteConfidence then
27 Remove c from candSet
28 end
29 end
30 budget budget + budgetDelta
31 iterationNo iterationNo + 1
32 until budget > budgetThreshold
33 candbest {c 2 canSet | candExpCostc = bestCost}
34 return candbest, bestCost

4

8

the delta budget among the candidates in the candSet
(line 18). Then, Monte Carlo simulations are run for the
allocated number of simulations for each candidate (line
20). Using these statistics, the updated confidence of de-
mand satisfaction with sufficient probability is obtained
(lines 22-23). If the updated confidence of demand satis-
faction is above the finalConfidence and the cost is further
minimized, then the best cost and best candidate are up-
dated (lines 24-25). On the other hand, if the candidate
can be refuted, then it is removed from the candSet (lines
26-27). This iteration of budget allocation and simula-
tion refinement is repeated until some maximum budget
number of simulations is depleted.

The pseudo-code for the ExtendedOCBA based on
OCBA-CO procedure is given in Algorithm 6. This pro-
cedure allocates a greater fraction of the delta budget to
candidates that have the highest likelihood of being the
best candidate or near the best candidate. This proce-
dure does this while considering the demand constraint,
i.e., the best candidate is the one with the best cost with
sufficient confidence of demand satisfaction (line 1). This
procedure creates two sets for the non-best candidates:
θO where optimality of cost objective is a more dominant
feature among the candidates and θF where probabil-
ity of demand satisfaction is a more dominant feature
among the candidates (lines 2-3). Then, the noise-to-
signal ratio of each candidate is obtained (line 4). Finally,
the number of allocated simulations is obtained in pro-
portion to the noise-to-signal ratio (lines 5-10). More
details about the OCBA-CO algorithm can be obtained
from [15].

4 Stochastic Closed-form Arith-
metic Simulation of a Real World
Production Process

While the formulation of the problem is abstract, we
wanted to check whether it is possible to apply SODA
on a use case of a real-world production process and to
conduct an experimental study to evaluate the perfor-
mance of SODA. These real world production processes
can be described using the SCFA simulation that was
introduced in section 2. In this section, the SCFA sim-
ulation of a real-world Heat-Sink Production Process
(HSPP) is provided whereas the experimental study to
evaluate SODA using HSPP is described in section 5.

The graphical representation for the HSPP is shown
in Fig. 2. The production process can be described as a
composition of three sub-processes of supply, production,
and demand. The supply sub-process further contains
the suppliers of the raw materials for the heat-sink part,
which includes suppliers of aluminum, heat-sink case and
accessories such as screws, and bolts. The production sub-
process contains processes that will transform the input
raw materials into the output heat-sink part. To do this,

the raw material of aluminum is first cut using a cutting/s-
hearing process. Then, the cut aluminum is sent to a CNC
machining process that uses the milling and drilling sub-
processes to mill and drill on the cut aluminum part to
produce the raw heat-sink part. Then, this raw part goes
through the washing and finishing process, after which
it is inspected for defects and accuracy in the quality in-
spection process. Finally, this inspected part is assembled
together with the heat-sink case using the accessories in the
assembly process. The last sub-process is a virtual process
for the demand of heat-sink part production that dictates
the minimum number of heat-sinks to be produced so
as to satisfy either the customer demand or foretasted
sales.

If one looks at the HSPP top-down, it is a composed
of the processes of supply, production, and demand. The
supply process is itself composed of atomic sub-processes
such as the suppliers for aluminum, heat-sink case, and
accessories. Similarly, the production process is itself com-
posed of atomic sub-processes such as cutting/shearing,
machining, and assembly. As mentioned in section 2,
the HSPP and all of its sub-process are described us-
ing a SCFA simulation that transforms the input control
variables and other fixed parameters of the process to
stochastic metric variables of the cost and throughput
per item as well as the deterministic constraint variables
for the corresponding process. For instance, the SCFA
simulation for the machining process has inputs of con-
trol variables such as cutting speed and feed rate, and
fixed parameters such as number of holes and depth
of cut. The output from this simulation may then con-
tain values for the metrics of interest such as production
cost, cycle time, and energy use, as well as constraints
such as satisfaction of the production demand, and other
feasibility constraints.

