

Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Software Release Scheduling to Optimize Business
Workflow Processes: Modeling and Decision Guidance

Fernando Boccanera
fboccane@gmu.edu

Alexander Brodsky
brodsky@gmu.edu

Technical Report GMU-CS-TR-2020-1

ABSTRACT: Many software development projects fail because they do not deliver sufficient business benefit to
justify the investment. Existing approaches to estimating business benefit of software development
adopt unrealistic assumptions which produce imprecise results. This paper focuses on removing this
limitation for software projects that automate business workflow processes. For this class of projects,
the paper proposes a new approach and a decision-guidance framework to select and schedule software
features over a sequence of software releases as to maximize the net present value of the combined cash
flow of software development as well as the improved organizational business workflow. The
uniqueness of the proposed approach is in precise modelling of the business workflow processes and
the savings achieved by deploying new software functionality.

1 INTRODUCTION

Many software development projects fail because
they do not deliver much business benefit. Research
has shown that 25% of projects fail and another 25%
do not provide any return on investment (Pucciarelli
& Wiklund, 2009). Of those projects that do not fail,
45% of the functionality is never used, resulting in
zero business value (The Standish Group, 2014). This
has led to an increasing understanding in the software
engineering community, that “value creation is the
final arbiter of success for investments of scarce
resources; and far greater sophistication than in the
past is now evident in the search for value” (Boehm
& Sullivan, 2000).

This paper focuses on maximizing the business
value for a class of software projects that automate
Business Workflow Processes (BWP). It proposes a
new approach and a decision-guidance framework to
select and schedule software features over a sequence
of software releases as to maximize the return on
investment (ROI). The uniqueness of the proposed
approach is that ROI analysis is based on precise
modelling of the BWP and the savings achieved by
deploying new software functionality.

There has been extensive work on the selection
and scheduling of software functionality to increase
the business value of software investments, among
them, the highly influential Incremental Funding

Methodology (IFM) approach (M. Denne & Cleland-
Huang, 2004), (Cleland-Huang & Denne, 2005),
(Mark Denne & Cleland-Huang, 2003). IFM’s
approach is to deliver software functionality, called
features, as early as possible in order to maximize
their business value. It assumes a software
development life cycle that delivers software
continuously and iteratively in releases, in line with
modern Agile methodologies like Scrum.

Another approach called F-EVOLVE* (Maurice
et al., 2006), is an iterative and evolutionary approach
that facilitates the involvement of stakeholders to
achieve increments (releases) that result in the highest
degree of satisfaction among different stakeholders.
The approach provides a decision support for the
generation and selection of release plan alternatives.

A third approach (Van den Akker et al., 2005),
applies integer linear programming to maximize the
revenue.

However, estimating the business benefit of a
software release is challenging. All existing
approaches use cash flow as a metric for business
benefits, but their estimations are inaccurate. IFM and
Van den Akker et al. assume that cash flow
estimations are provided externally, that is, they are
not part of the approach, while F-EVOLVE* gets
estimates from multiple stakeholders and weights
them according to the perceived importance of each
stakeholder. Also, they require the estimation of cash

http://cs.gmu.edu/

flows at the software feature level which is
challenging due to the difficulty of drawing a direct
correlation between a particular business benefit, like
a reduction in cost, and a specific piece of software.
Some researchers have acknowledged this difficulty,
e.g., (Devaraj & Kohli, 2002) noted that “the
principal issue encountered is whether we can isolate
the effect of IT on firm performance. It does not have
an easy answer, because it means disentangling the
effect of IT from various other factors such as
competition, economic cycle, capacity utilization,
and many other context-specific issues.”

Existing value-based approaches other than the
three mentioned were not considered because they are
not comprehensive. For example, (Riegel & Doerr,
2014) developed heuristics that can be used to
optimize requirements selection, but their cost metric
only involves elicitation, not development. (Hannay
et al., 2017) used benefit points as a metric for
business value but did not propose a release
scheduling approach. (Elsaid et al., 2019) used rule-
based fuzzy logic to prioritize requirements but did
not consider the development cost.

A significant pitfall of existing value-based
release scheduling approaches like IFM, F-
EVOLVE* and Van den Akker et al. is that each and
every dollar of cash flow needs to be allocated to one
and only one feature. This is not a realistic
assumption because often, realizing a business
benefit does require the implementation of more than
one software feature. Another pitfall is that the cash
flow of the business benefit (revenue or savings) and
the cost of development are combined into a single
value. This conceals the cost of development from the
decision maker and force development cost changes
to be applied first to the external cash flows prior to
being used in the model.

Because of these pitfalls, the estimation of
business benefits is often based on a guesswork and,
as a result, is inaccurate. This inaccuracy, together
with the estimation of business benefits being
external to the methodology, are the limitations of
existing value-based approaches.

The focus of this paper is addressing the
limitations of the existing value-based release
scheduling approaches for the class of software
projects that improve a Business Workflow Process
(BWP). We address the limitations by proposing a
decision-guidance framework that is more precise
than existing approaches because it is based on a
formal model of the BWP and its evolution following
the implementation of software features.

The key idea, which is also unique, is that the
implementation of software features allows

improvements in the BWP, which lead to a reduction
in cost. As a consequence of this idea, the business
benefit is not attributed to individual features in silos
like in the current approaches, but rather to the
synergetic effect of multiple interrelated features on
the reduction of the overall cost of the BWP. The
proposed approach moves the benefit estimation from
a guesswork to a systematic model-based
methodology, which, we believe, will result in
considerably higher return on software investment.

More specifically, the contributions of this paper
are threefold. We (1) develop a formal optimization
model and solution based on a reusable library of
analytical component models; (2) develop a decision
guidance system and methodology for software
release scheduling; and (3) demonstrate the
methodology using an example from the U.S. Patent
and Trademark Office.

