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Abstract

Learning to coordinate is a hard task for reinforcement
learning due to a game-theoretic pathology known as
relative overgeneralization. To help deal with this issue, we
propose two methods which apply forms of imitation
learning to the problem of learning coordinated behav-
iors. The proposed methods have a close connection to
multiagent actor-critic models, and will avoid relative
overgeneralization if the right demonstrations are given.
We compare our algorithms with MADDPG, a state-of-
the-art approach, and show that our methods achieve
better coordination in multiagent cooperative tasks.

1 Introduction
Multiagent Reinforcement Learning (or MARL) applies
Reinforcement Learning (RL) to more than one agent.
Like RL, the environment is some current state, which
the agent can only sense through its observations; the
agents each perform some action while in that state, the
agents each receive some reward, the state transitions to
some new state, and the process then repeats. The dif-
ference between MARL and RL is that in MARL both
the transitions and the rewards are functions of the joint
action of the agents while in that state. Each agent ulti-
mately tries to learn a policy that maps its observation
to its own optimal action in that state.

In this paper we focus on cooperative continuous
stochastic games, that is, multiagent reinforcement learn-
ing scenarios with continuous actions and an identical re-
ward signal for all the agents. Traditionally such games
may be categorized based on how much information
each agent knows. If the agents are learning concur-
rently but do not know what the other agents did, then
it is an independent learner setting. On the other hand,
if the agents are learning concurrently and each agent
is told what the other agents did, then we have a joint
action learner setting. If we have a central controller to
direct the learning process of each agent, then we have a
centralized training with decentralized execution setting [23].
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Figure 1: The relative overgeneralization pathology in
continuous games.

It has been shown that the independent learner setting
can suffer from a pathology called relative overgeneraliza-
tion [39]. It has also been shown that centralized training
can suffer from the same problem [38]. However, while
various methods [37, 38] have been applied to deal with
the problem in simple games with small state or action
spaces, it has not been solved for high dimensional or
continuous stochastic games typical of real problems. In
this paper we will remedy this.

Relative overgeneralization occurs when a suboptimal
Nash Equilibrium in the joint space of actions is pre-
ferred over an optimal Nash Equilibrium because each
agent’s action in the suboptimal equilibrium is a better
choice when matched with arbitrary explorative actions
from the collaborating agents. For instance, consider a
continuous game in Figure 1. The axes i and j are the
various actions that agents Ai and Aj may perform, and
the axis rewards(i, j) is the joint reward received by the
agents from a given joint action 〈i, j〉. Joint action M has
a higher reward than joint action N. However, the aver-
age of all possible rewards for action iM, of agent Ai is
lower than the average of all possible rewards for action
iN . Thus, agent Ai’s policy may converge to iN when
the other agent is trying arbitrary actions to explore the
space rather than focusing on the optimum. This pathol-
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ogy generally occurs when we use an average-based
learner [37], that is, for some agent, when the joint Q-
values averaged over all the actions of other agents are
used during learning.

To overcome this problem, we apply Generative Ad-
versarial Networks (GANs) [12] to cooperative stochastic
games. GANs have been very successful in multiple do-
mains [28, 41]. Recently, it has been shown that GANs
have a strong connection with Imitation Learning [6],
and that its variants, Generative Adversarial Imitation
Learning (GAIL) [14] and Adversarial Inverse Reinforce-
ment Learning (AIRL) [11] can be used to train agents to
achieve high performance in sequential decision-making
tasks with demonstration examples. In this work, we
extend these methods to the multiagent cooperative set-
ting and show that they can help to better coordinate the
behaviors of the agents. We also show that the proposed
methods may be thought of as applying the Multiagent
Actor-Critic model [20] in a Maximum Entropy Rein-
forcement Learning (MERL) [13] framework. Here the
critic is learned from demonstration examples and, if the
right examples are given, the learned reward function
can help the learners avoid relative overgeneralization.

2 Background

In this section, we first introduce Markov Decision Pro-
cesses (MDPs) and their multiagent generalization. Then
we discuss policy gradient methods and Imitation Learn-
ing (IL).

2.1 Markov Decision Processes and
Stochastic Games

A Markov Decision Process (or MDP) can be used to
model the interaction an agent has with the task envi-
ronment. An MDP is a tuple {S, A, T, R, γ, H} where S
is the set of states; A is the set of actions available to the
agent; T is the transition function T(s, a, s′) = P(s′|s, a)
defining the probability of transitioning to state s′ ∈ S
when in state s ∈ S and taking action a ∈ A; R is the
reward function R : S× A 7→ R; 0 < γ < 1 is a discount
factor; and H is the horizon time of the MDP, that is, the
number of timesteps the MDP runs.1 An agent selects its
actions based on the policy πφ(a|s), which is a distribu-
tion over all possible actions a in state s parameterized
by φ ∈ Rn.

The concept of an MDP can be extended to partially
observable (POMDP) settings, where agents do not di-
rectly sense the state s. Rather, they receive some obser-
vation o sampled from a distribution conditioned on s.
MDPs can also be generalized to a cooperative multia-
gent setting, called a Cooperative Stochastic Game or CSG.