Consider PH to be a set of the sub-processes of the
HSPP i.e., PH contains the processes of supply, produc-
tion, and demand. Similarly, consider PS and PR to be the
sub-processes of supply and production, respectively. By
running the SCFA simulation of each process within PS
and PR, it is possible to compute the cost of the corre-
sponding process and then compute the total cost of the
supply and production processes as the sum of the cost of
its respective sub-processes as described in equation 3.

costS = ∑
p∈PS

costp

costR = ∑
p∈PR

costp
(3)

Also, the SCFA simulation of each process within PS com-
putes the throughput of each item supplied, i.e, it com-
putes the throughput of the supplied aluminum (thrual),
heat-sink case (thruhsc), and accessories (thrua). Similarly,
the SCFA simulation of each process within PR computes
the throughput of the respective item produced and fi-
nally the throughput of the completed heat-sink part
(thruh) is determined from the SCFA simulation of the

9

Algorithm 6: ExtendedOCBA

Input :
�!
N prev, iterationNo, candSet = {cand1, . . . , candk}; where 8i2{1,...,k} candi = (

�!
X i, candExpCosti,

candCostStddevi, candProbi, candProbStddevi, candNoSimsi, confi)
ConfigParams: noSimulations, budgetDelta
Output :

�!
N , a vector of number of simulations allocated using OCBA-CO for each candidate

1 bestCand arg mini2candSet candExpCosti s.t. confi � finalConfidence

2 ⇥O
n

i|i 2 candSet, i 6= bestCand, (candProbi�probabilityBound)
candProbStddevi

 (candExpCosti�candExpCostbestCand)
candCostStddevi

o

3 ⇥F
n

i|i 2 candSet, i 6= bestCand, (candProbi�probabilityBound)
candProbStddevi

> (candExpCosti�candExpCostbestCand)
candCostStddevi

o

4 8i2candSet ⌘i

8
>>>>><
>>>>>:

candProbStddevi

(candProbi�probabilityBound) if i 2 ⇥F

candCostStddevi

(candExpCosti�candExpCostbestCand) if i 2 ⇥O

candProbStddevbestCand

(candProbbestCand�probabilityBound) if i = bestCand

0 otherwise
5 8i2candSet\{bestCand} ↵i proportional to ⌘i, i.e., (↵i/↵j) = (⌘i/⌘j)

2 for all i 6= j 6= bestCand
6 8i2candSet\{bestCand} Ni ↵i(k ⇥ noSimulations + iterationNo⇥ budgetDelta)

7 ↵O candCostStddevbestCand

qP
i2⇥O

(↵i/candCostStddevi)2

8 ↵F proportional to ⌘bestCand, i.e., (↵F /↵i) = (⌘bestCand/⌘i)
2 for all i 6= bestCand

9 ↵bestCand max(↵F ,↵O)
10 8i2candSet Ni Adjust the allocation for each candidate accordingly so thatPk

i=1 max(0, (Ni �Nprev
i)) = budgetDelta

11 return
�!
N

5

assembly process.
The SCFA simulation of each sub-process described

above also computes boolean constraint variables of
Cp, p ∈ {PS, PR}, such as those that satisfy the zero-
sum constraints and feasibility constraints. The zero
sum constraint states that for every item, the total input
of this item coming as outputs from the sub-processes
must be greater or equal to the total output that is dis-
tributed among inputs of sub-processes. On the other
hand, the feasibility constraints include bounds on the
operating capacity of the sub-processes and bounds on
their control variables.

The demand process is a virtual process that specifies
the user-defined demand for the completed heat-sink
part via its throughput (thruhd) and whose cost is 0, i.e.,
costD = 0. The SCFA simulation of HSPP computes
all the metrics and constraints of its sub-processes re-
cursively and then computes the total cost (costH) and
throughput (thruH) of the entire HSPP composite pro-
cess as shown in equation 4.

costH = ∑
p∈PH

costp = costS + costR + costD

thruH = thruR = thruh

(4)

Finally, the constraints of HSPP (see equation 5) are com-
puted as the satisfaction of all of its sub-process con-
straints recursively. This includes the satisfaction of the
demand constraint, i.e, the number of parts produced
by HSPP (thruh) is greater or equal to a user-defined

demand parameter (thruhd).

CH : ∧p∈PH Cp : CS ∧ CR ∧ CD

where CD : thruh ≥ thruhd
(5)

In this section, we only provide an overview of the
SCFA simulation for HSPP. In fact, the input and output
of the SCFA simulation of HSPP is actually described
as JavaScript Object Notation (JSON) structures and the
SCFA simulation itself is described using JSONiq, which
is a query and processing language specifically designed
for JSON data models [20]. Also, to perform the de-
terministic approximations for SODA as described in
section 3, we use a system that automatically converts
the SCFA simulation of HSPP into an equivalent deter-
ministic optimization problem as shown in equation 2.
But discussing the code of the SCFA simulation for HSPP
and the system that performs its automatic conversion
is outside the scope of this paper. But more details about
an initial realization of these can be found in [21]. To
evaluate SODA against the state of the art algorithms,
experiments were run on the SCFA simulation of HSPP
to solve the stochastic optimization problem considered
in this paper. Results of this experimental study are
described in section 5.