The first contribution, the formal model, captures
the entire space of alternatives for BWP networks
which produce some output items from input items
(e.g., documents, requests, approvals, reports etc.).
Every process in a BWP hierarchy is described,
recursively, as a flow of items through a number of
sub-processes. Some parent processes require an
exclusive OR choice among their children sub-
processes (introducing alternatives), while others
require all their children sub-processes to be
activated.

The formal optimization model decides on (1)
which interdependent software features are to be
implemented and in which software release, and (2)
which specific alternatives of the BWP network are
to be activated for each software release over the
investment horizon. To be activated, atomic
processes in the BWP hierarchy may require new
inter-dependent software features to be implemented.
Improvements in the BWP are measured as cash
flows and their associated Net Present Value (NPV).
Cash flows are calculated to represent the ongoing
costs of the BWP, as well as software development.
Each potential software release schedule impacts the
cash flow and results in a different NPV. The formal
optimization problem is to minimize the NPV of the
combined cash flow of the BWP plus the software
cost, while satisfying the constraints of (1) feature-to-
release allocation, (2) dependencies among features,
and (3) business processes activation.

As a second contribution, we develop a Decision
Guidance System (DGS) and methodology that are
centered around solving the optimization model and
producing an optimal release sequence. The DGS is
based on the formal model and is implemented in the
Decision Guidance Analytics Language (DGAL)

(Alexander Brodsky & Luo, 2015) within Unity
(Nachawati et al., 2016), a generic platform for the
creation and execution of decision guidance systems.

Finally, to demonstrate the approach, we show an
example from the United States Patent and
Trademark Office. The example, although simplified,
contains all the necessary components to apply the
approach.

This paper is organized as follows: Section 2
intuitively explains the proposed approach through an
example; Section 3 describes the formal model;
Section 4 discusses the methodology and decision
guidance system; Section 5 is an example of the
approach; and, Section 6 provides concluding
remarks and briefly describes future research.

2 INTUITIVE EXPLANATION OF THE
RELEASE SCHEDULING APPROACH

We first describe the proposed approach intuitively
through an example. The goal is to maximize the
business value of an investment in an information
system that improves a business process.

BWP Modelling
Consider an organization, like the United States
Patent Office, which processes applications for
patents. Consider a simplified and partial version of
the business process workflow, depicted in Figure 1.
The process starts with Application Intake (A), which
takes a User Application and either accepts it by
producing a Compliant Application or rejects it by
producing a Non-compliance Notice. Compliant
applications go through Adjudication (B) and then
Adjudication Review (C), which produces an
Adjudicated Application Letter.

Figure 1–Simplified Patent Adjudication BWP.

Let us assume that initially, processes A, B and C
are manual, and the Patent Office is considering
implementing a software system to automate these
processes to save cost. To reason about possible
alternative for automation, the Patent Automation
Division creates the diagram shown in Figure 2. In it,
process A has three alternatives; AA (Manual

Application Intake), AB (Electronic Application
Intake) and AC (Self-service Application Intake),
where AA is the initial manual process and AB and
AC are increasingly automated alternatives of A.
Similarly, for B, BA is the initial manual process
while BB is its automated alternative and for C, CA
is manual while CB is its automated alternative. In
essence, Figures 1 and 2 show all possible
configurations of the BWP, composed of a
combination of alternatives to processes A, B and C.

Initially there is no software system, consequently
the BWP configuration is made of manual processes
AA (Manual Application Intake), BA (Manual
Adjudication) and CA (Manual Adjudication
Review). As the software system is implemented, the
BWP configuration changes to take advantage of
more efficient processes; AA transitions to AB
(Electronic Application Intake), BA transitions to BB
(Electronic Adjudication), etc…

We model the BWP as a Service Network (SN)
(A. Brodsky et al., 2017), which is a “network of
service-oriented components that are linked together
to produce products”. Figure 1 depicts the root
Service Network, while Figure 2 details its
subservices A, B and C. Because the root service
requires subservices A, B and C, we call this an AND-
type service. Whereas, because service A requires
only one of subservices AA, AB or AC, service A is
an OR-type. Services B and C are also OR-types
while all the other subservices are atomic.

Non-
compliance

Notice

Compliant
Application

AA.
Manual

Application
Intake

AB.
Electronic

Application
Intake

AC.
Self-service
Application

Intake

User
Application

Adjudicated
Application

B. Adjudication Review (type: OR)
BA.

Manual
Adjudication

BB.
Electronic

Adjudication

Adjudicated
Application

Letter

C. Adjudication Review (type: OR)
CA

Manual
Adjudication

Review

CB.
Electronic

Adjudication
Review

A. Application Intake(type: OR)

(A)

(B)

(C)

Figure 2–BWP Composite Processes A, B and C.

BWP Cost
Different automation alternatives potentially reduce
the cost of the BWP for patent adjudication. Cost
savings may be due to reduction of the amount of
manual labor or utilization of less costly labor.
However, automated process alternatives require the
implementation of specific software functionality
called features. For example, process alternative AB

A. Application
Intake

B.
Adjudication

C.
Adjudication

Review

Compliant
Application

Adjudicated
Application

Adjudicated
Application

Letter

User
Application

Non
Compliance

Notice

root:Service Network (type: AND)

(Electronic Application Intake) requires business
feature BF1 which is the capability to create and edit
an electronic application. Table 1 shows which
features are required for each process alternative,
where BF is a business feature and TF is a technical
feature.

Our approach uses the cost reduction of
automated processes to precisely calculate the
business value of software. In our approach, there is
no need to estimate the cash flow at the feature level;
a feature is just an enabler of a change in the BWP
configuration.

Table 1–Process alternatives and required software
features.

