
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Model Driven Elasticity Control for Multi-Server Queues Under
Traffic Surges in Cloud Environments

Venkat Tadakamalla
vtadakam@gmu.edu

Daniel A. Menascé
menasce@gmu.edu

Technical Report GMU-CS-TR-2018-1

Abstract

Many computer systems, such as Internet datacenters
and cloud computing environments, consist of a mul-
titude of servers that process user requests. Incoming
requests that find all servers busy have to wait until a
server becomes idle. This type of queuing system is
known as a G/G/c system and has been extensively
studied in the queuing literature under steady state con-
ditions. This paper studies multi-server systems subject
to workload surges of generic trapezoidal shapes during
which the average arrival rate of requests exceeds the
system’s capacity. This paper’s main contributions are:
(1) Generic equations for surges of any shape. (2) A set
of equations to estimate the impact of trapezoidal and
triangular shaped surges on response time. (3) The de-
sign, implementation, and extensive evaluation of an
autonomic controller for cloud server elasticity using a
G/G/c simulator previously developed by the authors.
The results show that our equations estimate with great
accuracy the impact of surges on response time and that
our autonomic controllers are able to successfully vary
the number of servers to mitigate the impact of workload
surges.

1 Introduction

Many computer systems, such as Internet datacenters
and cloud computing environments, consist of a multi-
tude of servers that process user requests. This paper ad-
dresses the case in which arriving requests select one out
of c servers (e.g., web sites with multiple web servers at
the front tier). If all c servers are busy, arriving requests
wait in a waiting line until a server becomes available.
We assume that servers are identical, i.e., they have the
same processing capacity and can process any type of
incoming request. All servers use a FCFS queuing disci-
pline. When a server becomes idle, it takes the request

at the front of the waiting line.
This type of queuing system is known as a G/G/c

system in Kendall’s notation [1]. In this notation, the
first letter represents the type of distribution of the in-
terarrival time of requests, the second letter indicates
the distribution of the service time of requests, and c
denotes the number of servers. The letter G stands for
a generic distribution, while M (for Markovian or mem-
oryless) stands for an exponential distribution, and D
for a deterministic distribution (i.e., a constant value).
These queuing systems have been extensively studied in
steady state, i.e., when the average arrival rate of requests
is smaller than the maximum rate at which the system
can perform work, i.e., the system capacity (see e.g., [1, 2]).
The ratio between the average arrival rate of requests
and the system’s capacity is called traffic intensity and
is typically denoted by ρ in the queuing literature. A
queuing system is in steady-state when ρ < 1. For some
queuing systems (e.g., M/G/1, M/M/c) there are exact
steady state results while for others (e.g., G/G/1 and
G/G/c) there are approximations and/or bounds. Nev-
ertheless, these exact or approximate results apply only
to systems in steady state.

In a recent paper [3], we addressed the situation when
a system is subject to workload surges (aka flash crowds),
i.e, periods during which the arrival rate exceeds the
system’s capacity (see e.g., [4, 5, 6, 7, 8, 9, 10]). When
that happens, the queue length grows continuously and
so does the response time of requests. Additionally, the
response time continues to increase even after the surge
is over. In other words, the response time does not return
to its steady state value as soon as the surge is over. In
our preliminary work, we considered rectangle-shaped
workload surges, i.e., the traffic intensity rises instan-
taneously, stays at a high value ρ > 1 for some time,
and returns to its original value instantaneously. In [3],
we derived analytical expressions for the effects of rect-
angular surges. In this paper, we extend that analysis
to surges of any shape and use these results to study

1

Figure 1: Example of trapezoidal workload surge and
corresponding effect on the response time for 5 servers.
Workload surge duration: 5 minutes; average service
time: 0.5 sec; average arrival rate before and after surge:
5.0 requests/sec; average arrival rate during surge: 20.0
requests/sec; coefficient of variation of the interarrival
time: 2; coefficient of variation of the service time: 2.

trapezoidal-shaped surges in detail. Our trapezoidal
surge results yield rectangular and triangular surges as
special cases.

As an illustration, consider Fig. 1 that shows a trape-
zoidal workload surge that lasts from t = 300 sec to
t = 600 sec. The left axis shows the response time R and
the right axis shows the average arrival rate. The work-
load intensity shows a surge from 5 to 20 requests/sec
that lasts for 5 minutes, gradually increasing between
t = 300 sec to t = 360 sec and gradually decreasing from
t = 540 sec to t = 600 sec. The response time curve (blue
curve) shows the response time of transactions that leave
the system at a given time instant. As we can see, even
though the traffic intensity returned to its steady-state
value of 0.5 at time 600 sec, the response time peak of
220 seconds was observed at time 800 sec and it only
returned to its pre-surge level at time 1,130 sec.

As illustrated above, workload surges generate very
high response times that can be orders of magnitude
higher than corresponding steady state values and can
be very disruptive to users and damaging to organiza-
tions that provide computing services. Fluid approxima-
tions to queuing theory have been suggested as a way
to analyze the transient behavior of queues [11]. In that
formulation, customers arrive as a continuous fluid with
a time-varying arrival rate. The equations we derive
here have a fluid approximation flavor but go beyond
what has been proposed previously.

Cloud providers, such as Infrastructure as a Service
(IaaS), allow for resources in the form of virtual ma-
chines to be dynamically added or removed from the
set of available resources to cope with traffic intensity
variability so as to help ensure that response times stay
within expected values. This is called elasticity (e.g.,
Amazon’s Elastic Compute Cloud, EC2) and has been
defined as the degree to which a system is able to adapt to

workload changes by provisioning and de-provisioning re-
sources in an autonomic manner, such that at each point in
time the available resources match the current demand as
closely as possible [12].

Many current approaches to elasticity are reactive, i.e.,
more capacity is added when performance degrades.
However, these approaches suffer from the following
drawbacks: (1) Deployment of extra capacity (e.g., more
virtual machines) is not instantaneous, hence users will
experience degraded performance while additional re-
sources are not deployed. (2) There is a risk of overprovi-
sioning or underprovisioning resources because it is not
straightforward to determine how many resources have
to be added or released as the traffic intensity varies.

Therefore, there is a need to control the system’s capac-
ity in an autonomic manner [13] so that the capacity can
be dynamically changed in order to mitigate the effects
of workload surges. The main contributions of this paper
are: (1) The derivation of a generic property for surges
of any shape. (2) The derivation of a set of equations to
estimate the impact of trapezoidal and triangular shaped
surges on response time. (3) The design, implementa-
tion, and extensive evaluation of an autonomic controller
for cloud server elasticity using a G/G/c simulator we
developed for [3].

The rest of this paper is organized as follows. Sec-
tion 2 presents core results including notation, the sys-
tem model, the surge model, assumptions, and two
generic results for surges of any shape. Section 3 presents
a set of analytical expressions that can be used to esti-
mate the effects of trapezoidal shaped workload surges.
Analytical expressions for special cases of trapezoidal
shaped workload surges (i.e., rectangular and triangular)
are derived in Section 4. Section 5 presents the valida-
tions of the analytical expression derived using simula-
tion experiments. Section 6 presents the algorithms used
by two autonomic controllers to dynamically control
the elasticity of a multi-server system. This autonomic
controller is evaluated in Section 7. Related work is
presented in Section 8. Finally, Section 9 concludes the
paper and discusses future work.

2 Core Results

This section describes the system model and its notation,
the surge model and its notation, the assumptions about
the surge, and two generic results about the surge.

2.1 System Model

A multi-server queue is modeled as a G/G/c queuing
system (see Fig. 2) and is characterized by the following
parameters:

• c: number of servers

2

λ	

1	

2	

c	
.	.	.	

µ	

µ	

µ	

Figure 2: Diagram of a G/G/c queue

• λ: average arrival rate of requests. Thus, the aver-
age interarrival time is 1/λ.

• µ: average service rate of each of the c servers. Thus,
the average service time of a request is 1/µ.

• Ca: coefficient of variation of the interrarival time,
i.e., the ratio between the standard deviation of the
interrarival time and its average.

• Cs: coefficient of variation of the service time, i.e.,
the ratio between the standard deviation of the ser-
vice time and its average.

• ρ: traffic intensity. ρ = λ/(µc). For the system to be
stable, ρ has to be less than 1.

• R(t): response time estimate for requests that leave
the system at time t.

• nq(t): average queue length (i.e., number of re-
quests in the waiting line plus number of requests
being served) at time t.

As mentioned above, there are no exact solutions for
the average response time or average queue length for
the G/G/c queue. Most approximations for steady state
are based on the first two moments of the interarrival
time and service time distributions (i.e., are a function
of Ca and Cs) [14]. Our simulation experiments show
results for different values of Ca and Cs.