5 Experimental Results

This section provides the experimental results that eval-
uate SODA by comparing the quality of objective cost

10

Supplier 1:
Aluminum

Supplier 2:
Aluminum

Supplier 1:
HS - Case

Supplier 2:
HS - Case

Supplier:
Accessories

Supply Production

Aluminum Plate

Cut Aluminum Plate

Raw Heat Sink Part Washed Heat Sink Part

Cutting /
Shearing

CNC
Machining

Washing &
Finishing

Quality
Inspection

Assembly

Heat Sink Case

Heat Sink Case

Accessory Package

Inspected Heat Sink Part

Demand

Completed (Assembled) Heat Sink Part

Aluminum Plate

Demand

Figure 2: Graphical representation of the Heat-Sink Production Process (HSPP)

11

and rate of convergence obtained from SODA with other
metaheuristic simulation-based optimization algorithms.
In order to evaluate SODA, the SCFA simulation of the
HSPP described in section 4 is used. The SCFA simula-
tion of HSPP is written in JSONiq whereas SODA itself
is written in Java. The deterministic approximations
for SODA are performed using a system that automati-
cally converts the SCFA simulation of HSPP into a deter-
ministic optimization problem, which is a deterministic
abstraction of the original SCFA simulation.

For the comparison algorithms, we used the jMetal
package, which is an object-oriented Java-based frame-
work for multi-objective optimization with metaheuris-
tics [8]. The algorithms chosen for comparison include
Nondominated Sorting Genetic Algorithm 2 (NGSA2)
[16], Indicator Based Evolutionary Algorithm (IBEA)
[17], Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[18], and Speed-constrained Multi-objective Particle
swarm optimization (SMPSO) [19]. All these algorithms
use the SCFA of HSPP to perform the computation of the
cost, throughput and feasibility constraints. The com-
putation of the demand satisfaction information from
expected throughput is also similar to that of SODA. The
cost and demand satisfaction information is then used
by the jMetal algorithms to further increase or decrease
the control settings using heuristics.

SODA was run with two different settings. In the first
setting, SODA was run for 16 hours and the number of
candidates collected from the InflateDeflate phase was
2,000 (storeSize = 2,000). In the second setting, SODA was
run for approximately 72 hours (3 days) with storeSize
= 10,000. Other configuration parameters used include
probabilityBound = 0.95, finalConfidence = 99%, and refute-
Confidence = 70%. Additionally, all production processes
in HSPP are stochastic due to noise added to the con-
trols. This noise has a mean of 0 and standard deviation
between 1.4 to 2.4. Finally, the demand (actualDemand)
from the HSPP was set to be 4. The comparison algo-
rithms were also run with the same (relevant) parame-
ters.

The data collected from the experiments include the
estimated average costs achieved at different elapsed
time points for SODA in two settings and all the com-
parison algorithms. Fig. 3 shows the estimated average
costs achieved after 16 hours whereas Fig. 4 shows the
estimated average costs achieved after about three days.
Each experiment was run multiple times and 95% con-
fidence bars are included around the mean at certain
elapsed time point in both figures.

It can be observed that both settings of SODA perform
better than the comparison algorithms initially. This is
because SODA uses deterministic approximation to re-
duce the search space of potential candidates quickly
whereas the competing algorithms start at a random
point in the search space and need a number of addi-
tional iterations (and time) to find candidates closer to
those found by SODA.

As time progresses, SODA in both settings is able to
achieve much better expected cost in the inflateDeflate
phase than the other algorithms. Hence, we claim that
SODA is able to converge quicker toward the points
close to the (near) optimal solution found at the end of
the algorithm. This is because SODA uses heuristics in
the inflate and deflate phases that reduce the search space
quickly, which allows SODA to quickly converge toward
a more promising candidate.

Also, the solutions found by SODA at the end of the
experiment are much better than those found by the
competing algorithms. After 16 hours, the expected cost
found by SODA was 29% better than the nearest compar-
ison algorithm (SMPSO) and 49% better than the second
best comparison algorithm (NSGA2) (see Fig. 3). After
three days though, the advantage of SODA over the near-
est comparison algorithm (SMPSO) reduces to 7% and
that to the second best algorithm (NSGA2) reduces to
17% (see Fig. 4). This is not surprising since SMPSO and
NSGA2 use strong meta-heuristics and given enough
time such algorithms will eventually converge toward
the (near) optimal solution found by SODA. Although, it
should be noted from Fig. 4 that SODA reaches close to
the optimal solution found at the end much more quickly
than its competition. Also, since the x-axis in Fig. 4 is in
log scale, it should be noted that out of the total experi-
ment time of about 259,200 sec, the other algorithms stop
improving at around 180,911 sec whereas SODA contin-
ues to improve for a longer time (until about 210,562 sec)
due to a good collection of candidates from the InflateDe-
flate phase and performing simulation refinements using
an optimal budget allocation scheme of OCBA-CO in
RefineCandidates phase. We also ran the Tukey-Kramer
procedure for pairwise comparisons of correlated means
on all six algorithm types. By doing so, we confirmed
that SODA was indeed better than the other algorithms
when the experiment ended.