Process
Alternative

Required
Feature

Feature
Functionality

AA None
AB BF1 Capability to create and

edit an electronic appl.
AC BF4 Capability to allow an

Applicant to submit an
application on-line

BA None
BB BF2 Capability to annotate

aspects of the application
that pass or don't pass
adjudication rules

CA None
CB BF3 Capability to review

adjudication decision and
annotate issues that don't
pass review

Software Features

Features must be scheduled over a sequence of
releases. The set of features implemented in a
particular release incur a development cost and
enables a set of candidate BWP configurations, which
in turn, are associated with labor cost savings. A
software release schedule is a table of all releases and
the features planned to be implemented in each
release. The choice of features to be implemented in
a particular release is constrained by the fact that
features require varying levels of effort, but the
development team has a fixed capacity. This means
that the total effort scheduled for any release cannot
exceed the capacity of the development team.

Another constraint is that features have
interdependencies that form a graph. Figure 3 depicts
the dependency graph for our example. It shows that
business feature BF1 is a prerequisite for BF2 and

BF4 while technical feature TF1 is a prerequisite for
BF1 and BF3.

TF1 BF1 BF2

BF3 BF4

Figure 3–Dependency Graph.

Best BWP Configuration
There are many possible mappings between features,
releases and BWP configurations. One such mapping
is the release sequence shown in Table 2. During
release 1, TF1 and BF1 are being implemented but
still not available. Consequently, the best BWP
configuration is AA, BA, and CA because, according
to Table 1, it does not require any software feature.
During release 2, BF3 is being implemented but still
not available, therefore, the set of completed features
is {TF1, BF1} consequently, the best BWP
configuration is AB, BA and CA because feature
BF1, according to Table 1, enables process AA to
transition to AB. The same rationale applies to
releases 3 and 4. After release 4 all features are
implemented and the best configuration, which is also
the least costly, is AC, BB and CB.

Table 2-Example of software release schedule and best
BWP configuration.

Software
Release #

Features being
implemented

Best BWP
Configuration

1 TF1, BF1 AA, BA, CA
2 BF3 AB, BA, CA
3 BF2 AB, BA, CB
4 BF4 AB, BB, CB

After 4 AC, BB, CB

Note that the feature sequence in Table 2 complies
with the dependency graph in Figure 3 because TF1
and BF1 are implemented before BF2, BF3 and BF4.
Also, TF1 is implemented in the same release as BF1.

Every software release schedule and related BWP
configuration, such as the one depicted in Table 2,
corresponds to a cash flow and the NPV associated
with (1) the cost of software development, and (2) the
cost of running the BWP. Our problem is finding a
software release schedule and BWP configuration
that maximizes the overall NPV, subject to
constraints such as the BWP space of alternatives, the
required software features, the interdependencies
among features, the one-to-one mapping between

features and releases and the capacity of the
development team.

3 FORMAL MODEL

3.1 Model Introduction

The release scheduling problem formulation in linear
programming is:

𝑀𝑀𝑀𝑀𝑥𝑥𝐷𝐷𝐷𝐷 𝑂𝑂(𝑃𝑃, 𝐷𝐷𝐷𝐷)
𝑠𝑠. 𝑡𝑡. 𝐶𝐶(𝑃𝑃, 𝐷𝐷𝐷𝐷)

Where:
P is a set of parameters,
DV is a set of decision variables,
𝐶𝐶(𝑃𝑃, 𝐷𝐷𝐷𝐷) is a predicate, expressed as a function of

parameters 𝑃𝑃 and decision variables 𝐷𝐷𝐷𝐷, that
need to be satisfied, and

𝑂𝑂(𝑃𝑃, 𝐷𝐷𝐷𝐷) is the NPV metric, expressed as a
function of P and DV

The components of the optimization problem are
described using the ReleaseScheduling
formalization, which is a tuple ⟨Parameters,
DecisionVariables, Computation, Constraints,
InterfaceMetrics⟩, detailed in section 3.2. At a high
level, the ReleaseScheduling formalization is
described in Figure 4 as a hierarchy of components.

Release
Scheduling

Business
Service

Network

Software
Development

ServicesSet Service

ANDService

InputDrivenAtomic

ORService

Figure 4-Hierarchy of the Formalizations of the Release
Scheduling Model.

The hierarchy in Figure 4 establishes a parent-
child relationship where the child inherits all
formalizations from the parent and the parent has
access to all the formalizations of the child. For
example, ReleaseScheduling is the parent of Business
Service Network (BSN), consequently the BSN tuple
is available to ReleaseScheduling and BSN inherits

Parameters, DecisionVariables, Computations and
InterfaceMetrics from ReleaseScheduling.

In the next sections we describe the components
of the Release Scheduling formalization hierarchy in
details.

3.2 Release Scheduling Formalization

ReleaseScheduling (RSch) formalization is a tuple
⟨Parameters, DecisionVariables, Computation,
Constraints, InterfaceMetrics⟩
where:

Parameters, also denoted Parm, is a tuple
⟨Features, TH, DiscountRate, ReleaseInfo,
BSN.Parameters, SWD.Parameters⟩
Features is a tuple ⟨BF, TF, DG, FS ⟩ where:
• BF is a set of business features
• TF is a set of technical features, such that
𝐵𝐵𝐵𝐵 ∩ 𝑇𝑇𝑇𝑇 = ∅

• DG, (Dependency Graph), is a partial order over
F = BF ∪ TF, (f1, f2) ∈ DG also denoted f1 ≺ f2,
means that f2 is dependent on f1, that is, feature f1 is
a pre-requisite for feature f2.

• 𝑭𝑭𝑭𝑭: 𝐹𝐹 → ℝ+ is a function described as follows:
(∀ 𝑓𝑓 ∈ 𝐹𝐹), 𝐹𝐹𝐹𝐹(𝑓𝑓) gives the size, in effort point, of
each feature 𝑓𝑓.

• TH is the time horizon for analysis in days
• DiscountRate is the daily rate to discount cash

flows.
• ReleaseInfo is a tuple ⟨NR, RD ⟩, where:
• NR is the number or releases
• 𝑹𝑹𝑹𝑹 ∶ [1. . 𝑁𝑁𝑁𝑁] → ℝ+ is a function described as

follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝑅𝑅𝑅𝑅(𝑟𝑟) gives the
maximum duration in days for release 𝑟𝑟.