2.2 Surge Model

Figure 3 shows the variation of the traffic intensity
ρ(t) = λ(t)/(µc) as a function of time t for a work-
load surge that starts at t = tbeg and ends at t = tend.
The green horizontal line corresponds to ρ(t) = 1, which
means that λ(t) = µc. The portion of the ρ(t) curve be-
tween ta and tb represents the portion of the surge when
the system is unstable, i.e., ρ(t) > 1.

The notation used for the surge model is the following:

• tbeg: time at which the surge begins.

• tend: time at which the surge ends.

• ta: start time of the unstable period of the surge.

• tb: end time of the unstable period of the surge.

• ρ1: pre-surge traffic intensity.

• ρ2: maximum value of ρ(t) achieved during the
surge.

• R1: average pre-surge response time.

• R2: average peak response time caused by the surge.

• tnorm: arrival time of the first request that sees the
response time return to its pre-surge value, i.e.,
R(t‘

norm) = R1 where t‘
norm is the departure time

of such request.

• Ψ1: net number of accumulated requests in the in-
terval (ta, tb).

• Ψ2: net number of accumulated requests in the in-
terval (tb, tend).

• Ψ3: net number of accumulated requests in the in-
terval (tend, tnorm).

The number of requests that arrive during (ta, tb) is∫ tb
ta

λ(t)dt. During this interval, according to the heavy
load assumption ASM-1 below, the rate at which re-
quests depart is µc and therefore the number of requests
that depart in the interval (ta, tb) is µc(tb − ta). There-
fore, the net number of accumulated requests during
(ta, tb) is

Ψ1 =

[∫ tb

ta
λ(t)dt

]
− µc(tb − ta)

=

[∫ tb

ta
µc ρ(t)dt

]
− µc(tb − ta)

= µc
[∫ tb

ta
ρ(t)dt− (tb − ta)

]
= µc

[∫ tb

ta
(ρ(t)− 1)dt

]
. (1)

Figure 3: Surge depicted as ρ(t) vs. t

3

The integral in Eq. 1 is the area marked as A1 in Fig. 3.
Using a similar reasoning as above and assuming,

according to the traffic jam effect assumption (ASM-2
below), that all c servers will be busy during the interval
(tb, tend), we have

Ψ2 =

[∫ tend

tb

λ(t)dt
]
− µc(tend − tb)

=

[∫ tend

tb

µc ρ(t)dt
]
− µc(tend − tb)

= µc
[∫ tend

tb

(ρ(t)− 1)dt
]

. (2)

The integral
∫ tend

tb
(ρ(t)− 1)dt is negative because ρ(t) <

1 in the interval (tb, tend). So, the net number of accu-
mulated requests in this interval is negative, i.e., more
requests leave than arrive. Thus, Ψ2 < 0.

Similarly to what we did above, we can write

Ψ3 = µc
∫ tnorm

tend

(ρ(t)− 1)dt. (3)

But, because ρ(t) = ρ1 in the interval (tend, tnorm), we
have

Ψ3 = µc (ρ1 − 1)(tnorm − tend). (4)

Note that Ψ3 < 0 because ρ1 < 1 in the interval
(tend, tnorm).

The value of tnorm can be obtained by observing that
the requests added by the surge during ta and tb have to
be removed from the system between tb and tnorm. So,
Ψ1 + Ψ2 + Ψ3 = 0. Because Ψ3 depends on tnorm one
can easily compute tnorm by combining Eqs. 1, 2 , and 4.
However, when A1 =| A2 |, A3 = 0 and tnorm = tend.
So,

tnorm = tend + max

(
0,

∫ tend
ta

(ρ(t)− 1)dt

1− ρ1

)
. (5)

2.3 Assumptions

We use the following assumptions:

• ASM-1 (heavy load assumption): When the traffic in-
tensity ρ(t) exceeds 1, all c servers will be busy 100%
of the time and the system throughput will be equal
to µc.

• ASM-2 (traffic jam effect): All c servers will continue
to be 100% busy until some time tnorm after the end
of the surge. So, the system throughput will be
approximated as µc until t = tnorm.

• ASM-3: (fast rampup): The traffic intensity increases
very fast between tbeg and ta. More precisely,
(1 − ρ1)/(ta − tbeg) � 1/(time unit). Therefore,
there is not enough time for the queue to increase
significantly between tbeg and ta. Hence, nq(ta) ≈
nq(tbeq).

2.4 Generic Property About a Surge

We now show the following useful generic surge prop-
erty:

Generic Surge Property: Consider the heavy load as-
sumption that ρ(t) � 1 during a significant portion
of the interval [ta, tb] (see Fig. 3) and consider a tagged
request that arrives at time tx for ta ≤ tx ≤ tb. Then, the
tagged request leaves the system at time at time t

′
x given

by

t
′
x ≈ tx +

∫ t=tx

t=ta
[ρ(t)− 1]dt (6)

and the response time R(t‘
x) is given by

R(t‘
x) ≈

∫ t=tx

t=ta
[ρ(t)− 1]dt. (7)

Proof: Similarly to our derivations of Ψ1, we define Ψx
as the net number of requests accumulated in the interval
(ta, tx). So,

Ψx = µc
∫ tx

ta
(ρ(t)− 1)dt. (8)

Thus, the average number of requests in the system at
time tx is

nq(tx) = nq(ta) + Ψx. (9)

The tagged request will depart at time t‘
x after all nq(tx)

requests it finds in the system when it arrives are served
and after the tagged request itself is served, which takes
1/µ time units. Due to the heavy traffic assumption
(ASM-1), the throughput in the interval (ta, tb) is con-
sidered to be equal to µc. Thus, it will take nq(tx)/(µc)
time units to serve all nq(tx) requests. So,

t‘
x = tx +

nq(tx)

µc
+

1
µ
= tx +

nq(ta) + Ψx

µc
+

1
µ

= tx +
nq(ta)

µc
+
∫ tx

ta
(ρ(t)− 1)dt +

1
µ

(10)

But, according to the fast rampup assumption (ASM-
3), nq(tbeq) ≈ nq(ta) and Eq. 10 becomes

t‘
x = tx +

nq(tbeg)

µc
+

1
µ
+
∫ tx

ta
(ρ(t)− 1)dt. (11)

But,

nq(tbeg)

µc
+

1
µ
≤

nq(tbeg)

ρ1µc
+

1
µ
=

nq(tbeg)

λ1
+

1
µ
= R1

(12)
Thus,

t‘
x ≈ tx + R1 +

∫ tx

ta
(ρ(t)− 1)dt. (13)

By definition, the response time of a request is the differ-
ence between the time it departs and the time it arrives.
So,

R(t‘
x) = t‘

x − tx ≈ R1 +
∫ t=tx

t=ta
[ρ(t)− 1)]dt. (14)

4

If the pre-surge response time R1 �
∫ t=tx

t=ta
[ρ(t)− 1)]dt,

i.e., tx is much closer to tb than to ta, the above equations
can be further approximated as

t
′
x ≈ tx +

∫ t=tx

t=ta
[ρ(t)− 1)]dt (15)

and

R(t‘
x) ≈

∫ t=tx

t=ta
[ρ(t)− 1)]dt. (16)

3 Trapezoidal Shaped Workload
Surges

We now consider for the rest of this paper that the traffic
surge is shaped as a trapezoid, which is a very good
approximation for generic surges as the one depicted in
Fig. 3.

Figure 4 shows a trapezoidal workload surge; the
top curve in that figure shows ρ(t) and the bottom one
shows R(t), defined as the response time of requests
leaving the system at time t.

Figure 4: Trapezoidal workload surge. Top: variation of
the traffic intensity ρ(t) vs. time. Bottom: variation of
the response time R(t) vs. time.

A trapezoidal surge has three phases: a ramp-up
phase in which the average arrival rate increases un-
til it peaks, a peak phase during which the average ar-
rival rate remains at its peak value, and a ramp-down
phase during which the average arrival rate decreases

to the value it had before the start of the ramp-up phase.
Let the average arrival rate before the beginning of the
ramp-up phase be λ1; therefore the traffic intensity is
ρ1 = λ1/(µc). The average arrival rate during the peak
phase is denoted by λ2 and therefore the traffic intensity
during this phase is ρ2 = λ2/(µc). During a portion
α, (ta − tbeg), of the ramp-up period, the traffic inten-
sity has a value ρ1 < 1 (i.e., the system is stable). Then,
ρ(t) increases to ρ2 > 1 and stays at that level during
the unstable portion of the surge period (β = t2 − t1).
Then, the traffic intensity decreases back to ρ1 during
the ramp-down period of duration γ = tend − t2. Thus,
the characteristics of the trapezoidal workload are de-
termined by the following attributes: tbeg, α, β, γ, ρ1 and
ρ2.