In Fig. 5, we compare different approaches used
within GenerateCandidates. At the end of the InflateDe-
flate phase, the approach that uses global optimization
algorithm of Lipschitz Global Optimization (LGO) [22]
within AMPL has a very similar expected cost as the
approach that uses the local optimization algorithm of
Modular In-core Nonlinear Optimization System (MI-
NOS) [23] with multiple random restarts. However, the
approach that uses MINOS without random restarts per-
forms the worst at all times and at the end of the exper-
iment the estimated expected cost is about 10% worse
than the other two approaches. This experiment shows
that generating candidates within GenerateCandidates us-
ing a local optimization algorithm with multiple random
restarts or a global optimization algorithm results in ob-
taining better quality candidates than using just a single
local optimization approach.

Running RefineCandidates with and without OCBA-CO
is also evaluated and the results are shown in Fig. 6. In
RefineCandidates without OCBA-CO, the delta simulation

12

Figure 3: Estimated average cost for the elapsed time (max runtime = 16 hours) (x-axis in log-scale)

Figure 4: Estimated average cost for the elapsed time (max runtime = 3 days) (x-axis in log-scale)

budget for each iteration is equally distributed among
all the candidates. It is clear from the figure, that when
using OCBA-CO, the algorithm is able to converge faster
and at the end of the experiment, the approach using
OCBA-CO is able to achieve a better estimate of expected
cost by about 4%.

6 Discussion

The experimental study discussed in section 5 showed
that SODA converges much faster toward the optimal
point found at the end of the algorithm and that for
any given time, the optimal point found by SODA is
better than those found by any of the competing algo-
rithms considered in this study. If SODA were allowed

13

Figure 5: Comparison of different local and global al-
gorithms used during the deterministic optimization in
GenerateCandidates

Figure 6: Comparison of RefineCandidates using OCBA-
CO and without OCBA

to run for a much longer time, it would result in wasted
computing resources since in the RefineCandidates phase,
more simulation budget would be used to achieve very
minor improvements in the optimal point among the
fixed number of candidates collected in the InflateDe-
flate phase. Instead, these resources can be used to go
back to the InflateDeflate phase to perform another se-
ries of deterministic approximations to find some other
candidates that might yield better improvements in the
optimal point. By repeating this process multiple times
and given enough time to do so, SODA will eventually
converge towards the global optima as guaranteed by
the competing algorithms considered in the experimen-
tal study.

The experimental study compares SODA’s perfor-
mance against four metaheuristic simulation-based opti-
mization algorithms. These algorithms are popular and
are used to solve stochastic optimization problems in a
number of complex domains. However, it may be useful
to compare SODA’s performance to methods that solve
the same problem using techniques that typically extract
the mathematical structure of the problem using black
box simulations and utilize this structure to perform
deterministic approximations. Such a comparison may
result in a better understanding of how SODA performs
against similar but known to be less efficient approaches
than SODA. But such a comparative study is outside the

scope of this paper and we defer this study to our future
work.

7 Related Work

A number of past works have focused on solving the
stochastic optimization problem for complex domains
such as production processes. This is a typically chal-
lenging problem due to the uncertainty present in the
problem. Uncertainty is defined as the difference be-
tween the amount of information required to perform
a task and the amount of information that is actually
present. Among others, researchers have looked into
two types of uncertainties, namely demand uncertainty
and yield uncertainty [24]. Demand uncertainty refers to
the difficulty of accurately projecting customer demand
in the future. This poses a significant challenge because
it makes inventory hard to control and manage [25]. On
the other hand, yield uncertainty could be due to the
randomness in capacity or where the effects of the con-
trol settings are stochastic. In this case, the output from
production the minimum of the input and the random
yield [26]. In the literature, approaches for stochastic
optimization in the presence of demand uncertainty in-
clude [27], [28], and [29] and those in the presence of
yield uncertainty include [30], [31], and [26].