• BSN.Parameters is defined in section 3.3
• SWD.Parameters is defined in section 3.8

DecisionVariables, also denoted DV, is a tuple
⟨𝐼𝐼𝐼𝐼𝐼𝐼, 𝐼𝐼𝐼𝐼𝐼𝐼, 𝐵𝐵𝐵𝐵𝐵𝐵. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,
𝑆𝑆𝑆𝑆𝑆𝑆.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⟩
where:
• 𝑰𝑰𝑰𝑰𝑰𝑰 ∶ [1. . 𝑁𝑁𝑁𝑁] → 2𝐵𝐵𝐵𝐵 is a function described as

follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) gives a set of
business features planned to be implemented in
release 𝑟𝑟.

• 𝑰𝑰𝑰𝑰𝑰𝑰 ∶ [1. . 𝑁𝑁𝑁𝑁] → 2𝐵𝐵𝐵𝐵 is a function described as
follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) gives a set of
technical features planned to be implemented in
release 𝑟𝑟.

• 𝑩𝑩𝑩𝑩𝑩𝑩.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 is defined in section
3.3.

• 𝑺𝑺𝑺𝑺𝑺𝑺.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝒔𝒔 is defined in section
3.8.

Computation
1. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: [1. . 𝑁𝑁𝑁𝑁 + 1] → 2𝐵𝐵𝐵𝐵 be a function

described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑟𝑟) gives the set of all business features
implemented up to release 𝑟𝑟 or the period after the
last release, computed as follows:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑟𝑟) = �𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖)
𝑟𝑟−1

𝑖𝑖=1

2. Let 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹: [1. . 𝑇𝑇𝑇𝑇] → ℝ be a
function described as follows: (∀ 𝑑𝑑 ∈
[1. . 𝑇𝑇𝑇𝑇]), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) gives the
combined income/expenditure of both the Business
Service Network and the Software Development,
(∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]), computed as follows:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑)
= 𝐵𝐵𝐵𝐵𝐵𝐵. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑑𝑑)
+ 𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑)

where:
• BSN.IM.CashFlow is defined in subsection

BSN.InterfaceMetrics of section 3.3
• SWD.IM.CashFlow is defined in subsection

Software.InterfaceMetrics of section 3.8.

Note that a negative cash flow means that it is a cash
outflow.

3. Let 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇: [1. . 𝑇𝑇𝑇𝑇] → ℝ be a
function described as follows: (∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]),
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑑𝑑) gives the Net Present
Value (NPV) of the CombinedCashFlow for the
time investment window[1. . 𝑑𝑑], computed as
follows:
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑑𝑑)

= �
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖)

(1 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)𝑖𝑖

𝑑𝑑

𝑖𝑖=1

4. Let F = BF ∪ TF
5. Let 𝐼𝐼𝐼𝐼(𝑟𝑟) = 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) ∪ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟), (∀𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁])
6. FeatureSetsForReleasesArePairwiseDisjoint

constraint is:
(∀ 𝑖𝑖, 𝑗𝑗, ∈ [1. . 𝑁𝑁𝑁𝑁], 𝑖𝑖 ≠ 𝑗𝑗), 𝐼𝐼𝐼𝐼(𝑖𝑖) ∩ 𝐼𝐼𝐼𝐼(𝑗𝑗) = ∅

7. DependencyGraphIsSatisfied constraint is:
(∀𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁])(∀ 𝑓𝑓1, 𝑓𝑓2 ∈ 𝐹𝐹),

 (𝑓𝑓1 ≺ 𝑓𝑓2 ∧ 𝑓𝑓2 ∈ 𝐼𝐼𝐼𝐼(𝑟𝑟)) → (𝑓𝑓1 ∈ �𝐼𝐼𝐼𝐼(𝑖𝑖)
𝑟𝑟

𝑖𝑖=1

)

Constraints
1. FeatureSetsForReleasesArePairwiseDisjoint is

defined in computation #6 above.
2. DependencyGraphIsSatisfied is defined in

computation #7 above.
3. BSN.Constraints is defined in section 3.3.

4. SWD.Constraints is defined in section 3.8.

InterfaceMetrics, also denoted IM, is a tuple
⟨𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐵𝐵𝐵𝐵𝐵𝐵. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠,
𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ⟩,
where:
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 is defined in computation

#2 above.
• 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 is defined in computation #3

above.
• BSN.InterfaceMetrics is defined in section 3.3
• SWD.InterfaceMetrics is defined in section 3.8

3.3 BUSINESS SERVICE NETWORK

FORMALIZATION

A Business Service Network (BSN) is the formal
equivalent of the BWP.

BusinessServiceNetwork formalization, also
denoted BSN, is a tuple ⟨Parameters,
DecisionVariables, Computation, Constraints,
InterfaceMetrics⟩, where:

Parameters, also denoted Parm, is a tuple
⟨LaborRates, LaborPaySched, BSNDemand,
ServicesSet, rootID⟩,
where:
• LaborRates is a tuple ⟨LR, Rate⟩ where:
• LR is a set of labor roles
• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹: 𝐿𝐿𝐿𝐿 → ℝ+ is a function described as follows:

(∀ 𝑙𝑙 ∈ 𝐿𝐿𝐿𝐿), 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙) gives the hourly rate for
labor role 𝑙𝑙.

• LaborPaySched, the labor cost payment schedule,
is a tuple ⟨𝑁𝑁𝑁𝑁𝑁𝑁, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿⟩,
where:
• 𝑵𝑵𝑵𝑵𝑵𝑵 ∈ ℝ+is the number of labor payments over

the entire time horizon
• 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳: [1. . 𝑁𝑁𝑁𝑁𝑁𝑁] → [1. . 𝑇𝑇𝑇𝑇] is a

function described as follows: (∀ 𝑝𝑝 ∈
 [1. . 𝑁𝑁𝑁𝑁𝑁𝑁), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝) gives the day,
relative to the first day of the time horizon, on
which a payment 𝑝𝑝 is made.