The ρ(t) curve in Fig. 4 can be written using the fol-
lowing piece-wise linear relationships:

ρ(t) =



ρ1 t ≤ tbeg

ρ1 +
ρ2−ρ1

t1−tbeg
(t− tbeg) tbeg < t ≤ t1

ρ2 t1 < t ≤ t2

ρ2 +
ρ1−ρ2

tend−t2
(t− t2) t2 < t ≤ tend

ρ1 tend < t.

(17)

By definition (see Fig. 4),

α = t1 − tbeg

β = t2 − t1

γ = tend − t2. (18)

For convenience we define the constant K as:

K =
ρ2 − 1
ρ2 − ρ1

. (19)

Using the above equations and Fig. 4, we can now
express ta and tb as:

ta = t1 − Kα = tbeg + (1− K)α (20)

tb = t2 + Kγ = tend − (1− K)γ. (21)

We derive in the following subsections analytic expres-
sions for the following metrics:

• t‘
b: time at which the response time reaches its peak

value R2.

• R2 = R(t‘
b): estimate for the peak response time.

• δ = t‘
b − tend: response time lag, i.e., estimated du-

ration of the interval between the end of the ramp-
down phase and the time when the response time
peaks.

• ∆ = t‘
norm − t‘

b: estimated time needed for the re-
sponse time to decrease from its peak value of R2 to
its value R1 before the surge started.

5

We now compute the areas A1 and A2 for the trape-
zoidal surge using the geometry of Fig. 4. A1 is the
area of a trapezoid with bases (tb − ta) and β and height
ρ2 − 1. Thus,

A1 =
β + tb − ta

2
(ρ2 − 1). (22)

Replacing ta and tb from Eqs. (20) and (21) yields

A1 =

[
β +

K(α + γ)

2

]
(ρ2 − 1). (23)

A2 is the area of a triangle with base tend − tb and height
1− ρ1. Thus,

A2 =
(tend − tb)(1− ρ1)

2
. (24)

But, according to Eq. 21, tend − tb = (1− K)γ. So, A2
can be rewritten as

A2 =
(1− K)γ(1− ρ1)

2
. (25)

We can now compute tnorm for the trapezoidal surge
case using Eq. 5 as

tnorm = tend + max

(
0,

∫ tend
ta

(ρ(t)− 1)dt

1− ρ1

)

= tend + max
(

0,
A1 − A2

1− ρ1

)
. (26)

3.1 Estimating t‘
b and R2

We use the property of a generic surge derived in the
previous section to derive R2. The peak response time
will be seen by a request that arrives at time tb, i.e., right
at the end of the unstable portion of the surge. This
request leaves the system at time t‘

b. Thus, according to
Eqs. (6) and (7), we have

t
′
b ≈ tb +

∫ t=tb

t=ta
[ρ(t)− 1)]dt (27)

and the response time R2 = R(t‘
b) is given by

R2 ≈
∫ t=tb

t=ta
[ρ(t)− 1)]dt. (28)

Thus,
t
′
b = tb + A1 (29)

and
R2 = A1. (30)

3.2 Estimating δ

From Fig. 4, δ = t‘
b − tend, the estimated duration of the

interval between the end of the ramp-down phase and
the time when the response time peaks. From Eqs. (29)
and (21) we get

δ = t‘
b− tend = tb + A1− (tb +(1−K)γ) = A1− (1−K)γ

(31)

3.3 Estimating ∆

From Fig. 4, we can see that

∆ = t‘
norm − t‘

b (32)

But, because a request that arrives at time tnorm has
an average response time of R1, we have that t‘

norm =
tnorm + R1. Then,

∆ = tnorm + R1 − t‘
b (33)

Using Eqs. 26 and 29 in Eq. 33 yields

∆ = (1− K)γ + R1 +
ρ1 A1 − A2

1− ρ1
(34)

where A1 and A2 are given by Eqs. 23 and 25, respec-
tively. If R1 is much smaller than the other terms in
the equation, which is certainly the case for heavy load
conditions, then

∆ ≈ (1− K)γ +
ρ1 A1 − A2

1− ρ1
. (35)

3.4 Estimating Points on the Response
Time Curve

The bottom of Fig. 4 shows the response time curve R(t)
that results from a trapezoidal surge. The figure shows
that the shape of this curve can be estimated by seven
important points along the time axis. Remember that we
use the notation t‘ as the departure instant of a request
that arrives at time t. So, R(t‘) = t‘ − t. Table 1 shows x
and y coordinates of these points and explains the reason
for the expression for the value of R(t). Note that for all
points within the surge we use the general surge prop-
erty shown in Eq. 7 to compute the value of the response
time. The integral in Eq. 7 is easily computed from the
geometric characteristics of the trapezoidal surge shown
in the top graph of Fig. 4. Points 1 and 7 are points that
represent steady-state before and after the surge.

4 Special Cases of the Trapezoidal
Workload Surge

We discuss here two special cases of the trapezoidal
surge: rectangular and triangular surges.

4.1 Rectangular Workload Surge

We can derive equations for rectangular surges as a spe-
cial case of trapezoidal ones. Doing so yields the same
results obtained in our previous paper [3].

A rectangular surge is characterized by t1 = tbeg and
tend = t2. Thus, α = γ = 0. Therefore, we get the follow-
ing values for R2, δ, and ∆ using Eqs. 30, 31, and 35.

R2 = (ρ2 − 1)β

6

Table 1: Salient points on response time curve for trapezoidal shaped workload surges
i xi yi Explanation
1 t‘

beg R1 Steady-state pre-surge
2 t‘

a ≈ ta + R1 ≈ R1 Assump. ASM-3
3 t‘

1 = t1 + R(t‘
1) R(t‘

1) ≈ R1 + (Kα
2)(ρ2 − 1) Eq. 14

4 t‘
2 = t2 + R(t‘

2) R(t‘
2) ≈ R1 + (β + Kα

2)(ρ2 − 1) Eq. 14
5 t‘

b = tb + R(t‘
b) R(t‘

b) ≈ R1 + A1 = R2 Eq. 14
6 t‘

end = tend + R(t‘
end) R(t‘

end) ≈ R1 + A1 − A2 Eq. 14
7 t‘

norm = tnorm + R1 R1 Steady-state post surge

δ = (ρ2 − 1)β

∆ =
ρ1(ρ2 − 1)

1− ρ1
β (36)

The results above match exactly those obtained in our
previous paper [3].

4.2 Triangular Workload Surge

We present here results for three types of triangular
workload surges (see Fig.5), derived from the trape-
zoidal surge in Fig. 4 by making β = 0, i.e., (t2 = t1). For
all three cases, the area A1 is given by

A1 =
(ρ2 − 1)(tb − ta)

2
. (37)

4.2.1 Triangular Workload Surge, Type 1 (α > 0, γ =
0,⇒ A2 = 0)

For this shape of workload surge, we have:

R2 = A1 = (tb − ta)(ρ2 − 1)/2
δ = A1 = (tb − ta)(ρ2 − 1)/2

∆ =
ρ1 A1

1− ρ1
=

ρ1(ρ2 − 1)(tb − ta)

2(1− ρ1)
(38)

where tb − ta = Kα(see top of Fig. 5).

4.2.2 Triangular Workload Surge, Type 2 (α = 0, γ >
0)

For this workload surge, we have:

R2 = A1 = (tb − ta)(ρ2 − 1)/2
δ = A1 − (1− K)γ = (tb − ta)(ρ2 − 1)/2− (1− K)γ

∆ = (1− K)γ +
ρ1 A1 − A2

1− ρ1
(39)

where tb − ta = Kα and A2 = (1− ρ1)(tend − tb)/2.

Figure 5: Triangular workload surge - variation of the
traffic intensity. Top: Type 1. Middle: Type 2. Bottom:
Type3

4.2.3 Triangular Workload Surge, Type 3 (α > 0, γ >
0)

For this shape of workload surge, we have:

R2 = A1 = (tb − ta)(ρ2 − 1)/27

δ = A1 − (1− K)γ = (tb − ta)(ρ2 − 1)/2− (1− K)γ

∆ = (1− K)γ +
ρ1 A1 − A2

1− ρ1
(40)

where tb − ta = K(α + γ) and A2 = (1 − ρ1)(tend −
tb)/2.

Therefore, all three types of triangular workload
surges have the same value of R2 and types 2 and 3
have the same expression for δ and ∆.

5 Validations

We validated the equations derived in the previous
section with a G/G/c simulator we developed previ-
ously [3]. This simulator also includes the autonomic
elasticity controller described in Section 6.