1Any infinite horizon MDP with discounted rewards can be ε-
approximated by a finite horizon MDP using a horizon Hε =
logγ(ε(1−γ))

maxs,a |R(s,a)| [16].

This is a game with n agents (or players), defined by
the tuple {S,A, R, T, γ, H}, where S is the state space,
A = A1 × ...× An is the joint action space of n agents,
R : S ×A → R is the reward function for each agent
i, and T(s,~a, s′) = P(s′|s,~a) is the transition function,
where~a = 〈a1 · · · an〉 ∈ A is the joint action of all agents.
Thus the reward the agents receive and the state to which
they transition depends on the current state and agents’
joint action. Each agent i determines its action using a
policy πi. We will also use −i to denote all agents except
for agent i. A Partially Observable Cooperative Stochas-
tic Game, or POCSG, combines the CSG with a partially
observable setting.

In the multiagent setting, a rational agent will play
its best response to the other agents’ strategy. If all
agents are following a policy that implements this
strategy, they will arrive at a Nash equilibrium, de-
fined as a solution where ∀i Ri(s, π∗1, . . . , π∗i, . . . , π∗n)≥
Ri(s, π∗1, . . . , π∗i−1, πi, π∗i+1, . . . , π∗n) for all of the
strategies πi available to agent i. π∗i denotes the best
response policy of agent i.

2.2 Policy Gradient Methods

Policy Gradient methods are a key approach to learn-
ing in MDPs with continuous actions. Here, agents are
trying to optimize the following objective function:

J(φ) = EPφ(τ)

[
R(τ)

]
= ∑

τ
Pφ(τ)R(τ), (1)

where τ = (s0, a0, s1, a1, . . . , sT , aT) denotes a sequence
of states and actions induced by policy and transition
function. Here, we also overload notation R to represent
the summation of all the reward along the trajectory τ.
Various methods have been proposed to optimize this
function: for example, likelihood-ratio trick [40], and the
Stochastic (SPG) and Deterministic Policy Gradient (DPG)
Theorems [35, 30]. These two policy gradient theorems
are shown below respectively:

∇φ J(φ) =
∫

S
ρπφ (s)

∫
A
∇φπφ(a|s)Qπφ (s, a) da ds

= Es∼ρ
πφ ,a∼πφ

[
∇φ ln πφ(a|s)Qπφ (s, a)

]
∇φ J(φ) =

∫
S
ρπφ (s)∇φπφ(s)∇aQπφ (s, a)|a=πφ(s) ds

= Es∼ρ
πφ

[
∇φπφ(s)∇aQπφ (s, a)|a=πφ(s)

]
,

where ρπφ(s′) =
∫

S ∑∞
t=1 γt−1P(s)P(s → s′, t, πφ) ds

is the discounted distribution over states induced by
policy πφ starting from some state s ∈ S. Specifically,
P(s → s′, t, π) is the probability of going t steps under
policy πφ from state s and ending up in state s′. These
theorems introduced a class of algorithms called actor-
critic methods. The actor is the policy π and the critic is
the Q-function.
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2.3 Inverse Reinforcement Learning and
Imitation Learning

Inverse Reinforcement Learning (IRL) focuses on tasks
where the reward function is not accessible to agents,
and only a set of expert demonstration examples is avail-
able. The goal of IRL is to recover the reward function
from the demonstrations. IRL has very close connection
with Imitation Learning [1, 36, 15], where the recovered
reward signal can be used to teach agents the expert
behaviors. In this work, we focus on the MERL frame-
work (or Soft Q-Learning) [13, 42], where the objective
of the RL algorithm is augmented with the entropy of
the policy,

π∗MaxEnt = argmaxπ ∑
t

Eτ∼ρπ

[
R(st, at) +H(π(·|st))

]
Under this framework, the optimal policy is given

by π∗(a|s) = exp{Qsoft(s, a)−Vsoft(s)}, where Qsoft(s, a)
and Vsoft(s) are the soft value functions defined as follow-
ing.

Q∗soft(st, at) = R(st, at) + E(st+1 ,...)∼ρπ

[ ∞

∑
t′=t

R(st′ , at′ ) +H(π(·|st′ ))

]
V∗soft(st) = log

∫
A

exp Q∗soft(st, at) da

With MERL, we can assume the demonstrations D =
{τi} given by the expert are sampled from the optimal
policy mentioned above. When combined with IRL
(forming MEIRL), the problem can be interpreted as
solving the maximum likelihood problem

max
θ

Eτ∼D [log pθ(τ)]

where p(τ) = 1
Z p(s0)ΠT

t=0 p(st+1|st, at)erθ(st ,at), and
p(s0) and Z are the distributions of start states and the
partition function respectively. One of the core tasks
in MEIRL is to estimate or compute the partition func-
tion [7].