• BSNDemand, is a tuple ⟨𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⟩,
where:
• BSNI is a set of input items ids that have to be

processed by the Service Network.
• BSNO is a set of output items ids that have to be

produced by the Service Network.
• 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ⋃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 → ℝ+ is a function

described as follows: (∀ 𝑗𝑗 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ⋃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵),

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑗𝑗) gives for every item 𝑗𝑗, the required
processing throughput per hour.

• ServicesSet is the set of all services in the Service
Network, defined in section 3.4.

• 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 is the id of the Service, in the ServicesSet,
which is designated to be the “root”. The definition
of a Service is given in section 3.4.

DecisionVariables is the set
{𝑠𝑠. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 | 𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆}. See
section 3.4.

Computation
1. Let root be a Service in ServicesSet with id=rootid
2. 𝐵𝐵 constraint:
(∀ 𝑖𝑖 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖, 𝑟𝑟)

≥ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑖𝑖)
3. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 constraint:
(∀ 𝑜𝑜 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝐼𝐼𝐼𝐼. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜, 𝑟𝑟)

≥ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑜𝑜)
4. Let 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∶ [1. . 𝑇𝑇𝑇𝑇] → ℝ+be a

function described as follows: (∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]),
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑) gives the service network
labor cost accrued for day 𝑑𝑑 computed as:
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑)
= 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟)
Where:
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑟𝑟) is

defined in subsections 4.5, 4.6 and 4.7,
• r is the release period (or period after the last

release) where day d appears, i.e.,
𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟) ≤ 𝑑𝑑 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟)

5. Let 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵: [1. . 𝑁𝑁𝑁𝑁𝑁𝑁] → ℝ be a function
described as follows: (∀ 𝑝𝑝 ∈ [1. . 𝑁𝑁𝑁𝑁𝑁𝑁]),
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝) gives the service network labor
payment in dollars, for each scheduled payment 𝑝𝑝,
computed as:

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝)

=

⎩
⎪⎪
⎨

⎪⎪
⎧

� 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷(𝑑𝑑)
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)

𝑑𝑑=1

 ∀𝑝𝑝 = 1

� 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑)
∀𝑝𝑝 = [2. . 𝑁𝑁𝑁𝑁𝑁𝑁]

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)

𝑑𝑑=𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝−1)+1

6. Let 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∶ [1. . 𝑇𝑇𝑇𝑇] → ℝ+ be a function
described as follows: (∀ 𝑑𝑑 ∈
[1. . 𝑇𝑇𝑇𝑇]), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝑜𝑜𝑤𝑤(𝑑𝑑) gives the cash flow for
the entire Business Service Network for day 𝑑𝑑,
computed as follows:
𝑖𝑖𝑖𝑖 𝑑𝑑 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝

Then 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) = −𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝)
Otherwise 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) = 0

Constraints
1. 𝑩𝑩(see Computation #2)
2. 𝑩𝑩 (see Computation #3)
3. 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺. 𝑰𝑰𝑰𝑰(𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓, 𝒓𝒓). 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪, (See

section 3.4)

InterfaceMetrics, also denoted IM, is a tuple
⟨𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⟩, where:
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 is defined in computation #6 above.

3.4 SERVICE FORMALIZATION

ServicesSet formalization is a set of Service, where:
Service is a tuple ⟨Parameters, DecisionVariables,
Computation, Constraints, InterfaceMetrics⟩, defined
separately for each 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝐼𝐼}
• Every service has an id and a ServiceType. We

denote by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖) the service with identifier
id.

• ANDservice type is defined in section 3.5.
• ORservice type is defined in section 3.6.
• InputDrivenAtomicService type is defined in

section 3.7.

3.5 ANDSERVICE FORMALIZATION

Intuitively, an ANDservice is a composite service,
that is, an aggregation of sub-services such that all
sub-services are activated.
ANDservice formalization is a tuple ⟨Parameters,
DecisionVariables, Computation, Constraints,
InterfaceMetrics⟩
where:

Parameters, also denoted Parm, is a tuple
⟨𝑖𝑖𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝐼𝐼(𝑖𝑖𝑖𝑖), 𝑂𝑂(𝑖𝑖𝑖𝑖), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)⟩
where:
• id is the Service id, which must be unique across

all services in the ServicesSet.
• I(id) is a set of inputs
• O(id) is a set of outputs
• Subservices(id) is a set of the ids of the sub-

services.
• ServiceType(id) is ANDservice.

DecisionVariables, also denoted DV, is a tuple
⟨𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩
where:

• 𝑶𝑶𝑶𝑶(𝒊𝒊𝒊𝒊): [1. . 𝑁𝑁𝑁𝑁 + 1] → {0,1} is a function that
determines whether the Service id is activated or
not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted by On(id,r) is as
follows:
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟)
= �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖): 𝐼𝐼(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is a
function described as follows: (∀ 𝑖𝑖 ∈ 𝐼𝐼 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈
[1. . 𝑁𝑁𝑁𝑁 + 1]), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑖𝑖, 𝑟𝑟), also denoted
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟), gives the throughput of 𝑖𝑖 (or
quantity per day) during release 𝑟𝑟 or the period
after the last release.

• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖): 𝑂𝑂(𝑖𝑖𝑑𝑑) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is
a function described as follows: (∀ 𝑜𝑜 ∈
𝑂𝑂(𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑜𝑜, 𝑟𝑟), also denoted
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑜𝑜, 𝑟𝑟), gives the throughput of 𝑜𝑜
(or quantity per day) during release 𝑟𝑟 or the period
after the last release.

