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Abstract

Vehicle routing problems such as the multiagent Dy-
namic Traveling Repariman Problem (DTRP) are of in-
terest to many fields and of increasing practical impor-
tance in light of advances in autonomous vehicles. DTRP
is NP-hard, making approximation methods attractive.
However current heuristic approaches do not adequately
consider issues special to DTRP, such as fairness and
variance, discontiguous-space scenarios, or approaches
to equitably partitioning the task space. We tackle this
problem in a novel way, using a multiagent task alloca-
tion technique called bounty hunting. In bounty hunt-
ing, agents compete to perform tasks non-exclusively in
return for reward, and rapidly learn which agents are
more adept at various tasks than others, divvying up
the task space. We demonstrate that bounty hunting can
perform efficiently in discontiguous environments, and
can improve the bias and variance of the system while
minimally affecting average waiting time. We show that
Bounty Hunting Pareto dominates the current state-of-
the-art heuristic, and is particularly good in large-scale
scenarios.

1 Introduction

In this paper we discuss a new approach to the dis-
tributed or multi-agent version of the dynamic traveling
repairman problem or DTRP [1]. In the DTRP, one or more
agents are tasked to travel to and from various locations
in order to service customers. The goal is to minimize the
average waiting time of the customers. While abstract,
the DTRP is applicable to a wide and increasing range
of real-world problems, notably in routing, autonomous
vehicles, and logistics.

The DTRP is NP-hard and so much of the literature
has focused on heuristic approximation methods. Sur-
prisingly, one of the most popular and best-performing
single-agent-case solutions is to simply follow a nearest
neighbor policy [2]. In the distributed case, it has been

proven that by equitably partitioning the space into k re-
gions, each assigned to a unique agent, and by following
some optimal single agent policy, the overall system will
be near optimal in general [14].

Unfortunately very little research has been done in
building equitable partitions. Current approaches at-
tempt an equitable partition of the space by running a
distributed gradient descent algorithm on the weights
of a power diagram [13]. These methods assume that
the agents are resources to be allocated to the generated
regions, and that the agents share internal information
between themselves in order to create the equitable parti-
tions. This may fail if not all the agents are following the
same algorithm, or are otherwise unwilling or unable to
share information.

Additionally, these methods assume a contiguous
space, and while some of the current algorithms func-
tion in other spaces, current theory does not address this
situation. However in many real world scenarios there
will be spaces where no tasks are generated, creating
discontiguous task regions.

Finally, and critically, these methods have only fo-
cused on the efficiency of the system (in the form of aver-
age waiting time) but not the variance, which can con-
tribute to the perception of a longer waiting time [9].
Unfortunately work on studying variance even in the
single agent case has been limited [8]. Furthermore, fair-
ness (for example, the order of task completion) has not
been studied in this setting and no formal fairness metric
has been proposed. However, fairness is an important
concern in many similar areas, such as in scheduling
queues [19]; and in real-world scenarios to which the
DTRP may be applied, particularly involving humans.

Bounty Hunting We will demonstrate the use of
bounty hunting as an effective alternative heuristic solu-
tion to the DTRP. Bounty Hunting is a novel counterpart
to the use of auctions in multiagent task allocation [16]
in which a bail bondsman offers an ever-increasing bounty
(or reward) for various tasks up for grabs, and multi-
ple bounty hunters compete to complete these tasks. The



bounty on a task is rewarded only to the bounty hunter
who completes it first. There is no task exclusivity: mul-
tiple bounty hunters can commit to the same task at the
same time. Although, tasks can not be simultaneously
serviced by more than one agent. For purposes of the
DTREP, this means that our bounty hunting variation will
not partition the space at all, unlike previous methods.

Bounty hunting only works if each agent can adapt
so as to learn which tasks are worth pursuing. At that
point they will have largely ceded tasks to one another,
effectively (in the DTRP case) creating a loose partition of
the space. However this partition is dynamic, soft, and
fluid, allowing for flexibility that the hard-partitioning
methods cannot provide. Furthermore this approach
works better if the bounty hunters are equipped with the
ability to signal to other bounty hunters that they intend
to work on specific tasks.

The bail bondsman gradually increases the bounty on
an outstanding task until it is completed. We argue that
the rate at which this bounty increases can act as a tuning
knob for the variance in the average waiting time of the
tasks, and will show how changing this rate affects both
efficiency and fairness, allowing the designer to tune the
system for the task at hand.