5.1 Comparing Estimates with Simulation
for Trapezoidal Surges

Figure 6 shows a surge lasting 300 seconds during the
interval (300 sec, 600 sec) and the resulting response time
curve for a G/G/5 system. The following parameters
were used to generate this figure: λ1 = 5 req/sec; λ2 =
20 req/sec; µ = 2 req/sec; Ca = Cs = 2.0; α = 60 sec;
β = 180 sec; γ = 60 sec. Therefore, ρ1 = 0.5, ρ2 = 2,
K = (2− 1)/(2− 0.5) = 2/3, ta = 320 sec, tb = 580
sec, A1 = 220 sec, and A2 = 5 sec. A total of 1.5 million
requests were processed by the G/G/5 simulator for 100
independent runs.

The figure shows a peak response time of about
220 sec, while the estimated value of R2, according to
Eq. (22), is (ρ2 − 1)(β + tb − ta)/2 = (2− 1) × (180 +
580 − 320)/2 = 220 sec. This is exactly the peak re-
sponse time observed in the figure. This peak response
time occurs at time 800 sec according to Fig. 6. Since
the surge ends at time 600 sec, δ ≈ 800 - 600 = 200 sec.
This is the same value estimated by Eq. (31) for δ as
220− (1− 2/3)× 60 = 200 sec. Finally, the estimated
value of ∆, according to Eq. (35), is (1 − 2/3) × 60 +
(0.5× 220− 5.0)/(1− 0.5) = 230 sec. This estimated
value would take us to time 800 sec + 230 sec = 1,030
sec for t‘

norm, which is close to the 1,090 sec shown in the
figure.

Table 2 shows several other comparisons between es-
timated values and simulation results. The table illus-
trates the results of eight experiments with different sets
of parameters. For each experiment, we report the value
of the peak response time R2, δ, and ∆ obtained by the
G/G/c simulator and through the estimates. The simu-
lation values are averages over 100 runs with 95% con-
fidence intervals. The number of requests processed in
each set of 100 runs varied between one million and 1.7
million. We also report the percent error between the
simulation and the analytic estimates as

ε = 100× (simulation− estimate)/simulation. (41)

Figure 6: Example of trapezoidal workload surge and
corresponding effect on the response time for c = 5
servers (average over 100 runs). Workload surge dura-
tion, α = 60 sec, β = 180 sec, γ = 60 sec, tbeg − tend =
300 sec; average service time: 0.5 sec; average arrival rate
before and after surge: 5 req/sec; average arrival rate
during surge: 20 req/sec; coefficient of variation of the
interarrival time: 2; coefficient of variation of the service
time: 2

Experiments 1-6 in Table 2 are for G/G/5 and experi-
ments 7 and 8 are for M/M/5 and D/D/5, respectively.
The surge duration (α + β + γ = tend − tbeg) varies from
experiment to experiment as indicated in the table. The
pre-surge traffic intensity, ρ1, was 0.6 in all cases and the
maximum traffic intensity during the surge, ρ2, was 1.5
in all cases except for experiment 6, when it was 2.0. The
table also indicates for each experiment the values of the
coefficients of variation Ca and Cs. Clearly, for M/M/5
Ca = Cs = 1 and for D/D/5 Ca = Cs = 0. As it can be
seen, the percent error ε is very small (less than 9.9%) in
all cases. The largest errors occur for δ, in which case the
maximum error is 9.9% and occurs in experiment 1. Even
in that case, the estimated value of δ (13.3 sec) is very
close to both the mean value of (14.76 sec) or the lower
bound (11.96 sec) of the 95% confidence interval. We also
observe that as the surge duration (α + β + γ) increases
from 180 sec to 420 sec from experiment 1 to 5, the error
ε for δ tends to decrease. This is expected because of
the heavy load assumption used in the derivation of the
analytic estimates. For the same reason, higher values
of ρ2 improve the accuracy of the estimates. This can be
seen in experiment 6 that uses ρ2 = 2.0.

Figures 7, 8, and 9 illustrate the pictorial comparison
of the workload surge estimates with those of simulation
experiments for three different sets of trapezoidal shaped
workload surges. Each set consists of D/D/5, M/M/5,
and G/G/5 systems. In each of the figures, the cyan
curve is the response time computed using the analytical
estimates; the blue curve is the average response time
of 100 independent simulation runs. The results clearly
illustrate that the surge estimates are very close to those

8

Table 2: Comparison between estimates and simulation
for Trapezoidal Surges

[#1] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5;
R1 = 0.608 sec; α = 45 sec; β = 60 sec; γ = 75 sec

R2 (sec) δ (sec) ∆ (sec)
Simulation 49.08 ± 1.6 14.76 ± 2.8 92.10 ± 4.0
Estimated 46.70 13.30 86.70
ε 4.9% 9.9% 5.9%

[#2] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5;
R1 = 0.608 sec; α = 45 sec; β = 120 sec; γ = 75 sec

R2 (sec) δ (sec) ∆ (sec)
Simulation 81.19 ± 1.8 46.64 ± 3.0 138.10 ± 4.5
Estimated 76.70 43.30 131.70
ε 5.5% 7.2% 4.6%

[#3] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5;
R1 = 0.608 sec; α = 45 sec; β = 180 sec; γ = 75 sec

R2 (sec) δ (sec) ∆ (sec)
Simulation 111.70 ± 2.0 75.26 ± 3.3 186.12 ± 5.2
Estimated 106.70 73.30 176.70
ε 4.5% 2.6% 5.1%

[#4] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5;
R1 = 0.608 sec; α = 45 sec; β = 240 sec; γ = 75 sec

R2 (sec) δ (sec) ∆ (sec)
Simulation 141.60 ± 2.4 107.72 ± 3.5 226.90 ± 5.5
Estimated 136.70 103.30 221.70
ε 3.5% 4.1% 2.3%

[#5] G/G/5; Ca = 1.4; Cs = 1.3; ρ1 = 0.6; ρ2 = 1.5;
R1 = 0.608 sec; α = 45 sec; β = 300 sec; γ = 75 sec

R2 (sec) δ (sec) ∆ (sec)
Simulation 171.84 ± 3.0 136.88 ± 3.9 276.24 ± 6.7
Estimated 166.70 133.30 266.70
ε 3.0% 2.6% 3.5%

[#6] G/G/5; Ca = 2.0; Cs = 2.0; ρ1 = 0.5; ρ2 = 2.0;
R1 = 0.633 sec; α = 45 sec; β = 300 sec; γ = 75 sec

R2 (sec) δ (sec) ∆ (sec)
Simulation 348.82 ± 4.9 322.38 ± 5.7 366.00 ± 8.1
Estimated 340.00 315.00 352.50
ε 2.5% 2.3% 3.7%

[#7] M/M/5; Ca = 1.0; Cs = 1.0; ρ1 = 0.6; ρ2 = 1.5;
R1 = 0.559 sec; α = 45 sec; β = 300 sec; γ = 75 sec

R2 (sec) δ (sec) ∆ (sec)
Simulation 170.43 ± 1.9 133.88 ± 2.8 276.48 ± 4.7
Estimated 166.70 133.30 266.70
ε 2.2% 0.4% 3.5%

[#8] D/D/5; Ca = 0.0; Cs = 0.0; ρ1 = 0.6; ρ2 = 1.5;
R1 = 0.500 sec; α = 45 sec; β = 300 sec; γ = 75 sec

R2 (sec) δ (sec) ∆ (sec)
Simulation 167.26 ± 0.0 133.00 ± 0.0 270.00 ± 0.0
Estimated 166.70 133.30 266.70
ε 0.3% -0.2% 1.2%

of simulation experiments.

5.2 Analyzing the Effects of Ca and Cs for
Trapezoidal Surges

We now examine the effects of Ca and Cs on the three
metrics we proposed in Section 3 by comparing the mean
errors from the simulation values with the analytic es-
timates. In addition, we study the effects of Ca and Cs
in isolation from each other. We chose the following
three broad categories of experiments, i.e., models. In

Figure 7: Comparison of estimates with simulation for
trapezoidal surge (α 6= 0 & γ 6= 0). Model: {top: D/D/5,
middle: M/M/5, bottom: G/G/5; Ca= 1.4; Cs=1.3;}; µ=
2.0 req/sec; ρ1= 0.60; ρ2= 1.50; R1= {top: 0.50, middle:
0.56, bottom: 0.61} sec; α= 60 sec; β= 180 sec; γ= 120 sec;
averaged over 100 independent runs

addition, this study also meets the need for investigation
of accuracy of estimate equations using a wide range of
input parameters.

1. G/D/c: effects of Ca alone because Cs=0;

2. D/G/c: effects of Cs alone because Ca=0;

3. G/G/c: effects of Ca and Cs together.

We designed a set of experiments for each model by
varying the values of Ca, Cs, ρ2, and β while keeping
c = 5, α = 45 sec, and γ = 75 sec for all experiments.