It has been shown [6] that the prior problem can be
reformulated as a GAN problem where the discriminator
has the special form

Dθ(τ) =
exp { fθ(τ)}

exp { fθ(τ)}+ π(τ)

where fθ(τ) parameterized by θ serves as the reward
function and π(τ) is the precomputed value using the
policy of the agent. The training of this model involves
updating both the policy and discriminator. We start
training with some arbitrary policy and update the
policy based on the reward R(τ) = log(1 − D(τ)) −
log D(τ). This step can be thought of as Guided Cost
Learning (or GCL), where we are adapting a sampling dis-
tribution to gather low variance samples for estimating
the partition function [7]. Then we update the discrim-
inator using both sampled trajectories and the experts’
trajectories, which can be viewed as updating the re-
ward function. This method, called GAN-GCL, has been

further extend to AIRL, where the discriminator takes
only state-action pairs as training samples instead of the
whole trajectory, which in turn can greatly reduce the
variance in estimation [11]. In this case, the discriminator
takes the form

Dθ(s, a) =
exp{ fθ(s, a)}

exp{ fθ(s, a)}+ π(a|s)

It can be shown that when training at optimal, fθ(s, a)
recovers the expert’s advantage function, which is the
optimal soft advantage function, such that fθ(s, a) =
A∗soft(s, a) = Q∗soft(s, a)−V∗soft(s).

Aside from the work above, GANs have been directly
applied to IL [14] where the discriminator takes a general
form and implicitly learns the advantage function [17].

3 Related Work

The idea of learning to cooperate through policy gradient
methods has been around for a long time, but mainly for
discrete action domains [2]. Peshkin et al. have applied
the likelihood-ratio method to both CSG and POCSG
tasks. Nair et al. proposed Joint Equilibrium-Based Search
for Policies (JESP), applied to POCSGs. The main idea
here is to perform policy search in one agent while fixing
the policies of other agents. Although this method is
guaranteed to converge to a local Nash Equilibrium, it is
essentially a round-robin single agent algorithm.

Deep MARL algorithms have recently been proposed
to tackle more complex problems [24, 25]. One of the
main thrust has been the centralized training with de-
centralized execution. Foerster et al. proposed a method
to learn communication protocols between the agents,
using inter-agent backpropagation and parameter shar-
ing. Foerster et al. studied how to stabilize the training
of multiagent deep reinforcement learning using impor-
tance sampling. Two actor-critic algorithms have been
proposed in [10, 20]. They argue that by using a central
critic one can ease the training of multiple agents, and
that by keeping a separate policy the agent can execute
with only its local information, which makes it possi-
ble to learn in POCSGs. Among these two algorithms,
MADDPG [20] is most relevant to us. It uses the learning
rule from DDPG [19] to learn a central critic, and uses
the following gradient estimator to learn the policies for
each agent i:

∇φi J(φi) = Es,a−i∼D

[
∇φi πi

φi (ai|oi)∇ai Q(s,~a)|ai=πi
φi (oi)

]
,

where φi is the agent i’s policy parameters, D is the
replay buffer, and oi is the local observation of agent i.
During centralized training the critic has access to the
true state s = [o1, . . . , on], which is the concatenation of
all observations. But at execution time, each agent only
has access to oi.
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There has been some work applying IL to coopera-
tive tasks as well. Sullivan and Luke trained swarms,
albeit in a supervised fashion, using learned Hierarchi-
cal Finite State Automata for foraging and patrolling
tasks. Later, they extend the method to heterogeneous
agents for box-pushing task [34]. Another work on ap-
plying IL to multiple agents is [4, 5], where the agents
are exploring the environment and constantly consult a
human coach for advice. A similar work to ours is [31],
where GAIL is used for multiagent learning. The pri-
mary differences between our work and theirs is that
we use only one discriminator while they use multiple
ones, and we establish a clear connection between the
multiagent actor-critic model and multiagent imitation
learning. Other work worth mentioned here is [32] and
[22], where IRL is used to train a large number of agents
for coordination tasks.

4 Multiagent Adversarial Inverse
Reinforcement Learning

We now consider how to apply AIRL or GAIL in multi-
agent scenarios with cooperative games. First consider
the situation where a coach wants to teach a coordination
strategy to players. He may start with some demonstra-
tion, then let the players practice following the demon-
stration while continuing to give advice to the agents
during practice. This is much like the training process of
AIRL or GAIL with multiple agents, where we can think
of a discriminator as a coach, and all the other agents
as players on the team. During practice, although each
player can only sense the environment through his own
local observations, the coach usually has much more in-
formation either through his expertise or due to a global
view of the game state during practice. Thus, if we want
to apply AIRL and GAIL to cooperative games, we can
make a simple modification to both algorithms by letting
each agent have only a local observation oi, and give the
discriminator access to the full state information s, the
same as the critic in MADDPG. We call these modified
algorithms Multiagent AIRL (MAIRL) and Multiagent
GAIL (MGAIL).