In this paper we will begin by describing the prob-
lem and past approaches to solving it. We will then
present our version of the bounty hunting model and
signaling method, and show that in the single-agent
case it can be straightforwardly made equivalent to the
nearest-neighbor method in terms of efficiency. We de-
fine several ways to measure both the efficiency and
fairness of the system, and then perform a number of
experiments to show the advantages of bounty hunting.
Our experiments will first show how bounty hunting
can be equivalent to nearest-neighbor in the single-agent
case, while being tunable for both efficiency and fairness.
We will then move to the multiagent case, showing how
our partition-free approach can significantly outperform
existing hard-partitioned distributed methods.

2 The Multiagent Dynamic
Traveling Repairman Problem

In the multiagent DTRP we define a set M of m
agents, each with point locations at time t, as H(t) =
(hy(t),...,hn(t)). Each task i has a location /; and an
identical and independently distributed service time
with mean 5. Tasks are generated by a Poisson point
process with a Poisson rate A and a location uniformly
distributed on a convex space G of area G. The load fac-
tor, or the percent of time an agent spends servicing a
task, is given by p = % The system is defined to be in
heavy load when p — 1 and in low load when p — 0.
Agents move at constant velocity v within G. Tasks are
removed after an agent arrives to the task and services it.
An agent may work on only one task at a time. The time

from the arrival of the task to its completion is T;. The
system objective is to minimize the average wait time of
the tasks, T = lim; ,,E[T;].

Work has been done to characterize the expected wait-
ing time of the tasks for a variety of single and multiple
vehicle algorithms. In [1] it was shown that the aver-
age waiting time, in heavy load conditions, is bounded
below as:
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Further, the bound may be written, for particular v
that is determined for a specific policy y, as:
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Values for 7 have been analytically provided for a
number of different policies [2]. However, the nearest
neighbor policy has no fixed value for 7 and it has only
been possible to experimentally determine its value [4].

The bounds in heavy load have been extended to the
multiagent setting [3]. There are two main ways of divid-
ing up the problem between the agents. First, the Poisson
process can be equally divided between the agents. In
this case, it is easy to see that:
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However, this method does not scale as the number
of agents increases. Another popular approach has been
to equitably partition the space, assign each agent to a
region, and have each agent service the tasks in its region
using a single agent policy. In this case we have:
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Because both the area and the Poisson point process

are divided equally between the agents, the method
scales with the number of agents [3].

3 Related Work

The DTRP has a number of practical applications includ-
ing fleet routing of repair and utility vehicles [13, 5]. Bert-
simas and van Ryzin formalized a number of algorithms
for solving the problem in the single vehicle scenario [1].
They showed that the DTRP is related to queuing theory
and provided bounds for the average wait time in both
heavy and light load situations. Further, they experimen-
tally found the Nearest Neighbor approach outperforms
a TSP approach, which has theoretical guarantees for y
that NN does not. They state that NN is not fair because
it does not follow a First Come First Serve (FCFS) policy,
and does not repeatedly return to a single location [2].



Single agent DTRP has been further studied in var-
ious conditions and settings. For example, a new ap-
proach, PART-n-TSP, reduces the variance of the waiting
time in mid-range loads [8]. The DTRP has also been ex-
tended to include deadlines for tasks, with upper bounds
on competitive ratios given for certain algorithms [10].
DTRP has also been studied for networks rather than
Euclidean space [20].

DTRP is normally extended to the multi-vehicle (multi-
agent) case by partitioning the space into regions, and
running single vehicle policies, one vehicle per region [3].
There exists a generalized form of the problem with
demand locations and service times based on arbitrary
continuous distributions [4]. Equitably partitioning the
space has also been generalized by performing gradient
descent on the weights in power diagrams [13, 14].

Dynamic multiagent task allocation bears many simi-
larities to the multiagent DTRP and methods in this area
may prove fruitful. Such approaches include auctions [6]
and bounty hunting [16, 18, 17]. However to date mar-
ket, auction, or economic based approaches (in which
bounty hunting falls) have not been studied in the DTRP.
However, there has been work done in a related problem,
the k-TRP, where tasks are not dynamically generated
and the agents may bid for the tasks in an auction [11].