• Ca ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}; or 0 for D/G/5;

9

Figure 8: Comparison of estimates with simulation for
trapezoidal surge (α 6= 0 & γ = 0). Model: {top: D/D/5,
middle: M/M/5, bottom: G/G/5; Ca= 1.4; Cs=1.3;}; µ=
2.0 req/sec; ρ1= 0.60; ρ2= 1.50; R1= {top: 0.50, middle:
0.56, bottom: 0.61} sec; α= 120 sec; β= 180 sec; γ= 0 sec;
averaged over 100 independent runs

• Cs ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}; or 0 for G/D/5;

• Ca = Cs for all G/G/5 experiments;

• ρ1 = 0.6;

• ρ2 ∈ {1.25, 1.50, 1.75, 2.00};

• β ∈ {60, 120, 180, 240, 300} sec

All combinations of these input variables resulted in
140 experiments for each model and each experiment
consisted of 100 runs each. Thus, we conducted a total
of 420 experiments or 42,000 runs in total. We refer

Figure 9: Comparison of estimates with simulation for
trapezoidal surge (α = 0 & γ 6= 0). Model: {top: D/D/5,
middle: M/M/5, bottom: G/G/5; Ca= 1.4; Cs=1.3;}; µ=
2.0 req/sec; ρ1= 0.60; ρ2= 1.50; R1= {top: 0.50, middle:
0.56, bottom: 0.61} sec; α= 0 sec; β= 180 sec; γ= 120 sec;
averaged over 100 independent runs

to each of these three sets of 140 experiments as a set
of experiments in our discussion. The total number of
requests processed during these simulations was around
186 million for each model.

Table 3 shows the mean and 95% confidence intervals
for the errors of the metrics for the three sets of experi-
ments.

We summarize our observations below based on the
statistical results presented on Table 3.

• The mean absolute error ranged from 1.80% [for
G/G/5 : ε(δ)] to 4.24% [for G/G/5 : ε(R2)]. Hence,
the analytic estimates are good proxies for the actual
results of a set of experiments. Because the widths

10

Table 3: Mean and 95% Confidence Intervals for a set of
Experiments’ Errors of Metric Estimate

ε (metric) G/D/5 D/G/5 G/G/5
1 ε(R2) 3.14% ± 0.5% 2.89% ± 0.5% 4.24% ± 0.6%
2 ε(δ) 2.24% ± 2.0% 2.60% ± 1.6% 1.80% ± 2.2%
3 ε(∆) 3.39% ± 0.4% 3.16% ± 0.4% 4.00% ± 0.5%

of the 95% confidence intervals for the mean values
of the errors are very small, this provides further
validation to the formulas.

• Combinations of input parameters with high values
of α+ β+γ, ρ2 and low values of Ca and Cs resulted
in lower errors.

• Higher but acceptable errors were obtained for com-
binations of input parameters with low values of
α + β + γ and ρ2 with higher values of Ca and Cs.

• The errors for D/D/5 are insignificant or very close
to zero for many combinations of α+ β+γ, ρ1 < 1.0
and ρ2 > 1.0.

• No significant differences in the errors were ob-
served due to either Ca or Cs or both.

• In general, the 95% confidence intervals ranged
from low single digit % to mid single digit %.

Based on all the above observations one can conclude
that the estimate formulas proposed for the three metrics
are in close agreement with the experimental/simulation
results for a wide range of values of ρ2, β, Ca, and Cs.

5.3 Comparing Estimates with Simulation
for Triangular Surges

Figures 10, 11, and 12 illustrate the pictorial comparison
of the workload surge estimates with those of simulation
experiments for three different sets of triangular shaped
workload surges. Each set consists of D/D/5, M/M/5,
and G/G/5 systems. In each of the figures, the cyan
curve is the response time computed using the analytical
estimates; the blue curve is the average response time
computed using 100 independent simulation runs. The
results clearly illustrate that the surge estimates are very
close to those of simulation experiments.

6 Autonomic Elasticity Control

Elasticity control is a mechanism that dynamically
changes the number of servers (aka horizontal scaling) or
changes the capacity of the servers (aka vertical scaling)
as needed. When servers are virtualized, it is relatively
easy to change the number of virtual machines and/or
their characteristics.

Figure 10: Comparison of estimates with simulation for
triangular surge, Type 1 (α 6= 0, β = 0 & γ = 0). Model:
{top: D/D/5, middle: M/M/5, bottom: G/G/5; Ca=
1.4; Cs=1.3;}; µ= 2.0 req/sec; ρ1= 0.60; ρ2= 1.50; R1= {top:
0.50, middle: 0.56, bottom: 0.61} sec; α= 300 sec; β= 0 sec;
γ= 0 sec; averaged over 100 independent runs

We first consider an autonomic elasticity controller
that performs horizontal scaling to maintain the peak
response time below a certain threshold Rmax. Because
one cannot predict the surge duration (α, β, and γ) ahead
of time and because it is preferable not to overprovision,
the controller monitors the surge duration and at regular
intervals, uses the estimated peak response time equa-
tions (see Eqs. (23) and (30)) to estimate the minimum
number of servers, cmin, needed to maintain the peak
response time below Rmax. Thus,

R2 ≈ (ρ2 − 1)(β +
K(α + γ)

2
)

11

Figure 11: Comparison of estimates with simulation for
triangular surge, Type 2 (α = 0, β = 0 & γ 6= 0). Model:
{top: D/D/5, middle: M/M/5, bottom: G/G/5; Ca=
1.4; Cs=1.3;}; µ= 2.0 req/sec; ρ1= 0.60; ρ2= 1.50; R1= {top:
0.50, middle: 0.56, bottom: 0.61} sec; α= 0 sec; β= 0 sec;
γ= 300 sec; averaged over 100 independent runs

≤ Rmax

⇒ ρ2 ≤ Rmax

β + K(α + γ)/2
+ 1

⇒ λ2

µc
≤ Rmax

β + K(α + γ)/2
+ 1

⇒ c ≥ λ/µ
Rmax

β+K(α+γ)/2 + 1
(42)

Because the number of servers has to be an integer, we

Figure 12: Comparison of estimates with simulation for
triangular surge, Type 3 (α 6= 0, β = 0 & γ 6= 0). Model:
{top: D/D/5, middle: M/M/5, bottom: G/G/5; Ca=
1.4; Cs=1.3;}; µ= 2.0 req/sec; ρ1= 0.60; ρ2= 1.50; R1= {top:
0.50, middle: 0.56, bottom: 0.61} sec; α= 120 sec; β= 0 sec;
γ= 180 sec; averaged over 100 independent runs

get

cmin =

 λ/µ
Rmax

β+K(α+γ)/2 + 1

 . (43)

For vertical scaling, we need to find the minimum
value µmin of µ needed to maintain the peak response
time below Rmax. Similarly to the equation above, we
get,

µmin =
λ/c

Rmax
β+K(α+γ)/2 + 1

. (44)

If server capacities can only be selected from a discrete

12

set such as in Amazon’s EC2, the value of µmin can be
used the determine the lowest capacity VM that is higher
than µmin.

Algorithm 1 shows the elasticity controller algorithm
for horizontal scaling. The while loop between lines 2
and 21 includes the operation of the elasticity controller
while the system is operational. The inputs used by the
controller are: (1) the average arrival rate of requests
λ assumed to be constantly monitored and available
to the controller, (2) the service rate µ of each server,
(3) the number coriginal of original servers, and (4) the
maximum desirable response time Rmax. The controller
wakes up at regular intervals (called controller intervals)
of duration τ, checks if the traffic intensity is below a
surge level (ρ < 1; see lines 5-8) or experiencing a surge
(ρ ≥ ρoriginal; lines 10-19). Algorithm 1 assumes that
λ is the most recent average arrival rate of requests ac-
cumulated during the most recent controller interval.
The variable CurrentTime has the current clock time and
the function Sleep (t) suspends the operation of the con-
troller for a time t. When the controller detects in line 5
that a surge has started, it moves to line 9 and records
the time at which the surge started as the current time
minus half of the sleep time τ. The reason for this adjust-
ment is that the traffic intensity ρ could have become > 1
anytime while the controller was sleeping in line 6. On
average, we assume the surge started midway during
that time.

The controller assumes that a function called Work-
loadAnalysis (line 12) continuously analyzes the work-
load intensity using any of a number of techniques (e.g.,
pattern recognition, time-series data mining, machine
learning) and makes available the values of (α, β, γ) to
the controller. Recognizing the features of the work-
load is orthogonal to elasticity control and is outside
the scope of this paper. Because the controller sleeps
for τ seconds within the loop, (α, β, γ) are incremented
by τ every time. In line 13, the minimum number of
servers cmin is recomputed with the updated values of
(α, β, γ). As (α, β, γ) increase, cmin increases. After the
surge, the number of servers is returned to the original
value coriginal (line 20). Note that if no surge occurs, the
controller keeps executing the while loop in lines 5-8.