Stochastic optimization has typically been performed
using simulation-based optimization techniques. For
instance, [32] present a technique to solve large scale
stochastic programming models with a stochastic sim-
ulated annealing based on Hammersley sequence sam-
pling technique to improve computational efficiency.
Here, the uncertainties are sampled and then using their
statistical outcomes as well as error penalties, the simu-
lated annealing approach tries to find the optimal vari-
ables for the problem iteratively. [33] try to optimize
the production system with a number of plants so as
to minimize the expected cost that includes the produc-
tion cost and inventory holding costs. To overcome the
complexities of solving this problem, they propose an
approximated approach (AA) to evaluate the objective
function. Then, they propose two algorithms to solve
the production planning problem, one of which is based
on Particle Swam Optimization (PSO) combining with
the AA and the other is a hybrid PSO algorithm inte-
grating the AA, neural network (NN) and PSO. Another
approach that is used to decide production quantities
in planning problems with demand uncertainties is ge-
netic programming. In this work, the Genocop genetic
algorithm is used to initialize the population and search
for the optimal solutions effectively in a multi-objective
production planning problem [34].

Deterministic approximation techniques have been
used for stochastic optimization to bridge the gap be-
tween stochastic simulation formulation and the use of
MP. [27] consider a production planning problem with

14

uncertain demand. They characterize demand by stan-
dard probability distributions and propose deterministic
approximations with the mean demand and compute
bounds on the optimal value. They show that, for the
most commonly used probability distributions of de-
mands, the relative error bounds are very small. They
extend these results to obtain a priori upper bounds for
a general class of production planning problems in [35].

Another approach used for deterministic approxima-
tion is sample average approximations (SAA). One such
work tries to solve a discrete optimization problem by
generating a random sample of the uncertain variable
and then approximating the expected value function
using the corresponding sample average function. The
obtained sample average optimization problem is solved
deterministically, and the procedure is repeated several
times until a stopping criterion is satisfied [36]. Al-
though SAA has been used in a number of other works
(see [37] for an overview), it is usually better suited for
problems where the objective function is easily com-
putable (as a black-box) given the sample values, the
expected objective function cannot be written in a closed
form, and/or its parameter values cannot be easily cal-
culated [36, 38].

Deterministic approximations have also been used for
multistage stochastic optimization. One such approach
is called the stochastic linear program with recourse. In
this, the objective of the stochastic model is represented
as a function of the expected value of the recourse func-
tion. The recourse function is itself represented as a de-
terministic linear model. To evaluate the expected value,
multiple recourse function values need to be computed
by solving the linear model and then the integral or sum
of these values has to be evaluated [39]. Solving this
problem of finding multiple (optimal or near-optimal)
values of the recourse functions has been performed
using decomposition techniques. A number of them
use Benders decomposition see e.g., [39], [40], [41], [42].
Some authors like [43] also used decomposition based
branch-and-bound strategy to solve a stochastic integer
program with recourse.

Another deterministic approximation approach used
for multistage stochastic optimization is scenario analy-
sis. [42] model the uncertainty on the stochastic controls
via a set of scenarios. To deal with uncertainties the
controls are obtained for each scenario, while satisfying
the constraints in that scenario. Each scenario is associ-
ated with a probability level representing the decision
makers expectation of the occurrence of that particular
scenario. These different scenarios are then incorporated
into a model that is similar to the stochastic program
with recourse discussed above to find the expectation
of the recourse function based on the scenarios . Other
examples of work that use scenario analysis approach
include [44], [45], and [46].

A number of approaches also take advantage of
the problem or model structure to perform multistage

stochastic optimization. Hierarchical control is an ap-
proach that tries to simplify the complexity of a large
stochastic problem by considering the hierarchy or
stages of the problem. [47] propose a hierarchical pro-
duction planning approach for a problem with demand
uncertainties where the first stage of the system produces
a set of semi-finished products having relatively stable
demands, and the second stage produces finished prod-
ucts having highly variable weekly demand. The first
stage is described using an aggregate model whereas the
second stage is described as an operational model. The
idea here is to build a deterministically limiting model
from the aggregate level that is computationally more
tractable and then based on this aggregate plan, pro-
duction planning is performed at the operational level
with uncertainties. Model Predictive Control (MPC) is
another approach that utilizes the structure of the prob-
lem to optimize a dynamic production problem over a
rolling horizon. This is akin to dynamic programming
problems with multiple decision stages. [46] assume
that a model of the actual supply chain is available to
the decision maker and that the problem is to minimize
the long-term costs of operation, while satisfying the
capacity and service level constraints. This problem is
solved by using MPC in conjunction with the scenario
modeling approach to sample scenarios and handle un-
certainties from various sources such as demand, lead
times, and yield.