Next, we demonstrate the connection between multia-
gent actor-critic model with our proposed methods. We
are not the first to connect actor-critic model with GAN
methods [27]. But to our knowledge, we are the first
to connect the actor-critic model with AIRL and GAIL
using an analytical method. Recall that in AIRL we have
the discriminator taking the following form

Dθ(s, a) =
exp{ fθ(s, a)}

exp{ fθ(s, a)}+ π(a|s)

On the other hand, in GAIL, the form of the discrimi-
nator is not specified. However, it has been shown that
the discriminator is learning a function of the following
form (see Equation (6) in [3])

Dθ(s, a) =
pE(s, a)

pE(s, a) + π(s, a)

where pE(s, a) and π(s, a) are the joint distribution
of state and action under expert’s policy and learner’s
policy respectively. When we assume the state marginal
distribution is same for both expert and learner, that is
pE(s) = pπ(s), GAIL is doing the same works as AIRL.
To see that,

Dθ(s, a) =
pE(s, a)

pE(s, a) + π(s, a)
=

pE(a|s)pE(s)
pE(a|s)pE(s) + π(a|s)pπ(s)

=
pE(a|s)

pE(a|s) + π(a|s) =
exp{ fθ(s, a)}

exp{ fθ(s, a)}+ π(a|s)

A justification of this transformation can be found in
Appendix (A.2) in [11]. In this paper, we focus on the
discussion of MAIRL. However, when the marginal dis-
tribution of state is the same for expert and learners, the
theoretical conclusion of MAIRL also applies to MGAIL.
This usually happens in goal-achieving tasks, where the
games will not terminate until certain goals are achieved.

In AIRL, π(a|s) is the sampling distribution which we
constantly update to acquire better samples for estimat-
ing Z. To update the sampling policy π(a|s), we can
apply policy gradient methods, optimizing with respect
to the reward function

R(s, a) = log(Dθ(s, a))− log(1− Dθ(s, a)) = fθ(s, a)− log π(a|s)

To do a similar thing in the multiagent case we have
each agent update its own policy πi(ai|oi) to get better
estimation samples. The policy for each agent takes its
local observation and outputs its own action. Thus, we
have the following MAIRL discriminator:

Dθ(s,~a) =
exp{ fθ(s,~a)}

exp{ fθ(s,~a)}+ π1(a1|o1) . . . πn(an|on)

We follow MADDPG [20] and assume that the func-
tion f has access to the true state s = [o1, . . . , on]. With
this revised discriminator, we now have the reward func-
tion

R(s,~a) = log(Dθ(s,~a))− log(1− Dθ(s,~a))

= log
exp{ fθ(s,~a)}

exp{ fθ(s,~a)}+ πi(ai|oi)π−i(a−i|o−i)

− log
πi(ai|oi)π−i(a−i|o−i)

exp{ fθ(s,~a)}+ πi(ai|oi)π−i(a−i|o−i)

= fθ(s,~a)− log πi(ai|oi)− log π−i(a−i|o−i)

Based on this new reward function, we show the con-
nection between MAIRL and MADDPG, as both meth-
ods are composed of a central critic that has access to
the underlying state and joint actions of all the agents
and multiple actors for which only local observation is
available. The difference is that MAIRL does not have
access to the true reward signals, but only to a set of
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expert demonstrations, and that our algorithm works in
a MERL framework.

First, we notice that fθ(s,~a) can be treated as a cen-
tral advantage function in a Maximum Entropy frame-
work. Specifically, as we mentioned in the previous
section, fθ(s, a) recovers the optimal advantage function
A∗soft(s, a) when the discriminator reaches the global min-
imum. Thus, we can view fθ(s, a) as the approximation
of A∗soft(s, a) during the training process of discriminator.
Now the reward function for each agent to optimize can
be written as

Ri(s,~a) = Aθ(s,~a)− log πi(ai|oi)− log π−i(a−i|o−i)

If we sum this over entire trajectories, then we get
policy objective for agent i

Eτ∼p(τ)

[ T

∑
t=0

Ri(st,~at)

]

=Eτ∼p(τ)

[ T

∑
t=0

Aθ(st,~at)− log πi(ai
t|oi

t)− log π−i(a−i
t |o

−i
t )

]
Let pt(st,~at) =

∫
st′ 6=t ,~at′ 6=t

p(τ) denote the state-action

marginal distribution at time t. Rewriting the above
equation, we have

T

∑
t=0

Est ,~at∼pt(st ,~at)

[
Aθ(st,~at)− log πi(ai

t|oi
t)− log π−i(a−i

t |o
−i
t )

]

=
T

∑
t=0

Est∼pt(st),ai
t∼πi(ai

t |oi
t),a

−i
t ∼π−i(a−i

t |o−i
t )

[
Aθ(st,~at)

− log πi(ai
t|oi

t)− log π−i(a−i
t |o

−i
t )

]
=

T

∑
t=0

Est∼pt(st),ai
t∼πi(ai

t |oi
t)

[
− log πi(ai

t|oi
t)

+ Ea−i
t ∼π−i(a−i

t |o−i
t )

[
Aθ(st,~at)− log π−i(a−i

t |o
−i
t )
]]

=
T

∑
t=0

Est∼pt(st),ai
t∼πi(ai

t |oi
t)