Many of the approaches to the DTRP have been based
on scheduling disciplines such as FCFS (First Come
First Served) and its SJN (Shortest Job Next) equivalent,
namely Nearest Neighbor. Bounty hunting is closely re-
lated to another scheduling discipline, Highest Response
Ratio Next (HRRN) [7]. This method works by schedul-
ing jobs with the highest priority where the priority is
defined as:

Waiting Time
Estimated Run Time

Priority =

This ratio has since been used as a slowdown metric,
and is very similar to the bounty metric used in [16].
Recently the HRRN has been extended to be preemp-
tive, which is again similar to bounty hunting with task
abandonment [15, 18].

4 Methods

4.1 Bounty Hunting Model

The bounty hunting model has previously been studied
and formally defined for the dynamic multiagent task
allocation problem [16, 18].

Bondsman The bondsman, who may be distributed
among the tasks, acts to set the base bounty and the
bounty rate for the tasks. The base bounty, By is the
bounty assigned to the task at time step zero, and the
bounty rate R is the rate at which the bounty rises with
time. Therefore, the bounty associated with a particular

task at time step t is B(t) = By + Rt. The bounty rate
may be a function; however, we restrict ourselves to a
constant R > 0.

When setting the base bounty, the bondsman must
consider the resource cost of the bounty hunters. One
such resource is fuel. The fuel resource costs bounty
hunters Cy per unit of travel. Therefore, the base bounty

should be conservatively set to By > C f@ where @

is the maximum number of units a bounty hunter may
travel.

In addition, the bondsman must set the bounty rate
R. To provide guidance on setting the bounty rate we
assume the bounty hunters choose to pursue tasks so
as to maximize their bounty per time step and are not
hyperstrategic (assumed in previous literature in bounty
hunting [16]). We recognize that the nearest neighbor al-
gorithm in the single agent case has been experimentally
shown to produce near optimal results [1]. Therefore, it
would be ideal to motivate the bounty hunters to follow
a nearest neighbor policy.

We let I(t) be the set of tasks available at time ¢. As-
sume we have a single bounty hunter whose location at
time t is 1 (t), and that the distance between task i € I(t)
and the agent is defined to be d; = ||I; — hq(t)]|.

Definition 1. Nearest Neighbor Policy

argmin d;
iel(t) l 2)

Definition 2. Greedy Bounty Hunter Policy

argmax U;(t)
icI(t)
UL (F) — B(t) _Cfdi ©)

=5

To motivate the bounty hunters to follow the nearest
neighbor policy we make the following proposition.
Proposition 1. Let By > C f@, R = 0, and let there be
a single bounty hunter following the greedy bounty hunter
policy, then the bounty hunter will be incentivized to service
tasks with a nearest neighbor policy.

To prove this we derive the nearest neighbor policy
from the greedy bounty hunter policy. To simplify the
equations we can assume without loss of generality that
v =1.0.

Proof. First, we convert the maximization problem of the
bounty hunter to a minimization problem

B(t) — Cfd,

argmax U;(t) = argmin — 43 4)

iel(t) i€l(t)

Now we assume that there are two tasks 1 and 2 that
have utility —U; < —U,. The agent will then choose to



vie for task 1 according to Equation (4). We prove below
that by setting B(t) = By for all tasks we have:

B(t) _Cfdl B(t) —Cfdz
di1+35 dy+3§
B(t) — Cfd1 B(i’) — Cfdz
d1+35 dy+35 (5)

(B(t) — Cydr)(dz +5) > (B(t) — Cpdz)(d1 +3)
B(t)dy — Cfd1§ > B(t)dy — Cfd2§
d2 > d1

Therefore, the task with the minimum distance d; is
chosen by the nearest neighbor policy. It follows that
by choosing the task with the highest bounty per time
step that the agents will choose the task that is closest to
them and therefore are following the nearest neighbor

policy:

argmax U;(t) = argmin —U;(t) = argmind;  (6)
icl(t) icl(t) icl(t)

O

We have shown that the bounty hunters will follow a
nearest neighbor policy when the bounty rate is zero and
the base bounty is fixed. However, when the bounty rate
is set to some value other than zero the bounty hunters
will no longer follow a nearest neighbor policy. If the
bounty rate is set to some positive value, greedy bounty
hunters will be incentivized to follow a policy similar in
nature to both the nearest neighbor and FCFS policies.
We will study this behavior in terms of variance in the
average waiting time and fairness with respect to a FCFS
policy with experiments in Section 6.