Computation
1. AllSubservicesAreActivated constraint:

Let n be the cardinality of Subservices(id). Then the
constraint is:

𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟) = 1 → � 𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑟𝑟) = 𝑛𝑛
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]
2. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑑𝑑) be a set of inputs and outputs,

computed as follows:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

= 𝐼𝐼(𝑖𝑖𝑖𝑖)�𝑂𝑂(𝑖𝑖𝑖𝑖)⋃� � 𝐼𝐼(𝑖𝑖)
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

�

⋃� � 𝑂𝑂(𝑖𝑖)
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

�

3. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖): 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂 ×
[1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ be a function described as
follows: (∀𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)(𝑗𝑗, 𝑟𝑟), also denoted
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟), gives the total supply of
item 𝑗𝑗 during release 𝑟𝑟 (and the period after the last
release), computed as follows:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)
= 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

+ � 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟)
𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

Where:

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

= �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝐼𝐼(𝑖𝑖𝑖𝑖)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟)

= �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑂𝑂(𝑠𝑠)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

4. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖): 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ×
[1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ be a function described as
follows:
(∀ 𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)(𝑗𝑗, 𝑟𝑟), also denoted
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑑𝑑, 𝑗𝑗, 𝑟𝑟), gives the total
demand of item 𝑗𝑗 during release 𝑟𝑟 (and the period
after the last release), computed as follows:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)
= 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

+ � 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟)
𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

Where:
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟)

= �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝐼𝐼(𝑖𝑖𝑖𝑖)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

= �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑂𝑂(𝑠𝑠)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

5. SupplyItemMatchesDemandItem constraint is:
∀ 𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1],
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)
= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

6. Let 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ be a
function described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, 𝑟𝑟), gives the total dollar cost per
day during period r and the period after the last
period, computed as:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, 𝑟𝑟)

= � 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑟𝑟)
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

Constraints are as follows:
1. AllSubservicesAreActivated (see computation #1)
2. SupplyItemMatchesDemand (see computation #5)

InterfaceMetrics, also denoted IM, is a tuple
⟨𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩
where:
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑖𝑖𝑖𝑖) is defined in computation #6

above.
• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖) is defined in DecisionVariables

above.
• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖) is defined in DecisionVariables

above.

3.6 ORSERVICE FORMALIZATION

Intuitively, an ORservice is a composite service, that
is, an aggregation of sub-services such that only one
sub-services is activated.
ORservice formalization is a tuple ⟨Parameters,
DecisionVariables, Computation, Constraints,
InterfaceMetrics⟩
where:
Parameters, also denoted Parm, is a tuple
⟨𝑖𝑖𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝐼𝐼(𝑖𝑖𝑖𝑖), 𝑂𝑂(𝑖𝑖𝑖𝑖), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)⟩
where:
• id is the Service id, which must be unique across

all services in the ServicesSet.
• I(id) is a set of inputs
• O(id) is a set of outputs
• Subservices(id) is a set of the ids of the sub-

services.
• ServiceType(id) is ORservice.

DecisionVariables, also denoted DV, is a tuple
⟨𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩
where:
• 𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] → {0,1} is a function that

determines whether the Service id is activated or
not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted by On(id,r) is as
follows:
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟)
= �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖): 𝐼𝐼(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is a
function described as follows: (∀ 𝑖𝑖 ∈ 𝐼𝐼 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈
[1. . 𝑁𝑁𝑁𝑁 + 1]), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑖𝑖, 𝑟𝑟), also denoted
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟), gives the throughput of 𝑖𝑖 (or
quantity per day) during release 𝑟𝑟 or the period
after the last release.

• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝒓𝒓𝒓𝒓(𝑖𝑖𝑖𝑖): 𝑂𝑂(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is
a function described as follows: (∀ 𝑜𝑜 ∈
𝑂𝑂 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑜𝑜, 𝑟𝑟), also denoted
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑜𝑜, 𝑟𝑟), gives the throughput of 𝑜𝑜
(or quantity per day) during release 𝑟𝑟 or the period
after the last release.

Computation
1. OnlyOneServiceIsActivated constraint:

𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟) = 1 → � 𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑟𝑟) = 1
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]
2. Same as ANDservice computation #2
3. Same as ANDservice computation #3
4. Same as ANDservice computation #4

5. SupplyItemMatchesDemandItem constraint:
Same as ANDservice computation #5

6. CostPerDay computation: Same as ANDservice
computation #6

Constraints are as follows:
1. OnlyOneServiceIsActivated (see computation #1)
2. SupplyItemMatchesDemandItem (see

computation #2)

InterfaceMetrics, also denoted IM, is a tuple
⟨𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩
where:
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑖𝑖𝑖𝑖) is defined in #6 above.
• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖) is defined in DecisionVariables.
• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖) is defined in

DecisionVariables.

3.7 INPUTDRIVENATOMICSERVICE

FORMALIZATION

Intuitively, an Input DrivenAtomicService is an
indivisible service which’s throughput is driven by
the number of inputs that it needs to consume, for
example, a process that receives applications and
adjudicates them.

InputDrivenAtomicService formalization is a tuple
⟨Parameters, DecisionVariables, Computation,
Constraints, InterfaceMetrics⟩

Parameters, also denoted Parm, is a tuple
⟨𝑖𝑖𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝐼𝐼(𝑖𝑖𝑖𝑖), 𝑂𝑂(𝑖𝑖𝑖𝑖), 𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖),
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖)⟩
where:
• id is the Service id.
• I(id) is a set of inputs
• O(id) is a set of outputs
• 𝑹𝑹𝑹𝑹𝑹𝑹(𝑖𝑖𝑖𝑖) ⊆ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 𝐵𝐵𝐵𝐵 is a

set of business features required by Service id
• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒆𝒆𝒔𝒔(𝑖𝑖𝑖𝑖) ⊆ 𝐵𝐵𝐵𝐵𝐵𝐵. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 𝐿𝐿𝐿𝐿 is a set of

roles involved in the business service
• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖): 𝐼𝐼(𝑖𝑖𝑖𝑖) × 𝑂𝑂(𝑖𝑖𝑖𝑖) → ℝ+ is a

function described as follows: �∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑖𝑖)�,
�∀ 𝑜𝑜 ∈ 𝑂𝑂(𝑖𝑖𝑖𝑖)�, 𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑖𝑖, 𝑜𝑜) also
denoted as 𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑜𝑜), gives for input 𝑖𝑖
and output 𝑜𝑜, the ratio of input throughput toward
the output throughput.