An algorithm for a vertical elasticity controller is given
in Algorithm 2. This algorithm is very similar to the
horizontal elasticity controller of Algorithm 1 with the
server capacity µ used as a control knob instead of the
number of servers.

7 Evaluation of the Controller

This section presents an experimental evaluation of the
horizontal elasticity controller discussed in the previous
section. The metrics used to assess the effectiveness of
the controller are:

• D: time during which the response time suffered;

Algorithm 1: Horizontal Elasticity Controller for
Trapezoidal Shaped Workload Surges

Input : λ, µ, coriginal, Rmax

1 ρoriginal ← λ/(µ coriginal)

2 while system is online do
3 c← coriginal
4 ρ← λ/(µ c)

/* wake up at regular intervals while

surge has not started */

5 while ρ < 1 do
6 Sleep (τ)
7 ρ← λ/(µc)
8 end
9 SurgeStart← CurrentTime - τ/2

/* While surge is ongoing */

10 while ρ ≥ ρoriginal do
11 ρ← λ/(µ c)

/* Update surge durations */

/* ext. function returns α, β, γ */

12 α, β, γ←WorkloadAnalysis ()
/* Compute min. # of servers */

13 cmin =
⌈

λ/µ
(Rmax/(β+K(α+γ)/2))+1

⌉
14 if cmin > c then

/* Change # required servers */

15 Change # servers in the system to cmin
16 c← cmin
17 end
18 Sleep (τ)
19 end

/* return to original # servers */

20 Change # servers in the system to coriginal
21 end

D = t‘
norm − ta = Kα + β + γ + δ + ∆.

• Φ: area under the curve of R(t) during D; more
specifically, Φ =

∫ ta+D
ta

R(t)dt.

These metrics are identified in Fig. 13, which shows
the behavior of a multi-server system during a workload
surge, with and without the controller. We use the sub-
scripts c and nc hereafter to indicate metrics obtained
when the controller is on and off, respectively.

We also define a function, η (X) of metric X to repre-
sent the percentage improvement of X when using the
autonomic controller:

η (X) = 100× Xnc − Xc

Xc
. (45)

The three metrics of interest in our case are R2, D, and
Φ. Because R2nc ≥ R2c , Dnc ≥ Dc, and Φnc ≥ Φc, the
percentage improvement of these metrics is always posi-
tive.

13

Figure 13: Comparison of the surge behavior with and without a controller

We give below expressions for the three metrics, for
the case in which the controller is disabled, using the
equations derived in the prior sections and using Fig. 13:

R2nc = (ρ2 − 1)(β +
K(α + γ)

2
) (46)

Dnc = (Kα + β + γ) + δnc + ∆nc (47)

Φnc =
∫ ta+Dnc

ta
R(t) dt (48)

Φnc is obtained by computing the area under the curve
by using Figs. 4 and 13 and the points (xi, yi) in Table 1
as:

Φnc =
6

∑
i=2

1
2
(xi+1 − xi)× (yi+1 + yi). (49)

We conducted experiments with the horizontal elastic-
ity controller and measured the three metrics described
above and computed the improvement η as reported in
Table 4. The no controller values in the table are obtained
from Eqs. (46)-(48). The table reports three experiments
for G/G/5 with increasing values of the surge duration
(60 sec, 180 sec, and 300 sec). Then, it reports results for
M/M/5 and D/D/5, both of them for surge durations
(α + β + γ) of 420 sec. The first general observation is
that the percent relative improvement η() is very large
(ranges from 298 to 47,274) for all three metrics and for
all five scenarios. Also, the largest gains are for Φ, fol-
lowed by R2, and D. When we compare the three G/G/5
cases we see that the gains increase as the surge duration
increases. This is a good property of the controller and it

is a consequence of the fact that the controller incremen-
tally adjusts the number of servers as it obtains a better
estimate of the surge duration.

The behavior of the controller can be appreciated in
Fig. 14 that illustrates (a) the surge (in red), (b) the pre-
dicted response time (in light blue), (c) the average over
all runs of the response time with the controller en-
abled (in dark blue), (d) the individual values of the
response times with the controller for all 100 runs (gray
curves), and (e) the variation of the number of servers (in
green). All figures are for a G/G/c case that starts with
five servers and has coefficients of variation Ca = 1.40
and Cs = 1.30. The traffic intensity without the con-
troller before the surge was ρ1 = 0.60 and after the
surge ρ2 = 1.50. The five plots on the left correspond to
Rmax = 5 sec and those on the right to Rmax = 10 sec.

In each side, α = 45 sec, γ = 75 sec, and the value of β
is 60 (top) and 300 (bottom) sec. The controller interval
was set to τ = 15 sec in all cases.

The following observations can be drawn from Fig. 14:
(a) In both cases, the controller was able to substantially
reduce the peak response time when compared to the
response time peak without the controller. Higher reduc-
tions can be seen for higher values of the surge duration.
For example, for α = 45 sec, β = 60 sec, γ = 75 sec; and
Rmax = 10 sec, the controller brought the response time
peak from about 47 seconds to about 5 seconds. And for
α = 45 sec, β = 300 sec, γ = 75, the peak response time
is reduced from 168 to 6 seconds with the controller. (b)
The controller tries to minimize the cost of using more
servers by incrementally adding more servers as it has a

14

Figure 14: With Horizontal Elasticity Controller - G/G/5; Ca = 1.40; Cs = 1.30; ρ1nc = 0.60; ρ2nc = 1.50; α = 45 sec;
β = {60, 120, 180, 240, 300} sec; γ = 75 sec; τ = 15 sec; Rmax ={left column= 5 sec; right column= 10 sec}; Average
over 100 independent runs.

15

Algorithm 2: Vertical Elasticity Controller for Trape-
zoidal Shaped Workload Surges

Input : λ, µoriginal, c, Rmax

1 ρoriginal ← λ/(µoriginal c)
2 while system is online do
3 µ← µoriginal
4 ρ← λ/(µ c)

/* wake up at regular intervals while

surge has not started */

5 while ρ < 1 do
6 Sleep (τ)
7 ρ← λ/(µc)
8 end
9 SurgeStart← CurrentTime - τ/2

/* While surge is ongoing */

10 while ρ ≥ ρoriginal do
11 ρ← λ/(µ c)

/* Update surge durations */

/* ext. function returns α, β, γ */

12 α, β, γ←WorkloadAnalysis ()
/* Compute min. server capacity */

13 µmin = λ/c
(Rmax/(β+K(α+γ)/2))+1

14 if µmin > µ then
/* Update server capacity */

15 Change server capacity to µmin
16 µ← µmin
17 end
18 Sleep (τ)
19 end

/* return to original capacity */

20 Change server capacity to µoriginal
21 end

better estimate of the surge duration.
As Fig. 14 indicates, the number of servers is continu-

ally increased by the controller in order to cope with the
surge. It is thus important to quantify the cost incurred
by these additional servers. We define the metric κ as
the number of additional server-seconds used by the
controller (see Fig. 13):

κ =
∫ t2c

t1c

[cc(t)− cnc] dt (50)

where t1c and t2c delimit the time during which the con-
troller added more resources, cc(t) is the number of re-
sources used by the controller at time t, and cnc is the
fixed number of resources used when the controller is
disabled. For illustration purposes, Table 5 shows the
value of κ for a G/G/5 system with Ca = 1.4; Cs = 1.3;
λ1 = 6 req/sec; λ2 = 15 req/sec; and µ = 2 req/sec,
several surge durations (α = 45 sec, γ = 75 sec,
β ∈ {60, 120, 180, 240, 300}) and two values of Rmax for
two different values of the controller interval time τ. The
table indicates that (1) The additional server-seconds κ

Table 4: Performance of the Horizontal Elasticity Con-
troller - Improvements achieved; η’s of Metrics

[a] G/G/c; Ca = 1.4; Cs = 1.3; λ1 = 6 req/sec; λ2 = 15 req/sec;
µ = 2 req/sec; cnc = 5; cc = varies; τ = 15 sec; Rmax = 10 sec;
α = 45 sec; β = 60 sec; γ = 75 sec

No controller With Controller η()%
1 R2 (sec) 46.7 7.2 549
2 D (sec) 260.0 65.4 298
3 Φ (sec2) 6,553.0 329.0 1,892
[b] G/G/c with the same parameters as above and β = 180 sec

No controller With Controller η()%
1 R2 (sec) 106.7 6.7 1,493
2 D (sec) 530.0 91.8 477
3 Φ (sec2) 29,530.0 334.0 8,741
[c] G/G/c with the same parameters as above and β = 300 sec

No controller With Controller η()%
1 R2 (sec) 166.7 6.9 2,316
2 D (sec) 800.0 98.7 711
3 Φ (sec2) 68,707.0 351.0 19,475
[d] M/M/c; λ1 = 6 req/sec; λ2 = 15 req/sec; µ = 2 req/sec;
cnc = 5; cc = varies; τ = 15 sec; Rmax = 10 sec;
α = 45 sec; β = 300 sec; γ = 75 sec

No controller With Controller η()%
1 R2 (sec) 166.7 6.1 2,633
2 D (sec) 800.0 81.6 880
3 Φ (sec2) 68,701.0 312.0 21,920
[e] D/D/c; λ1 = 6 req/sec; λ2 = 15 req/sec; µ = 2 req/sec;
cnc = 5; cc = varies; τ = 15 sec; Rmax = 10 sec;
α = 45 sec; β = 300 sec; γ = 75 sec

No controller With Controller η()%
1 R2 (sec) 166.7 3.5 4,663
2 D (sec) 800.0 64.0 1,150
3 Φ (sec2) 68,693.0 145.0 47,274

increases with the surge duration because there is a need
to keep more resources for a longer time interval. (2)
A more stringent SLA (Rmax = 5 vs. Rmax = 10) re-
quires more resources during longer time. (3) A more
responsive controller (τ = 15 vs. τ = 30) provides more
resources to counter the surge.