Whilst the existing literature includes a wide variety
of simulation-based optimization approaches that use
deterministic approximation techniques, they are based
on using samples of black-box simulation to either tra-
verse the search space or to extract the mathematical
structure of the problem. Thus, there is a shortage of
methods that capture the uncertainty explicitly and use
this uncertainty to guide the deterministic approxima-
tion using the white-box of the model in a one stage
stochastic optimization problem. It is well known that
models that capture uncertainty explicitly and use this
information in the optimization generally perform bet-
ter than a deterministic-equivalent approach. This is
because the uncertainty model conveys important infor-
mation about the variability of uncertain quantities, as
compared to substituting them by their expected or the
most likely values [46]. Also, past works do not provide
an efficient approach to perform one-stage stochastic
optimization over complex production processes with
non-linear arithmetic. To bridge this gap, in this paper,
we proposed SODA that solves a one stage stochastic op-
timization problem over a complex production process
with non-linear arithmetic. SODA solves this problem
by performing a series of deterministic approximation
by extracting the mathematical structure from a white-
box simulation code analysis. The experimental results
show that this approach converges quickly and yields
more optimal results as compared to simulation-based
stochastic optimization algorithms for a real-world use

15

case of the production process problem.

8 Conclusion and Future Work

This paper presents an efficient stochastic optimization
algorithm called SODA for the problem of finding pro-
cess controls of a steady-state production processes that
minimize the expectation of cost while satisfying the de-
terministic feasibility constraints and stochastic steady
state demand for the output product with a given high
probability. SODA is based on performing (1) a series
of deterministic approximations to produce a candidate
set of near-optimal control settings for the production
process, and (2) stochastic simulations on the candidate
set using optimal simulation budget allocation methods.

This paper also demonstrates SODA on a use case of
a real-world heat-sink production process that involves
contract suppliers and manufacturers as well as unit
manufacturing processes of shearing, milling, drilling,
and machining. Finally, this paper conducts an exper-
imental study that shows that SODA significantly out-
performs four popular simulation-based stochastic op-
timization algorithms. In particular, the study shows
that SODA performs better than the best competing al-
gorithm by 29% after 16 hours and by 7% after three
days.

Future research directions include: (a) dynamically
executing the inflate deflate phase and candidate refine-
ment phase of SODA to improve the exploration of the
search space; (b) generalizing SODA to handle produc-
tion process that produce multiple products; (c) adding
stronger heuristics to SODA; (d) comparing SODA with
an existing stochastic optimization algorithm based on
deterministic approximations; and (e) developing spe-
cialized algorithms that can utilize preprocessing of
stored (and therefore, static) components to speed up
optimization, generalizing the results in [48, 49, 50].

16

References

[1] S. Amaran, N. V. Sahinidis, B. Sharda, and S. J. Bury,
“Simulation optimization: a review of algorithms
and applications,” Annals of Operations Research,
vol. 240, no. 1, pp. 351–380, 2016.

[2] A.-T. Nguyen, S. Reiter, and P. Rigo, “A review
on simulation-based optimization methods applied
to building performance analysis,” Applied Energy,
vol. 113, pp. 1043–1058, jan 2014.

[3] J. B. Dabney and T. L. Harman, Mastering
SIMULINK 4. Upper Saddle River, NJ, USA: Pren-
tice Hall, 1st ed., 2001.

[4] P. Fritzson, Principles of object-oriented modeling and
simulation with Modelica 2.1. Piscataway, NJ, USA:
Wiley-IEEE Press, 2004.

[5] G. Provan and A. Venturini, “Stochastic simulation
and inference using modelica,” in Proceedings of the
9th International Modelica Conference, pp. 829–837,
Sep 2012.

[6] H. Thieriota, M. Nemera, M. Torabzadeh-Tarib,
P. Fritzson, R. Singh, and J. J. Kocherry, “Towards
design optimization with openmodelica empha-
sizing parameter optimization with genetic algo-
rithms,” in Modellica Conference, Modelica Associa-
tion, 2011.

[7] OpenModelica, Efficient Traceable Model-Based Dy-
namic Optimization - EDOp. OpenModelica, 2009.

[8] J. J. Durillo and A. J. Nebro, “jMetal: A Java frame-
work for multi-objective optimization,” Advances in
Engineering Software, vol. 42, no. 10, pp. 760 – 771,
2011.

[9] A. Klemmt, S. Horn, G. Weigert, and K.-J. Wolter,
“Simulation-based optimization vs. mathematical
programming: A hybrid approach for optimiz-
ing scheduling problems,” Robotics and Computer-
Integrated Manufacturing, vol. 25, no. 6, pp. 917–925,
2009.

[10] S. D. Thompson and W. J. Davis, “An integrated
approach for modeling uncertainty in aggregate
production planning,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 20, pp. 1000–1012, Sept.
1990.

[11] D. Paraskevopoulos, E. Karakitsos, and B. Rustem,
“Robust Capacity Planning under Uncertainty,”
Management Science, vol. 37, no. 7, pp. 787–800, 1991.

[12] J. Xu, S. Zhang, E. Huang, C. H. Chen, L. H. Lee,
and N. Celik, “An ordinal transformation frame-
work for multi-fidelity simulation optimization,”
in 2014 IEEE International Conference on Automation

Science and Engineering (CASE), pp. 385–390, Aug
2014.