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝑖𝑖𝑖𝑖): 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) ×
(𝐼𝐼(𝑖𝑖𝑖𝑖)⋃𝑂𝑂(𝑖𝑖𝑖𝑖)) → ℝ+ is a function described as
follows: (∀ 𝑙𝑙 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), ∀ 𝑗𝑗 ∈

𝐼𝐼(𝑖𝑖𝑖𝑖)⋃𝑂𝑂(𝑖𝑖𝑖𝑖)), 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖)(𝑙𝑙, 𝑗𝑗), also
denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑗𝑗), gives the
amount of time in hours that role 𝑙𝑙 spends per item
𝑗𝑗 .

• ServiceType(id) is InputDrivenAtomicService

DecisionVariables, also denoted DV, is a tuple
⟨𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩
where:
• 𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] → {0,1} is a function that

determines whether the Service id is activated or
not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted by On(id,r) is as
follows:
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟)
= �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖): 𝐼𝐼(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is a
function described as follows: (∀ 𝑖𝑖 ∈ 𝐼𝐼 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈
[1. . 𝑁𝑁𝑁𝑁 + 1]), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑖𝑖, 𝑟𝑟), also denoted
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟), gives the throughput of 𝑖𝑖 (or
quantity per day) during release 𝑟𝑟 or the period
after the last release.

• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖): 𝑂𝑂(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is
a function described as follows: (∀ 𝑜𝑜 ∈
𝑂𝑂 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑜𝑜, 𝑟𝑟), also denoted
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑑𝑑, 𝑜𝑜, 𝑟𝑟), gives the throughput of 𝑜𝑜
(or quantity per day) during release 𝑟𝑟 or the period
after the last release.

Computation
1. FeatureDependencyIsSatisfied constraint:
∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1],
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟) = 1 →
𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖) ⊆ 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝐼𝐼𝐼𝐼. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑟𝑟)

2. DeactivatedServicesIsSatisfied constraint:
∀𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1],
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟) = 0 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟) = 0
∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑖𝑖)

3. ConsumptionIsSatisfied constraint:
∀ 𝑜𝑜 ∈ 𝑂𝑂, ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1],
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑜𝑜, 𝑟𝑟)

= � 𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑜𝑜)
𝑖𝑖∈𝐼𝐼(𝑖𝑖𝑖𝑖)

× 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟)
4. Let 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] ×
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) → ℝ+ be a function described
as follows: (∀ 𝑙𝑙 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝑟𝑟 ∈
[1. . 𝑁𝑁𝑁𝑁 + 1]), 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖)(𝑙𝑙, 𝑟𝑟), also
denoted 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑟𝑟), gives the total
duration per day for role 𝑙𝑙 and release 𝑟𝑟 (and the
period after the last release), computed as:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑟𝑟)
= �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑗𝑗)

𝑗𝑗∈𝐼𝐼
× 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)
+ �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑗𝑗)

𝑗𝑗∈𝑂𝑂
× 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

5. Let 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ be a
function described as follows:(∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, 𝑟𝑟), gives the total dollar cost per
day during period r (and the period after the last
period), computed as:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, 𝑟𝑟)

= �(𝐵𝐵𝐵𝐵𝐵𝐵. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙)
𝑙𝑙∈𝑅𝑅

× 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑟𝑟))

Constraints are as follows:
1. FeatureDependencyIsSatisfied (see computation

#1)
2. DeactivatedServicesIsSatisfied (see computation

#2)
3. ConsumptionIsSatisfied (see computation #3)

InterfaceMetrics, also denoted IM, is a tuple
⟨𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑢𝑢(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩
where:
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑖𝑖𝑖𝑖) is defined in computation #5.
• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖) is defined in DecisionVariables.
• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖) is defined in

DecisionVariables.

3.8 SOFTWARE DEVELOPMENT

FORMALIZATION

SoftwareDevelopment formalization, also denoted
SWD, is a tuple ⟨Parameters, DecisionVariables,
Computation, Constraints, InterfaceMetrics⟩
where:

Parameters, also denoted Parm, is a tuple ⟨TS, DP,
DC, OC, SS, SWPaySched⟩,
where:
• 𝑻𝑻𝑻𝑻 ∶ [1. . 𝑁𝑁𝑁𝑁] → ℝ+ is a function that gives the

team size, in full time equivalents, for each release.
• 𝑫𝑫𝑫𝑫 ∶ [1. . 𝑁𝑁𝑁𝑁] → ℝ+ is a function that gives the

developer productivity for each release in effort
points per day.

• DC ∈ ℝ+ is the developer cost in dollars per effort
point.

• OC ∈ ℝ+ is the operations cost in dollars per effort
point per day.

• SS ∈ ℝ+ is the size, in effort points, of the As-Is
system (prior to development).

• SWPaySched, the software cost payment schedule,
is a tuple ⟨𝑁𝑁𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠⟩,
where:

• 𝑁𝑁𝑁𝑁𝑁𝑁 ∈ ℝ+is the number of payments to the
software team over the entire time
horizon.

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: [1. . 𝑁𝑁𝑁𝑁𝑁𝑁] → [1. . 𝑇𝑇𝑇𝑇] is a
function, i.e. (∀ 𝑝𝑝 ∈ [1. . 𝑁𝑁𝑁𝑁𝑁𝑁]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝) gives the day (relative to
the first day of the software development
project) where payment 𝑝𝑝 is made.

DecisionVariables, also denoted DV, is an empty
tuple.