Table 5: Additional resources utilized by the horizontal
elasticity controller, κ (server.sec)

G/G/c; Ca = 1.4; Cs = 1.3; λ1 = 6 req/sec; λ2 = 15 req/sec;
µ = 2 req/sec; cnc = 5; cc = varies; α= 45 sec; γ= 75 sec

τ = 15 sec τ = 30 sec
β (sec) Rmax = 5 Rmax = 10 Rmax = 5 Rmax = 10

60 377 369 348 342
120 620 618 558 531
180 858 816 777 735
240 1,148 1,113 990 957
300 1,404 1,335 1,209 1,170

We also conducted experiments to demonstrate the ro-
bustness of the controller even when the workload does
not have an exact trapezoidal shape as assumed for the
derivation of the equations used by the controller. For
that purpose, we injected random upward and down-

16

Figure 15: Controller effect under a 5% perturbation of
the average arrival rate.

ward perturbations every τ seconds to the average work-
load intensity outside and during the surge. These mod-
ified average workload intensity values drive the gener-
ation of the interarrival times during each interval of τ
seconds. For example, Fig. 15 shows that the controller
correctly detects the onset of the surge, increases the
number of servers three times during the surge, and de-
creases the number of servers to its original value when
it detects the end of the surge.

8 Related Work

The authors of [15] conducted a comprehen-
sive study on elasticity mechanisms by propos-
ing a classification based on scope, policy, pur-
pose and method. Under this classification, our
work falls: (1) Scope /Infrastructure, (2) Pur-
pose/Performance, (3) Policy/Automatic/Predictive,
and (4) Method/Redimensioning. The work in [16]
describes a broker to acquire resources on demand
from a public cloud to service requests from a client
enterprise. Reactive auto-scaling is performed by the
broker based on user demand for the IaaS resources.
The goal of the broker is to maximize the profit for the
intermediary enterprise while attempting to reduce the
cost for the client enterprise. That work does not present
any equations that can be used to predict the effects of
workload intensity surges. The work in [17] presented
an elasticity management framework that takes the
input typically presented to reactive rule-based scaling
strategies and returns a proactive auto scaler. Their
elasticity management framework combines reactive
and proactive techniques and uses data mining for
prediction purposes. Examples of predictive control
can be found in [18]. The authors of [19] evaluated
various auto-scaling strategies using log traces from a
Google’s data center cluster comprising of millions of
jobs using the utilization level as a key performance
indicator. They show that proper management of
the parameters of an auto-scaling strategy reduces
the difference between the target utilization and the

actual values. There are many challenges in cloud
autoscaling including the need to accurately estimate
resource usage in the face of significant variability in
workload patterns as discussed in [20], which presents a
model-predictive algorithm for workload forecasting
for resource autoscaling. The sensitivity of auto-scaling
mechanisms to prediction results has been investigated
in [21]. Their work compared threshold-based scaling
techniques based on Support Vector Machine (SVM)
and Neural Networks (NN) predictions. The work
in [22] provided an extensive review of reactive and
proactive autoscaling techniques and discussed in
detail five different groups: static, threshold-based
policies, reinforcement learning, queuing theory, control
theory, and time-series analysis. The authors of [23]
presented a color set algorithm for autoscaling of
Internet applications for cloud computing that achieved
good demand satisfaction ratio and saved energy by
reducing the number servers used when the load is
low. The advantages of elasticity depend to some extent
on the delays involved in resource provisioning. A
study on the startup time of cloud VMs across three
cloud providers, Amazon EC2, Windows Azure and
Rackspace, was described in [24]. The authors of [25]
presented CloudPerf, a performance test framework
designed for distributed and dynamic multi-tenant
environments. CloudPerf has features for elasticity
in cloud environments. The authors of [26] designed
and evaluated a proactive and application-aware
auto-scaler using an ensemble of open-source tools
available online. They used those tools for forecasting of
arrival rates, resource demand estimation, and software
performance modeling of the application. Autoscaling
techniques have been applied to many different types
of applications. The work in [27] investigated elastic
scaling for stream processing applications deployed
in private clouds. They have developed an elastic
switching mechanism to reduce the latency of event
processing jobs by scaling up using resources from
a public cloud. The authors in [28] have shown that
a hybrid controller using horizontal elasticity which
incorporated a reactive controller for scale up coupled
with proactive controllers for scale down decisions
reduced SLA violations significantly compared with
just reactive controllers. The authors in [29] conducted
experimental studies to compare the performance of
autoscaling policies applied to applications modeled as
workflows, i.e., applications modeled as directed acyclic
graphs. They evaluated seven different policies on three
scientific applications and highlighted the trade-offs
between these policies. The authors in [28] showed
that a hybrid controller using horizontal elasticity that
incorporates a reactive controller for scaling up coupled
with proactive controllers for scale down decisions
reduced SLA violations significantly compared with
just reactive controllers. The authors of [30] proposed
EStream, an elastic batched stream processing system,

17

which adjusts available resources to handle workload
fluctuation in container cloud. The authors of [31]
implemented X-Graph, a distributed graph computing
prototype in the cloud. Their system demonstrated
the elastic capabilities in multiple ways. The authors
of [32] modeled the cloud infrastructure as G/G/c
queue in steady state and then proposed an autonomic
elasticity controller that changed the number of virtual
machines allocated to a service in the cloud based
on monitored load changes and predictions of future
load. The authors of [33] proposed a hybrid elasticity
approach that takes advantage of both a capacity based
approach and performance based approach. Extensive
research has been done to improve the performance
of applications in the cloud by utilizing elasticity or
new designs for existing services. For example, the
work in [34] proposed two new designs to improve
the performance and scalability of OpenStack Swift,
an object storage service, which is widely used for
cloud-based distributed storage.

9 Concluding Remarks and Future
Work

Many computer systems, such as Internet datacenters
and cloud computing environments, consist of a multi-
tude of servers that process user requests and may be
subject to surges in the traffic intensity during intervals
of time when the offered load exceeds the system’s ca-
pacity. We derived a generic property for surges of any
shape and from there obtained, for trapezoidal and tri-
angular surges, equations to estimate the impact of a
surge on the peak response time and on the time lag
between the end of the surge and the time at which the
response time peaks. These equations were extensively
validated using simulation, which showed very small
errors between the analytic estimates and simulation.

We then designed and implemented elastic controllers
(a horizontal and a vertical) that use the derived expres-
sions to estimate the number or capacity of required
resources to meet response time SLAs while keeping the
increase in server capacity to the minimum necessary.
Several experiments with the controller indicate that it
meets its goals. The duration of the controller interval τ
influences the maximum response time R2c.

We are currently working on several extensions to the
work reported here. First, we are incorporating server
startup delays into our controller since most resources
(e.g., VMs in the cloud) cannot be provisioned instan-
taneously; we are in the process of designing strategies
to counter the negative effects of server startup delays.
Second, we are analyzing the Google traces [35] to char-
acterize patterns of workload surges that we may use
to further evaluate elasticity controllers. The study of
these patterns might shed some light on the shapes of
these surges. We intend to analyze surge patterns that

are more general than the trapezoidal ones described
here, which include rectangular and triangular. How-
ever, we showed in Fig. 15 that our controller works well
even when the workload surge is not exactly trapezoidal.
We feel that our work is an important first step towards
generalizing model-driven controllers given that many
practical workload surges may be synthesized from a
combinations of trapezoidal shaped surges and other
simple patterns.

Acknowledgements

The work of Daniel A. Menascé was partially supported
by the AFOSR grant FA9550-16-1-0030.

References

[1] L. Kleinrock, Queueing Systems. Vol.1: Theory.
Wiley-Interscience, 1975.