[
− log πi(ai

t|oi
t) + Aθ(st, ai

t)

+H
(
π−i(·|o−i

t )
)]

where we denote Aθ(st, ai
t) as the central advantage func-

tion averaged over samples from other agents’ policies.
We further notice that the termH

(
π−i(·|o−i

t )
)

does not
depend on agent i’s policy, and thus the objective be-
comes

T

∑
t=0

Est∼pt(st),ai
t∼πi(ai

t |oi
t)

[
− log πi(ai

t|oi
t) + Aθ(st, ai

t)

]

=
T

∑
t=0

Est∼pt(st)

[
−Eai

t∼πi(ai
t |oi

t)

[
log πi(ai

t|oi
t)− log exp{Aθ(st, ai

t)}
]]

=
T

∑
t=0

Est∼pt(st)

[
−Eai

t∼πi(ai
t |oi

t)

[
log

πi(ai
t|oi

t)

exp{Aθ(st, ai
t)}
]]

By minimizing the objective instead of maximizing,
we then get:

T

∑
t=0

Est∼pt(st)

[
DKL

[
πi(·|oi

t)|| exp{Aθ(st, ai
t)}
]]

(2)

Next, we show this objective is the same objective
of applying MADDPG style actor-critic architecture to
MERL, specifically, Soft Q-Learning. We first write down
agent’s policy objective of Soft Q-Learning (see Equa-
tion (12) in [13]), which is curiously similar:

J(φ) =
T

∑
t=0

Est∼pt(st)

[
DKL

[
πφ(·|st)|| exp{Qsoft(st, ·)−Vsoft(st)}

]]
(3)

Then we consider how to apply the idea of MADDPG
to MERL. In MADDPG, for each agent i, its policy gradi-
ent estimator is

∇φi J(φi) = Es,a−i∼D

[
∇φi πi

φi (oi)∇ai Q(s,~a)|ai=πi
φi
(oi)

]
.

If we are dealing with a stochastic policy, then

∇φi J(φi) =Es,a−i∼D

[
Eai∼D

[
∇φi log πi

φi (ai|oi)Q(s,~a)
]]

=Es,~a∼D

[
∇φi log πi

φi (ai|oi)Q(s,~a)
]

.

The difference is that for stochastic policies, we need
to sum over all the actions ai sampled from the policies,
and the likelihood-ratio trick must be used. Then we can
rewrite the above estimator as

∇φi J(φi) = Es,~a∼D

[
∇φi log πi

φi (ai|oi)Q(s,~a)
]

= Es,ai∼D

[
∇φi log πi

φi (ai|oi)Ea−i∼D
[
Q(s,~a)

]]
= Es,ai∼D

[
∇φi log πi

φi (ai|oi)Q(s, ai)
]]

where Q(s, ai) is the central Q-function averaged over
the samples of the other agents’ actions from the replay
buffer (a proof of this estimator can be found in [38]).
If we want to combine the idea of MADDPG with
Equation (3), a simple way is to replace the Qsoft(s, ·)
with Qsoft(s, ai) = Ea−i∼D

[
Qsoft(s,~a)

]
in Equation (3) for

agent i and change the state s in the policy to the agents’
local observation oi, then we have the following objective
for agent i’ s policy,

J(φi) = DKL
(
π(·|oi)|| exp{Qsoft(s, ai)−Vsoft(s)}

)
= DKL

(
π(·|oi)|| exp{Es,a−i∼D[Qsoft(s,~a)]−Vsoft(s)}

)
= DKL

(
π(·|oi)|| exp{Es,a−i∼D[Qsoft(s,~a)−Vsoft(s)]}

)
= DKL

(
π(·|oi)|| exp{Es,a−i∼D[Asoft(s,~a)]}

)
= DKL

(
π(·|oi)|| exp{Asoft(s, ai)}

)
where Asoft(s, ai) can be thought of as the joint soft ad-
vantage function averaged by the samples of the other
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agents’ policies from the replay buffer. This objective
matches the inner KL-divergence term in Equation (2).
The only difference is that in Equation (2) the estimator
is using the on-policy samples and MADDPG uses the
off-policy samples. This is because MADDPG uses off-
policy learning for optimal advantage functions, while
MAIRL learns the optimal advantage function through
demonstration and thus can avoid using off-policy sam-
ples and a replay buffer.

5 Learning with
coordination examples

In this section, we explore whether our proposed method
can potentially suffer from the relative overgeneraliza-
tion problem and if so, is there a way to avoid it? To
answer the first question, we first consider the inner
KL-divergence term in Equation (2) as only this term
involves the actions from other agents.