[13] M. Krishnamoorthy, A. Brodsky, and D. Menascé,
“Optimizing stochastic temporal manufacturing
processes with inventories: An efficient heuristic
algorithm based on deterministic approximations,”
in Proceedings of the 14th INFORMS Computing Soci-
ety Conference, pp. 30–46, 2015.

[14] C. H. Chen and L. H. Lee, Stochastic Simulation Op-
timization: An Optimal Computing Budget Allocation.
Hackensack, NJ, USA: World Scientific Publishing
Company, 2011.

[15] L. H. Lee, N. A. Pujowidianto, L. W. Li, C. H. Chen,
and C. M. Yap, “Approximate simulation budget
allocation for selecting the best design in the pres-
ence of stochastic constraints,” IEEE Transactions on
Automatic Control, vol. 57, pp. 2940–2945, Nov 2012.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan,
“A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Transactions on Evolutionary Compu-
tation, vol. 6, no. 2, pp. 182–197, 2002.

[17] E. Zitzler and S. Künzli, “Indicator-based selection
in multiobjective search,” in Proceedings of the 8th
International Conference on Parallel Problem Solving
from Nature, 2004, pp. 832–842, Springer, 2004.

[18] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2:
Improving the strength pareto evolutionary algo-
rithm,” Tech. Rep. 103, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute
of Technology (ETH), Zurich, Switzerland, 2001.

[19] A. Nebro, J. Durillo, J. Garcı́a-Nieto, C. Coello
Coello, F. Luna, and E. Alba, “Smpso: A new pso-
based metaheuristic for multi-objective optimiza-
tion,” in 2009 IEEE Symposium on Computational In-
telligence in Multicriteria Decision-Making (MCDM
2009), pp. 66–73, IEEE Press, 2009.

[20] J. Robie, G. Fourny, M. Brantner, D. Florescu,
T. Westmann, and M. Zaharioudakis, “Jsoniq the
complete reference,” 2015.

[21] A. Brodsky, M. Krishnamoorthy, W. Z. Bernstein,
and M. O. Nachawati, “A system and architec-
ture for reusable abstractions of manufacturing pro-
cesses,” in 2016 IEEE International Conference on Big
Data (Big Data), pp. 2004–2013, Dec 2016.

[22] J. D. Pintér, Global optimization in action: continuous
and Lipschitz optimization: algorithms, implementa-
tions and applications, vol. 6. Springer Science &
Business Media, 2013.

[23] B. A. Murtagh and M. A. Saunders, “Minos. a large-
scale nonlinear programming system (for problems

17

with linear constraints). user’s guide.,” tech. rep.,
STANFORD UNIV CALIF SYSTEMS OPTIMIZA-
TION LAB, 1977.

[24] J. Mula, R. Poler, J. P. Garca-Sabater, and F. C. Lario,
“Models for production planning under uncertainty:
A review,” International Journal of Production Eco-
nomics, vol. 103, pp. 271–285, Sept. 2006.

[25] M. Fisher and A. Raman, “Reducing the Cost of
Demand Uncertainty through Accurate Response
to Early Sales,” Operations Research, vol. 44, no. 1,
pp. 87–99, 1996.

[26] C. H. Glock, E. H. Grosse, and J. M. Ries, “The
lot sizing problem: A tertiary study,” International
Journal of Production Economics, vol. 155, pp. 39–51,
Sept. 2014.

[27] G. R. Bitran and H. H. Yanasse, “Deterministic Ap-
proximations to Stochastic Production Problems,”
Operations Research, vol. 32, no. 5, pp. 999–1018,
1984.

[28] R. W. Grubbstrm and Z. Wang, “A stochastic model
of multi-level/multi-stage capacity-constrained
productioninventory systems,” International Jour-
nal of Production Economics, vol. 8182, pp. 483–494,
Jan. 2003.

[29] A. Gupta and C. D. Maranas, “Managing demand
uncertainty in supply chain planning,” Computers
& Chemical Engineering, vol. 27, pp. 1219–1227, Sept.
2003.

[30] C. A. Yano and H. L. Lee, “Lot Sizing with Random
Yields: A Review,” Operations Research, vol. 43, no. 2,
pp. 311–334, 1995.

[31] A. Grosfeld-Nir and Y. Gerchak, “Multiple Lotsiz-
ing in Production to Order with Random Yields:
Review of Recent Advances,” Annals of Operations
Research, vol. 126, pp. 43–69, Feb. 2004.

[32] K.-J. Kim and U. M. Diwekar, “Hammersley
stochastic annealing: efficiency improvement for
combinatorial optimization under uncertainty,” IIE
Transactions, vol. 34, pp. 761–777, Sept. 2002.