[2] D. A. Menascé, L. W. Dowdy, and V. A. F. Almeida,
Performance by Design:computer capacity planning by
example. Prentice Hall, 2004.

[3] V. Tadakamalla and D. Menascé, “Analysis and au-
tonomic elasticity control for multi-server queues
under traffic surges,” in Cloud and Autonomic Com-
puting (ICCAC), 2017 Intl. Conf. IEEE, 2017, pp.
92–103.

[4] J. Jung, B. Krishnamurthy, and M. Rabinovich,
“Flash crowds and denial of service attacks: Char-
acterization and implications for CDNs and web
sites,” in Proc. 11th Intl. Conf. World Wide Web, ser.
WWW ’02. New York, NY, USA: ACM, 2002, pp.
293–304.

[5] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. E.
Long, “Managing flash crowds on the internet,” in
11th IEEE/ACM Intl. Symp. Modeling, Analysis and
Simulation of Computer Telecommunications Systems,
2003. MASCOTS 2003., Oct 2003, pp. 246–249.

[6] D. Menascé, V. Almeida, R. Riedi, F. Ribeiro, R. Fon-
seca, and W. M. Jr., “A hierarchical and multiscale
approach to analyze e-business workloads,” Perfor-
mance Evaluation, vol. 54, no. 1, pp. 33 – 57, 2003.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patter-
son, A. Rabkin, I. Stoica, and M. Zaharia, “Above
the clouds: A berkeley view of cloud computing,”
EECS Department, University of California, Berke-
ley, Tech. Rep. UCB/EECS-2009-28, Feb 2009.

[8] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud com-
puting: state-of-the-art and research challenges,” J.
Internet Services and Applications, vol. 1, no. 1, pp.
7–18, 2010.

18

[9] Y. Ogawa, G. Hasegawa, and M. Murata, “Cloud
bursting approach based on predicting requests for
business-critical web systems,” in 2017 Intl. Conf.
Computing, Networking and Communications (ICNC),
Jan 2017, pp. 437–441.

[10] Y. Kwok, P. Teller, and S. Arunagiri, “2tl: a schedul-
ing algorithm for meeting the latency requirements
of bursty i/o streams at user-specified percentiles,”
in 2017 IEEE Intl. Conf. Cloud and Autonomic Com-
puting, ser. ICCAC 2017, 2017.

[11] D. Gross, J. Shortle, J. Thompson, and C. Harris,
“Fundamentals of queuing theory, 4th edition,” John
Wiley & Sons, 2008.

[12] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity
in cloud computing: What it is, and what it is not,”
in Proc. 10th Intl. Conf. Autonomic Computing (ICAC
13). San Jose, CA: USENIX, 2013, pp. 23–27.

[13] J. O. Kephart and D. M. Chess, “The vision of au-
tonomic computing,” IEEE Computer, vol. 36, no. 1,
pp. 41–50, 2003.

[14] M. Harchol-Balter, Performance modeling and design
of computer systems: queueing theory in action. Cam-
bridge University Press, 2013.

[15] G. Galante and L. C. E. d. Bona, “A survey on cloud
computing elasticity,” in 2012 IEEE Fifth Intl. Conf.
Utility and Cloud Computing, Nov 2012, pp. 263–270.

[16] A. Biswas, S. Majumdar, B. Nandy, and A. El-
Haraki, “An auto-scaling framework for controlling
enterprise resources on clouds,” in 15th IEEE/ACM
Intl. Symp. Cluster, Cloud and Grid Computing, May
2015, pp. 971–980.

[17] L. R. Moore, K. Bean, and T. Ellahi, “Transforming
reactive auto-scaling into proactive auto-scaling,”
in Proc. 3rd Intl. Workshop on Cloud Data and Plat-
forms. New York, NY, USA: ACM, 2013, pp. 7–12.

[18] G. Mencagli, “Adaptive model predictive control of
autonomic distributed parallel computations with
variable horizons and switching costs,” Concurrency
and Computation: Practice and Experience, vol. 28,
no. 7, pp. 2187–2212, 2016, cpe.3495.

[19] M. A. S. Netto, C. Cardonha, R. L. F. Cunha, and
M. D. Assuncao, “Evaluating auto-scaling strategies
for cloud computing environments,” in 2014 IEEE
22nd Intl. Symp. Modelling, Analysis Simulation of
Computer and Telecommunication Systems, Sept 2014,
pp. 187–196.

[20] N. Roy, A. Dubey, and A. Gokhale, “Efficient au-
toscaling in the cloud using predictive models for
workload forecasting,” in 2011 IEEE 4th Intl. Conf.
Cloud Computing, July 2011, pp. 500–507.

[21] A. Y. Nikravesh, S. A. Ajila, and C. H. Lung, “Mea-
suring prediction sensitivity of a cloud auto-scaling
system,” in 2014 IEEE 38th Intl. Computer Software
and Applications Conf., July 2014, pp. 690–695.

[22] T. Lorido-Botran, J. Miguel-Alonso, and J. A.
Lozano, “A review of auto-scaling techniques for
elastic applications in cloud environments,” Journal
of Grid Computing, vol. 12, no. 4, pp. 559–592, Dec
2014.

[23] Z. Xiao, Q. Chen, and H. Luo, “Automatic scaling of
internet applications for cloud computing services,”
IEEE Tr. Computers, vol. 63, no. 5, pp. 1111–1123,
May 2014.

[24] M. Mao and M. Humphrey, “A performance study
on the vm startup time in the cloud,” in 2012 IEEE
5th Intl.Conf. Cloud Computing, June 2012, pp. 423–
430.

[25] N. Michael, N. Ramannavar, Y. Shen, S. Patil,
and J.-L. Sung, “Cloudperf: A performance test
framework for distributed and dynamic multi-
tenant environments,” in Proc. 8th ACM/SPEC Intl.
Conf. Performance Engineering, ser. ICPE ’17. New
York, NY, USA: ACM, 2017, pp. 189–200. [Online].
Available: http://doi.acm.org/10.1145/3030207.
3044530

[26] A. Bauer, N. Herbst, and S. Kounev, “Design and
evaluation of a proactive, application-aware auto-
scaler: Tutorial paper,” in Proc. 8th ACM/SPEC on
Intl. Conf. Performance Engineering, ser. ICPE ’17.
New York, NY, USA: ACM, 2017, pp. 425–428.

[27] S. Ravindra, M. Dayarathna, and S. Jayasena, “La-
tency aware elastic switching-based stream process-
ing over compressed data streams,” in Proc. 8th
ACM/SPEC Intl. Conf. Performance Engineering, ser.
ICPE ’17. New York, NY, USA: ACM, 2017, pp.
91–102.

[28] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adap-
tive hybrid elasticity controller for cloud infrastruc-
tures,” in 2012 IEEE Network Operations and Manage-
ment Symp., April 2012, pp. 204–212.

[29] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. V. Pa-
padopoulos, B. Ghit, D. Epema, and A. Iosup, “An
experimental performance evaluation of autoscal-
ing policies for complex workflows,” in Proc. 8th
ACM/SPEC on Intl. Conf. Performance Engineering,
ser. ICPE ’17. New York, NY, USA: ACM, 2017, pp.
75–86.

[30] S. Wu, X. Wang, H. Jin, and H. Chen, Elastic Resource
Provisioning for Batched Stream Processing System in
Container Cloud. Cham: Springer International
Publishing, 2017, pp. 411–426.

19

[31] L. Lu, X. Shi, and H. Jin, Towards Truly Elastic
Distributed Graph Computing in the Cloud. Cham:
Springer International Publishing, 2015, pp. 300–
309. [Online]. Available: https://doi.org/10.1007/
978-3-319-26979-5 23

[32] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth,
“Efficient provisioning of bursty scientific work-
loads on the cloud using adaptive elasticity control,”
in Proceedings of the 3rd Workshop on Scientific Cloud
Computing, ser. ScienceCloud ’12. New York, NY,
USA: ACM, 2012, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/2287036.2287044

[33] S. Farokhi, P. Jamshidi, E. Bayuh Lakew, I. Brandic,

and E. Elmroth, “A hybrid cloud controller for ver-
tical memory elasticity,” Future Gener. Comput. Syst.,
vol. 65, no. C, pp. 57–72, Dec. 2016.

[34] S. Gugnani, X. Lu, and D. K. D. Panda, “Swift-x:
Accelerating openstack swift with rdma for build-
ing an efficient hpc cloud,” in Proceedings of the 17th
IEEE/ACM Intl. Symp. Cluster, Cloud and Grid Com-
puting, ser. CCGrid ’17. Piscataway, NJ, USA: IEEE
Press, 2017, pp. 238–247.

[35] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google
cluster-usage traces: format+ schema,” Google Inc.,
Technical Report, pp. 1–14, Nov 2011.

20