Bounty Hunter Learning and Communication Here,
we consider how the bounty hunters learn when to sig-
nal to the other agents that they are attempting a task.
Bounty hunters decide what task to work towards at
each time step, and may abandon a task that they are
working on or traveling toward in order to undertake
another task. They keep track of the distance to the task
that they were traveling toward when they abandon the
task, in order to develop an expected distance. This
distance indicates the range at which it becomes more
probable that the agent will complete the task without
abandoning it. For each agent j the set of distances at
which agents will abandon tasks is defined as D; and the
average distance is defined as:

1
Jhd ED]'
The bounty hunters then use this value to determine
when to signal to other agents that they are pursuing a

task i (where [; is the location of task i):

Ih(£) = L[| < E[Dj]

Specifically, when the distance between the agent and
the task is less than or equal to the point of average task
abandonment, the agent will signal to nearby agents
their intention of completing the task i. Initially E[D;] is
set to zero and only after agents abandon tasks do those
agents signal. Signaling gives a more reliable indication
of the agent’s intentions while allowing the agents to
have the freedom to abandon tasks.

The bounty hunters use these signals and past inter-
action with agents in order to determine the probability
of successfully completing the task. Because the agents
are operating in a dynamic environment, exponential
averaging is used to learn this value:

Yi < (1= B)Yi+ By

where y is 0 if the agent did not complete the task when
agent k completed the task, and § = .99. Regardless
of outcome the agent will increase the probability of
success with all agents using the same update again, this
time with § = .001 and y = 1.0. This has the effect
of making agents slowly more optimistic about beating
other agents to tasks. Such an effect is useful when there
is an agent that has signaled the task but has possibly
stopped working [16].

We can then calculate the probability of successfully
completing the given task, based on the agents that have
signaled that task or nearby tasks. Let i; be the task that
agent j signaled and let the set of agents Z be defined as:

Z = {Vk # jlij = i, |1l = L || < I (8) = L ||}

Then we can calculate, using this set of agents, the
probability of successfully completing the task:

n = H Yk
kez
Using the above we can then calculate expected

bounty received for task i for agent j:

Bi(t) = Ci
Hilt) = & (nhj(t) ST +R>

where the cost is defined as C; = Cy||h(t) — 1|, the price
of fuel is Cy, the agent’s current location h(t), and the
task location is /;. The average service time for the job is
learned through exponential averaging § = (1 — ¢)5 +
s, where s is the service time of the finished job, and ¥
is the learning rate (in our experiments i = 0.05).
When agents arrive to a task, they work on the task
until they finish it. The set of available tasks is defined
as I(t). At each time step the agents calculate which task
they will travel toward as I*(t) or, if they are working
on a task, whether they continue to work on the task by:

I*(t) = argmax U, (t)
viel(t)
Therefore, the bounty hunters learn not to go after

tasks other agents have signaled while maximizing their
total expected bounty per time step.



4.2 Equitable Partitions Nearest Neighbor

For this method we split the area G into m equitable par-
titions and assign each agent to a partition. Because we
consider uniformly distributed tasks in a square region
we are able to manually partition the space. However, if
the tasks are distributed by some other distribution in
a convex space then the space may be equitably parti-
tioned through a gradient descent algorithm of a power
diagram as defined in [13]. Then, each agent follows
the single agent nearest neighbor policy, as defined in
Definition 1, with the ability to abandon tasks.

5 Evaluation Metrics
In order to evaluate bounty hunting as an adaptive

method for the multiagent DTRP, we propose a num-
ber of metrics.

Average Waiting Time of Tasks

Definition 3. Average Waiting Time

Y T (7)

xeK(t)

E[T)() = K}t)

K(t) is the set of completed tasks at time step ¢ and
waiting time for some task x is Ty = Wy 4 sx. Wy is the
time the task waited until it was serviced and s, is the
time it took to be serviced.

The experimental system time can be modeled by
Equation (1). However, the value for v is not known
and is thought to be analytically intractable for the near-
est neighbor policy [4]. Therefore, we must experimen-
tally determine the value. The value of ¢ will pro-
vide evidence to support the claim that although the
bounty hunters are not explicitly equitably partitioning
the space they are modeled by the same formula.

Variance

Definition 4. Variance of the Average Waiting Time

Var(t) = s L(L—ET07?  ®)

keK

Where K(t) is the set of tasks that have been com-
pleted by time step t and Ty, is the waiting time for task
k. Variance enables us to examine another dimension
of the efficiency of the system. Additionally, as we will
see in Section 6 it helps us to understand the role of the
bounty rate.