[33] Y.-F. Lan, Y.-K. Liu, and G.-J. Sun, “Modeling fuzzy
multi-period production planning and sourcing
problem with credibility service levels,” Journal
of Computational and Applied Mathematics, vol. 231,
pp. 208–221, Sept. 2009.

[34] H. B. Chen, N. Zhao, and G. Q. Sun, “An Approach
for Production Planning Optimization Under Cor-
related Uncertain Demand,” in 2007 International
Conference on Wireless Communications, Networking
and Mobile Computing, pp. 3736–3739, Sept. 2007.

[35] G. R. Bitran and D. Sarkar, “On upper bounds of se-
quential stochastic production planning problems,”
European Journal of Operational Research, vol. 34,
pp. 191–207, Mar. 1988.

[36] A. Kleywegt, A. Shapiro, and T. Homem-de Mello,
“The Sample Average Approximation Method for
Stochastic Discrete Optimization,” SIAM Journal on
Optimization, vol. 12, pp. 479–502, Jan. 2002.

[37] S. Kim, R. Pasupathy, and S. G. Henderson, “A
Guide to Sample Average Approximation,” in
Handbook of Simulation Optimization (M. C. Fu,
ed.), no. 216 in International Series in Operations
Research & Management Science, pp. 207–243,
Springer New York, 2015. DOI: 10.1007/978-1-4939-
1384-8 8.

[38] A. Shapiro, “Sample Average Approximation,” in
Encyclopedia of Operations Research and Management
Science (S. I. Gass and M. C. Fu, eds.), pp. 1350–1355,
Springer US, 2013. DOI: 10.1007/978-1-4419-1153-
7 1154.

[39] G. S. U. Infanger, “Planning Under Uncertainty
Solving Large-Scale Stochastic Linear Programs,”
Tech. Rep. SOL-92-8, Stanford Univ., CA (United
States). Systems Optimization Lab., Dec. 1992.

[40] E. Schweitzer, Multi-Stage Mathematical Program-
ming under Uncertainty. PhD thesis, Israel Institute
of Technology, Haifa, Heshvan, 5755, Oct. 1994.

[41] S. A. MirHassani, C. Lucas, G. Mitra, E. Messina,
and C. A. Poojari, “Computational solution of ca-
pacity planning models under uncertainty,” Parallel
Computing, vol. 26, pp. 511–538, Mar. 2000.

[42] A. Alonso-Ayuso, L. F. Escudero, A. Garn, M. T.
Ortuo, and G. Prez, “An Approach for Strategic
Supply Chain Planning under Uncertainty based
on Stochastic 0-1 Programming,” Journal of Global
Optimization, vol. 26, pp. 97–124, May 2003.

[43] S. Ahmed and R. Garcia, “Dynamic Capacity Acqui-
sition and Assignment under Uncertainty,” Annals
of Operations Research, vol. 124, pp. 267–283, Nov.
2003.

[44] T. Santoso, S. Ahmed, M. Goetschalckx, and
A. Shapiro, “A stochastic programming approach
for supply chain network design under uncertainty,”
European Journal of Operational Research, vol. 167,
pp. 96–115, Nov. 2005.

[45] J. P. Watson, D. L. Woodruff, and W. E. Hart,
“PySP: Modeling and solving stochastic programs
in Python,” Mathematical Programming Computation,
vol. 4, no. 2, pp. 109–149, 2012.

18

[46] G. Schildbach and M. Morari, “Scenario-based
model predictive control for multi-echelon supply
chain management,” European Journal of Operational
Research, vol. 252, pp. 540–549, July 2016.

[47] E.-H. Aghezzaf, C. Sitompul, and F. Van den
Broecke, “A robust hierarchical production plan-
ning for a capacitated two-stage production sys-
tem,” Computers & Industrial Engineering, vol. 60,
pp. 361–372, Mar. 2011.

[48] N. Egge, A. Brodsky, and I. Griva, “Online optimiza-
tion through preprocessing for multi-stage produc-
tion decision guidance queries,” 30th IEEE Inter-
national Conference on Data Engineering Workshops,
vol. 1, pp. 41–48, 2012.

[49] N. Egge, A. Brodsky, and I. Griva, “Distributed
manufacturing networks: Optimization via prepro-
cessing in decision guidance query language,” Inter-
national Journal of Decision Support System Technology,
vol. 4, pp. 25–42, July 2012.

[50] N. Egge, A. Brodsky, and I. Griva, “An efficient pre-
processing algorithm to speed-up multistage pro-
duction decision optimization problems,” in 46th
Hawaii International Conference on System Sciences
(HICSS), 2013, pp. 1124–1133, Jan 2013.

19