∇φDKL
[
πi

φ(·|oi
t)|| exp{Aθ(st, ai

t)}
]

=∇φEai
t∼πi

φ(ai
t |oi

t)

[
log πi

φ(ai
t|oi

t)− Aθ(st, ai
t)
]

=∇φEai
t∼πi

φ(ai
t |oi

t)

[
log πi

φ(ai
t|oi

t)
]
−Eai

t∼πi
φ(ai

t |oi
t)

[
Aθ(st, ai

t)
]

=∇φH(πi
φ(·|oi

t))−∇φ

∫
ai

πi
φ(ai

t|oi
t)Aθ(st, ai

t)dai

By using the likelihood-ratio trick and using the defini-
tion of the advantage function, the second part becomes

∇φ

∫
ai

πi
φ(ai

t|oi
t)Aθ(st, ai

t)dai

=∇φEai
t∼πi(ai

t |oi
t)

[
Ea−i

t ∼π−i(a−i
t |o−i

t )

[
Qθ(st,~at)−Vθ(st)

]]
=∇φEai

t∼πi(ai
t |oi

t)

[
Ea−i

t ∼π−i(a−i
t |o−i

t )

[
Qθ(st,~at)

]]
−∇φVθ(st)

=Eai
t∼πi(ai

t |oi
t)

[
∇φ log πi

φ(ai
t|oi

t)Ea−i
t ∼π−i(a−i

t |o−i
t )

[
Qθ(st,~at)

]]
=Eai

t∼πi(ai
t |oi

t)

[
∇φ log πi

φ(ai
t|oi

t)Qθ(st, ai
t)
]]

This is the regular policy gradient [35] with averaged
Qsoft(s, a). Since an average-based learner can suffer
from relative overgeneralization, MAIRL will have the
same issue. To fix this, we notice that the difficulty comes
from the Q-function. Suppose agent i has two actions,
a and b, in state s. When the other agents are playing
their best response policies π∗−i, and Q(s, a, π∗−i) >
Q(s, b, π∗−i), then agent i ought to prefer a over b. How-
ever, in an average-based learner setting, it is possible
that b is preferred over a when Q(s, b) > Q(s, a) where
Q is some averaged Q-function. Thus, a simple way
to avoid relative overgeneralization is to make sure the
rank ordering between the actions is always maintained.

Definition 1. A Q-function is relative overgeneralization
free if for any agent i and any of its two actions ai

and bi, we always have Ea−i
t ∼π−i(a−i

t |o
−i
t )[Q(s, ai, a−i)] >

Ea−i
t ∼π−i(a−i

t |o
−i
t )

[Q(s, bi, a−i)] given that Q(s, ai, a∗−i) >

Q(s, bi, a∗−i), where π−i(a−i
t |o

−i
t ) is some arbitrary policy

of all the other agents, and a∗−i is the best response action of
all the other agents.

Note that a Q-function can always be decomposed into
an advantage function and a state value function, and the
state value function does not have the action involved.
Thus, we are really looking for an advantage function
that is relative overgeneralization free. A natural idea
would be a quadratic function with a block diagonal
matrix.

Proposition 1. Suppose A(s,~a) = − 1
2 (~a −

µ(s))T M(s)(~a − µ(s)) is the advantage function for
some state s and joint actions~a of all n agents, where M(s) is
a positive definite block diagonal matrix with n blocks with
each block of size di by di, namely, the action dimension of
agent i. Then the corresponding state-action value function
Q(s,~a) is relative overgeneralization free.

Proof. We partition the joint action ~a into two disjoint
subvectors. Without loss of generality, we take ai to be
the first di components of ~a and a−i be the rest of the
components of~a, that is,

~a =

(
ai

a−i

)
Correspondingly, we can partition the vector µ(s) and

matrix M(s). For simplicity, we refer to them as µ and
M. Then,

µ =

(
µi

µ−i

)
, M =

(
M11 M12
M21 M22

)
,

Since M is block diagonal, M12 = M21 = 0. Now sup-
pose we take the exponential of the advantage function,
such that

p(~a) = exp
{
− 1

2
(~a− µ)T M(~a− µ)

}
.

Then we can see that p(~a) is a multivariate Gaussian
distribution. If we assume a−i is given and M is a diag-
onal matrix as described above, by using the indepen-
dence property of multivariate Gaussian distribution,
the resulting distribution of ai is also a Gaussian dis-
tribution with µi and M11 as the mean and covariance
matrix. The inner quadratic form of this Gaussian is

A(s, ai) = −1
2
(ai − µi)T M11(ai − µi)

The resulting value function does not depend on
a−i, so if ∃a−i A(s, ai, a−i) > A(s, bi, a−i), then we have
∀a−i A(s, ai, a−i) > A(s, bi, a−i). Now, since

Q(s, ai)−Q(s, bi) = Ea−i
t ∼π−i(a−i

t |o−i
t )

[
Q(s, ai, a−i)−Q(s, bi, a−i)

]
= Ea−i

t ∼π−i(a−i
t |o−i

t )

[
A(s, ai, a−i)− A(s, bi, a−i)

]
.

The inner term is always positive, so Q(s, ai) > Q(s, bi)
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(a) The Max of Two Quadrat-
ics game. Red dots mark the
two NEs in the joint action
space. The blue star marks
the joint action of the two
agents. The contour shows
the reward level.