No theoretical bounds have been established for vari-
ance. With variance, however, we are able to better
experimentally demonstrate the usefulness of a bounty
rate.

Fairness Another metric we are interested in is the
fairness of the system. In many scenarios we may be
willing to sacrifice efficiency in order to service tasks that
have been waiting a long time. The FCFS policy has been
claimed to be fair [1]. We base our fairness metric on a
comparison of the agent’s actual decision to the decision
had the agent followed a FCFS policy.

Definition 5. Fairness
Fair(x) = Wy /W* 9

Where x is the task that the agent has chosen, Wy is
the time the task has been waiting at the moment of the
decision, and the waiting time of the longest waiting
task is W*. Therefore, an agent’s decision is considered
to be completely fair when Fair(x) = 1 and the agent
services the task that has been waiting the longest. The
decision is completely unfair when Fair(x) = 0 and the
agent services the task that has been waiting the least
amount of time.

We can then obtain the average fairness of the system
by averaging the fairness of all of the decisions:

Y Fair(x)

XEKj

1 1
Fairl = — Y ——
E|[Fair] |A|j§4 K

Where we have the set of agents A and K; is the set of
tasks that agent j has completed.

We restate fairness in terms of bias, a common metric
in machine learning algorithms. Bias is the distance from
complete fairness to the expected fairness:

Bias = 1 — E[Fair]

The decision making is more biased when decisions
are less fair and less biased when the decisions are more
fair. Bias — 1 when the decision function completes
tasks in a last in first out fashion and Bias — 0 when
processing tasks in a FCFS manner.

Total Error We are interested in the trade-off between
bias and variance and minimizing the total error, where
the total error is defined as:

Total Error = Bias® + Var(t)

With this measure we are able to analyze the effect of
different values for the bounty rate on the average wait
time of the tasks within the system.

Total Average Bounty Available The total outstand-
ing bounty available in the environment can act as a
measure for the efficiency of the system. In the DTRP we
are able to provide a bound on the outstanding bounty
in the system based on the bound on the system time
and Little’s Law.

B ~ ByN + RTN = ByTA + RT?A (10)
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Figure 1: Contiguous Task Experiment: One agent
40x40 area with no fuel, 300,000 steps.

where N is the number of tasks in the system on average,
which can be estimated through Little’s Law N = AT.
However, because the bounty hunters complete tasks in
a nearest neighbor or nearest neighbor-like discipline,
and the value for T is analytically intractable, we can
only use this for known values of  [4]. We are inter-
ested in studying this value in order to show that the
amount of bounty in the system is bounded in terms of
the average waiting time of the tasks.

6 Experiments

The tasks were generated in a continuous environment
based on a Poisson point process with average time be-
tween tasks A. Tasks were distributed uniformly ran-
domly within the space defined by the experiment and
the service time for each task was generated by a geomet-
ric distribution with a mean 5 specific to each experiment.
The agents may overlap with other agents or tasks and
moved with a velocity of v = 0.7. The agents traveled to
the tasks and upon arrival serviced the task.

Agents were positioned at time step zero at a depot.
Depots were locations in the environment where agents
could purchased fuel or return to if no tasks were avail-
able to complete. For experiments where fuel was con-
sidered we set the unit cost of fuel C; = 1.0 where the
currency used was the bounty that the agent had ob-
tained by completing tasks. In scenarios where fuel was
used the agents had a fuel capacity of 3000 and started
with a full tank along with a starting balance of 1000
units of bounty. Each time step that the agent moved in
the environment would use a single unit of fuel. When
the agent had only enough fuel to return to the depot
the agent would refuel by returning and purchasing the
max amount of fuel that they had currency for. It takes a
single time step to refuel and we assume there was no
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Figure 2: Contiguous Task Experiment: Bias, variance,
and total error for one agent 40x40 area with no fuel,
300,000 steps.

Table 1: Contiguous Task Experiment: Bounty ratio for
one agent 40 x40 area with no fuel, 300,000 steps; NN is
the Nearest Neighbor approach.