(b) Reward recovered by Mul-
tiagent AIRL. The optimal
NE in the original game is
marked with red dot. In the
recovered reward function,
only one NE is maintained.

Figure 2: Max of Two Quadratics Game and recovered
reward
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Figure 3: Average reward of three algorithms on Max
of Two Quadratics domain. MADDPG converge to the
suboptimal NE due to relative overgeneralization.

Recall that when trained at optimal, fθ(s, a) in the dis-
criminator recovers the advantage function of the expert.
Thus, if we require the expert’s advantage function to
satisfy Proposition 1, then we just need to guarantee
that the expert’s policy is a Gaussian policy on the joint-
action space with a block diagonal matrix, which is not
a hard requirement to fulfill. A closely related work
employs a reward function that is learned using Lapla-
cian approximation, thus the transition model has to be
known [18].

6 Experiments

In this section, we consider three domains to test our al-
gorithms. The first domain is a repeated game from [38],
while the other two domains are sequential decision
making tasks which are carefully designed to demon-
strate the challenge of cooperation in simple games.
With these experiments, we show that by using IL we
can greatly reduce the difficulty of learning cooperative
tasks, and especially the ones caused by relative over-
generalization.

For all our experiments, we used a two-layer ReLU

network with 64 units for the discriminator and a two-
layer Tanh network with 64 units for the Gaussian pol-
icy. The batch size of Trust Region Policy Optimization
(TRPO) algorithm [29] and the number of steps for ev-
ery epoch of MADDPG was set to 10000. The entropy
regularizer for MAIRL in the first two domains (Max of
Two Quadratics and Marching) was 0.01 and was 0.1 for
the last domain (Narrow). The entropy regularizer for
MGAIL was always 0.0. For the final results in Table 1,
we verified statistical significance ANOVA with a Tukey
post-hoc test at p = 0.05.

6.1 Repeated Game Experiment

The first game was Max of Two Quadratics. This is a sim-
ple single state continuous game for two agents with one
action dimension per agent. Each agent has a bounded
action space. The reward for a joint action is given by
the equation

f1 = h1 ×
[
− ((a1 − x1)/s1)

2 − ((a2 − y1)/s1)
2
]

f2 = h2 ×
[
− ((a1 − x2)/s2)

2 − ((a2 − y2)/s2)
2
]
+ c

r(a1, a2) = max( f1, f2)

where a1 and a2 are the actions of agent 1 and agent 2 re-
spectively. In the above equation, h1 = 0.8, h2 = 1, s1 =
3, s2 = 1, x1 = 5, x2 = 5, y1 = −5, y2 = −5, c = 10 are
the coefficients to specify the reward surface (see Fig-
ure 2a). Although the formulation of the game is rather
simple, it poses a major difficulty to gradient-based al-
gorithms as, over almost all the joint-action space, the
gradient points towards the sub-optimal solution at (-
5, -5). We applied MAIRL, MGAIL, and MADDPG in
this setting. The demonstration sample was collected
using a Gaussian distribution centered at the optimal
Nash Equilibrium. The convergence results are shown
in Figure 3 and Table 1. As can be seen, MADDPG gener-
ally converged to a suboptimal Nash Equilibrium, while
MAIRL and MGAIL made use of the demonstration and
converged to the optimal Nash Equilibrium.

6.2 Stochastic Game Experiments

To test the performance of our algorithms on stochas-
tic games we designed the games Marching and Narrow,
shown in Figure 4a and Figure 4b. In each game there
are two agents, each with a radius of 0.05. Both games
terminate after 200 steps. In Marching the agents must
march towards the red dot. A shaped reward is provided
for the two agents based on the distance between the
agent’s center point and the red dot. The agents receive
a large penalty (-10) if they collide or are too far from
each other (if the distances between the centers is ≥0.11).
They will receive a large reward (10) if they manage to
reach the red dot. The purpose of this game is to test
whether the agents can coordinate their moving speeds:
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MAIRL MGAIL MADDPG TRPO

Max of Two
Quadratics 9.78 ±0.07 8.98 ±0.35 -0.03 ±0.02

Marching -152.88±129.76 -80.88±52.08 -178.36±89.46 -324.58±111.88
Narrow
(u, 0.2) 5.99 ±0.84 5.49 ±1.79 -2.00 ±0.00 -2.00 ±0.00

Narrow
(u, 0.205) 4.53 ±2.51 5.54 ±2.15 -2.00 ±0.00 -2.08 ±0.16

Narrow
(sh, 0.2) -4.40 ±0.85 -4.94 ±1.80 -23.46 ±6.10 -79.21 ±6.96

Narrow
(sh, 0.205) -6.76 ±3.78 -5.23 ±2.13 -39.98±37.06 -79.34 ±4.54

Narrow
(s, 0.2) 5.95 ±0.83 5.44 ±1.78 -2.80 ±1.32 -2.63 ±0.14

Narrow
(s, 0.205) 4.50 ±2.51 5.50 ±2.15 -3.68 ±1.04 -2.66 ±0.17

u=unshaped reward sh=shaped reward s=scaled shaped reward
Number in the parentheses marks the width of the field.