R

5 00 10* 107%® 1002 100! 10 50 NN

8.00 1.07 107 122 114 045 017 024 115
9.00 130 117 113 112 052 020 028 1.15
1000 116 120 121 126 047 027 036 125
11.00 117 111 112 117 042 039 046 125
1200 1.07 107 124 104 051 052 060 1.14
13.00 111 100 111 104 093 066 071 112

additional waiting time if there was more than one agent
refueling at the same depot. For all experiments we set
the base bounty to a fixed By = 500.

We tested the bounty hunting model in six different
settings in MASON, a Java based multiagent discrete
event simulator [12]. First, we looked at the single agent
case with tasks in contiguous space and with a range
of bounty rates. Second, we again have a single agent,
but the tasks were in a discontiguous space. In both of
these settings we examined the usefulness of the bounty
rate and its effects on the system. Third and fourth,
we considered two different four-agent settings with
different values for A and 5 but with the same value for
p. Here we were interested in examining the effect of not
explicitly partitioning the space into equitable partitions
for the bounty hunting method. Fifth and sixth, we
used a 64 agent system and focused on the scalability
of the system, and discussed preliminary findings on
the effect of fuel on the efficiency of the system. We left
all simulations run for 300,000 time steps (except when
noted).



Figure 3: Discontiguous Task Space. One agent in the
top left 40x40 area, after 600,000 time steps when 5 = 8.

6.1 Single Agent

We examine two single agent environments in order to
illustrate why the bounty rate is important.

Contiguous space For this experiment we verified that
a bounty rate of zero is equivalent to the NN approach
by comparing the value of v. We then examined the
effect of the bounty rate on the bias and variance. We
compared the theory and actual total average bounty
available in the system.

We had a single agent with start position located
at the depot at (0,0), the center of the 40x40 environ-
ment. We set p = 0.8125,0.75,0.6875,0.625,0.5625, 0.5
based on A = 11—6 = .0625 and mean job length
§ = 13,12,11,10,9,8. We set the bounty rate to R =
0,0.0001,0.001,0.01,0.1,1,5. We repeated the simulation
40 times for each value of p and bounty rate.

Results In Figure 1 we plot the experimentally ob-
tained average waiting time T against prem Gu for a
range of bounty rates alongside the NN approach. We
can see that the bounty hunting approach with zero
bounty had a 7 value within 1% of the nearest neighbor
approach.

Next, we consider in Figure 2 how the bounty rate
effected the bias and variance of the system. To plot this
we averaged the bias and variance for each 5 and then
normalized the values. As the bounty rate increased
the bias decreased and the variance decreased and then
increased, but the total error was minimized when the
bounty rate R was 5. However, when the bounty rate
R > 0.1, the expected waiting time increased. Therefore,
there was a trade-off between average waiting time, and
the bias and variance.

Each entry in the bounty table in Table 1 is the ratio of
the total bounty in the system at time step 300,000 aver-
aged over 40 trials to B. We calculated B based on the
values for 7 found in Figure 1. Values greater than one
meant that B underestimated the bounty in the system
and when the ratio was less than one B overestimated

Table 2: Discontiguous Task Experiment: Average wait-
ing time for the Nearest Neighbor approach and Bounty
Hunting with a bounty rate of 5.0.

5 Nearest Neighbor Bounty Hunting
8.00 9305.95 2325.55
9.00 12211.07 3189.18

10.00 16086.59 4617.20
11.00 21221.22 7123.05
12.00 27554.38 11684.93
13.00 39723.68 21157.16

the actual average. We see that B gave a very large over-
estimate when the bounty rate was one and was close to
correct when the bounty rate was < 1074,

Discontiguous Tasks This experiment illustrated the
role that the bounty rate plays in an environment where
the nearest neighbor approach struggles.

For this experiment the bounty rate was set to five.
We created two regions of 40 x40 that were centered at
(20,20) and (150,150) as illustrated in Figure 3. There
were two depots at the centers of the two regions and
the agent started in the region centered at (20,20). Tasks
were generated with the same p values as above, but each
region had a mean task generation rate of Ay = Ay = %
which due to the property of Poisson processes had an
overall generation rate A = . This experiment was run
for 1,000,000 time steps rather than 300,000 due to the
larger area in which the agents operate.

Results As we see in Table 2 the nearest neighbor ap-
proach performed very poorly compared to the bounty
hunting approach. This was because the bounty rate
motivated the agents to more frequently service tasks
that were further away.

6.2 Four Agents

Next we considered two different four-agent cases where
we adjusted the values for A and 5 to see whether bounty
hunting could match and improve on the NN approach
with equitable partitions.

Rapid Task Generation Here the environment was an
80 %80 square, and in order to maintain the same value
forpweset A = % and used the same values for 5. The
depots were located at (20, 20), (60, 20), (20, 60), and (60,
60) and each agent started at a different depot. The space
was split into four, 40 x40 square regions with the depot
at the center of the region. Each nearest neighbor agent
was assigned to service the tasks that were generated
within its assigned region.
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Figure 4: Rapid Task Generation Experiment: Four
Agent, A = %, 80 %80 area with no fuel, 300,000 steps.

This experiment focused on whether explicitly split-
ting the space into equitable partitions is necessary or
whether a different approach could produce similar re-
sults.

Results In Figure 4 we plot the experimentally ob-
tained waiting time in order to acquire the value of vy for
each setting. We see that the bounty hunting approach
did similarly to the nearest neighbor approach.

Slow Task Generation Again we considered an 80x80
environment with four agents, but we set A = 21—0 and
we set the mean service times to § = 65, 60,55, 50, 45, 40.
Therefore, we were still using the same value for p, but
with different values for A and 5. The agents and depots
were all located in the same manner as in the previous
experiment.

In this experiment, we examined a scenario in which
explicitly splitting up the space performed poorly, to
see whether our alternative approach could improve
performance.

Results As we can see in Figure 5 the value for v for
the nearest neighbor approach was significantly greater
than that of the bounty hunting approach with a bounty
rate less than one. This meant that we could achieve
superior results to the NN with equitable partitions.

6.3 Sixty Four Agents

Based on Equation (1), by equitably partitioning the
space the system will scale as the number of agents
increases. However, because we did not theoretically
prove that the agents were equitably partitioning the
space we demonstrated empirically that the average
waiting time continued to be similar to or outperformed
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Figure 5: Slow Task Generation Experiment: Four Agent,
A= 21—0, 80 %80 area with no fuel, 300,000 steps.

equitable partitions. The following two experiments
sought to do this in addition to examining the impact of
fuel.

In order for the system to scale we had to limit the
communication between the agents. Specifically, the
bounty hunters could only communicate with other
agents within a radius of 40 units, and were aware of
tasks within a radius of 40.

Without Fuel We made an 8x8 grid of evenly spaced
depots (each depot centered in a 40x40 area). For
this experiment we increased the size of the environ-
ment to a 320x320 area and we set A = % = 038
and § = 65,60,55,50,45,40. Therefore, we maintained
the same load factor values as in previous experiments:

p = 0.8125,0.75,0.6875, 0.625, 0.5625, 0.5.

Results We see in Figure 6 that not only did the system
scale, but the value of v was dependent on the values
for A and 5. As expected, the bounty hunting approach
outperformed the NN approach as we have a similar
setting to that in Figure 5.

With Fuel We performed the same experiment except
the agents had a fuel capacity of 3000 and a starting
bounty balance of 1000.

Results The case where the agents were given unlim-
ited fuel capacity and the case where the agents had
a fuel capacity of 3000 units produced similar results.
Even with a large number of agents, as long as we had
enough depots and the agents did not need to make fre-
quent trips to the depot to refuel, the system time was
not degraded compared to NN.
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Figure 6: Sixty Four Agent Without Fuel Experiment:
320x320 area, samples taken after 300,000 steps.

7 Conclusions and Future Work

In bounty hunting we proposed a multiagent systems
approach to solving the dynamic traveling repairman
problem. Bounty hunting addresses a series of failures in
current approaches, largely due to the unique flexibility
of the bounty rate. It performs efficiently in a discon-
tiguous environment thanks to the ability of the bounty
rate to bring distant tasks “near.” The bounty rate can,
additionally, improve bias and variance of the system,
adding dimensions of efficiency not studied by current
approaches.

Furthermore, the ability of bounty hunting agents to
learn not to go after tasks other agents have signaled
enables bounty hunting to not only match but in some
cases outperform the NN equitable partitions approach,
without explicitly splitting up the space. Therefore, the
bounty hunting approach Pareto dominates the NN ap-
proach. Also, this flexibility scales well. Bounty hunting
offers an effective alternative to equitable partitions in
heavy load settings.

For future work we hope to prove theoretically that
the bounty hunters are splitting up the space equitably
in an online fashion, and to explore bounty hunting’s
application to other vehicle routing problems, such as
pick-up and delivery.
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