Table 1: Convergence results of algorithms by domain, showing the mean ± standard error over 5 trials. The
best-performing algorithms on each task are shown in boldface.

(a) Marching domain. Agents
need to march through the
exit.

(b) Narrow domain. The valid
moving area is within the in-
side black box.

Figure 4: Sequential Decision Making Tasks

at each step, they need to try to get closer to the target
while maintaining formation. In this game, if one of the
agents moves more aggressively during the learning, it
could then cause a penalty for both agents. As a conse-
quence, if both agents want to seek the safe option — to
stay still — then we have relative overgeneralization.

The other game, Narrow, requires the two agents
switch their positions. They start at two different ends
in an aisle, and each must pass the other to reach the
start position of the other agent. The aisle is very narrow
and requires careful coordination between two agents,
because when they collide they receive a large penalty
(-10). If both agents manage to reach their goal positions,
they both receive a large reward (10). We considered
several variations of this game.

For both tasks we also included an independent
learner where the two agents ran TRPO in parallel. The
demonstrations for MGAIL and MAIRL were collected
using a joint action DDPG learner.
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Figure 5: Average reward of four algorithms on March-
ing domain. MGAIL and MAIRL converge faster and
have smaller variance compared to MADDPG.

Figure 5 and Table 1 show the results of the four algo-
rithms in the Marching domain. Among them, MGAIL
performed the best, while the convergence result of
MAIRL was similar to MADDPG. However, during
learning, we can see that MADDPG had a much higher
variance than MGAIL and MAIRL and converged slower.
We think this is because the reward function given to
MADDPG and also to TRPO lacked useful coordina-
tion information. Thus, although MADDPG and TRPO
learned to march to the exit and to avoid relative over-
generalization, they had to make many collisions during
movement. On the contrary, MGAIL and MAIRL used
the demonstration and learned how to avoid collisions
while moving.

In the Narrow domain, we tested the four algorithms
on three different reward functions, namely: an unshaped
reward where agents received -0.01 for every step until
the episode ended or all reached the target (and so the
accumulated reward for simply wandering around was
-2, which was better than the collision penalty); a shaped
reward that was the same as in the Marching domain
(to encourage each agent to reach the other end); and
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(a) Unshaped reward with width = 0.200
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(b) Unshaped reward with width = 0.205
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(c) Shaped reward with width = 0.200
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(d) Shaped reward with width = 0.205
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(e) Scaled reward with width = 0.200
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(f) Scaled reward with width = 0.205

Figure 6: Convergence results of Four algorithms on Narrow domains.

a scaled shaped reward to provide dense reward signals
but to also make sure the accumulated reward was bet-
ter than the collision penalty. Here, if agents got close
to each other they could collide, and as a consequence,
the agents might choose to simply stay at where they
started, resulting in relative overgeneralization. Further-
more, the final large reward was only provided if both
agents reached the target. To pass each other in the first
stage, the agents might try too hard then overshoot into
a corner of the environment, and thus fail to discover
the final large reward.

In addition to changing the reward function, we also
varied the width of the Narrow domain. In the basic
setting, the width was 0.2, just wide enough to allow the
two agents to pass each other. We then relaxed this to
0.205. The results of the Narrow task experiments are
shown Figure 6.

We found that, in all cases, MGAIL and MAIRL agents
successfully passed each other and reached the target.

However, in the unshaped reward setting, both MAD-
DPG and TRPO agents failed to learn to pass one an-
other. This is not a surprising result, as the coordina-
tion is extremely difficult and both algorithms fail to
find it. However, our imitation learning agents used
an advantage function as reward, and Asoft(s, a) =

Es′ [R(s, a) + Vsoft(s′) − Vsoft(s)], which can be thought
of as an original reward function shaped by a soft value
function. Thus, our imitation learners were receiving a
better reward signal for exploration.

Then in the shaped reward setting we found that
MADDPG agents managed to pass one another but
failed to reach the target jointly, and TRPO agents could
not pass each other at all. This suggests that shaped re-
ward helped the exploration of these agents and reduced
the effect of relative overgeneralization for MADDPG.
The performance difference was significant with a width
of 0.2, but not 0.205, which further suggested that rela-
tive overgeneralization was the cause of this difference.
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Finally, we gave MADDPG and TRPO agents a scaled
shaped reward. Since the reward for collision was worse,
the algorithms were caught by relative overgeneraliza-
tion and failed to learn the passing behavior. The differ-
ence between our algorithms and MADDPG was signifi-
cant for both width settings.

7 Conclusion and Future Work

In this paper we proposed two methods to achieve bet-
ter coordination in cooperative continuous games based
on imitation learning. We showed that these meth-
ods have a close connection with multiagent actor-critic
model. We also investigated the reasons why these meth-
ods avoided relative overgeneralization in cooperative
games. A drawback of our approach is that the input
space of our discriminator can grow linearly with the
number of agents. A possible solution is to use hierar-
chal methods to decompose the task and learning spaces.
We will investigate this direction in future work.
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