Computation:
1. Let 𝑅𝑅𝑅𝑅 ∶ [1. . 𝑁𝑁𝑁𝑁] → ℝ+be a function described as

follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝑅𝑅𝑅𝑅(𝑟𝑟) gives the
maximum capacity, in effort points, for release 𝑟𝑟
computed as:
𝑅𝑅𝑅𝑅(𝑟𝑟) = 𝑇𝑇𝑇𝑇(𝑟𝑟) × 𝐷𝐷𝐷𝐷(𝑟𝑟) × 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑅𝑅𝑅𝑅(𝑟𝑟)

2. Let 𝑅𝑅𝑅𝑅 ∶ [1. . 𝑁𝑁𝑁𝑁] → ℝ+ be a function described as
follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝑅𝑅𝑅𝑅(𝑟𝑟) gives the actual
size, in effort points, of release 𝑟𝑟, once features are
assigned to it. The computation is as follows:
𝑅𝑅𝑅𝑅(𝑟𝑟)

= � � 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝐹𝐹𝐹𝐹(𝑗𝑗)
𝑗𝑗∈ 𝑅𝑅𝑅𝑅𝑅𝑅ℎ.𝐷𝐷𝐷𝐷.𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟)

+ � 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝐹𝐹𝐹𝐹(𝑗𝑗)
𝑗𝑗∈ 𝑅𝑅𝑅𝑅𝑅𝑅ℎ.𝐷𝐷𝐷𝐷.𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟)

�

3. 𝑅𝑅 constraint:
𝑅𝑅𝑅𝑅(𝑟𝑟) ≤ 𝑅𝑅𝑅𝑅(𝑟𝑟) ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]

4. Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∶ [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+be a function

described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟) gives the day when release 𝑟𝑟 actually
starts, computed as:

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟)

= �

1 𝑟𝑟 = 1

𝑅𝑅𝑅𝑅(𝑟𝑟)
𝑇𝑇𝑇𝑇(𝑟𝑟) × 𝐷𝐷𝐷𝐷(𝑟𝑟) + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟 − 1) ∀ 𝑟𝑟 = [2. . 𝑁𝑁𝑁𝑁 + 1]

5. Let 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∶ [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ be a function

described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) gives the day when release 𝑟𝑟 ends,
computed as:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟)

= �
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟 + 1) − 1 𝑟𝑟 = [1. . 𝑁𝑁𝑁𝑁]

𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝑇𝑇𝑇𝑇 𝑟𝑟 = 𝑁𝑁𝑁𝑁 + 1

6. Let 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∶ [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ be a

function described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑅𝑅 +
1]), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟) gives the dollar cost of
development per day for release 𝑟𝑟, computed as:
∀ 𝑟𝑟 = [1. . 𝑁𝑁𝑁𝑁 + 1]
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)

= 𝑅𝑅𝑅𝑅(𝑟𝑟) ×
𝐷𝐷𝐷𝐷

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟) + 1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁𝑁𝑁 + 1) = 0

7. Let 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∶ [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+be a

function described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟) gives the dollar cost of
operations per day for release 𝑟𝑟, and the period after
the last release, computed as:
𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟)

= �

(𝑆𝑆𝑆𝑆 × 𝑂𝑂𝑂𝑂) 𝑟𝑟 = 1

((�𝑅𝑅𝑅𝑅(𝑖𝑖)) + 𝑆𝑆𝑆𝑆) × 𝑂𝑂𝑂𝑂 ∀ 𝑟𝑟 = [2. . 𝑁𝑁𝑁𝑁 + 1]
𝑟𝑟−1

𝑖𝑖=1

8. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∶ [1. . 𝑇𝑇𝑇𝑇] → ℝ+be a

function described as follows: (∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑) gives the software cost
accrued for each day 𝑑𝑑 in the time horizon,
computed as:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑)

= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)
+ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟)

where r is the release period (or period after the last
release), where day d appears, i.e.,

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟) ≤ 𝑑𝑑 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟)

9. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: [1. . 𝑁𝑁𝑁𝑁𝑁𝑁] → ℝ be a function

described as follows: (∀ 𝑝𝑝 ∈ [1. . 𝑁𝑁𝑁𝑁𝑁𝑁]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑) gives the software payment in
dollars, for each scheduled payment 𝑝𝑝, computed
as follows:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝)

=

⎩
⎪⎪
⎨

⎪⎪
⎧

� 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑)
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝)

𝑑𝑑=1

 𝑝𝑝 = 1

� 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑) 𝑝𝑝 = [2. . 𝑁𝑁𝑁𝑁𝑁𝑁]
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝)

𝑑𝑑=𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝−1)+1

10. Let 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∶ [1. . 𝑇𝑇𝑇𝑇] → ℝ+, be a function

described as follows: (∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]),

𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) gives the cash flow of software
cost for day 𝑑𝑑, is computed as:

 𝑖𝑖𝑖𝑖 𝑑𝑑 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝
𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) = −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) = 0

Constraints
1. 𝑹𝑹

(defined fin computation #3)

InterfaceMetrics, also denoted IM, is a tuple
⟨𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⟩, where:
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑑𝑑) is defined in computation #10.
• 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇(𝑟𝑟) is defined in computation #4.
• 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝑟𝑟) is defined in computation #5.

3.9 Optimization Formulation

The formalizations in the previous sections are
building blocks; we now use them to formulate the
optimization of the NPV of the final BWP
configuration, called the To-Be.

Given the top-level formal optimization model
𝑅𝑅𝑅𝑅𝑅𝑅ℎ⟨𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐷𝐷𝐷𝐷, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐼𝐼𝐼𝐼⟩,
the optimal NPV for the To-Be BWP, for a time
horizon of 𝑡𝑡ℎ days, is:

𝑁𝑁𝑁𝑁𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝐼𝐼𝐼𝐼. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡ℎ)
𝑠𝑠. 𝑡𝑡. 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

4. RELEASE SCHEDULING

METHODOLOGY AND DGS EXAMPLE

The optimization model formalized in the previous
section is implemented in the Decision Guidance
System (DGS). It uses the Parameters in the input file
to maximize the NPV, subject to the Constraints.
During the maximization, the DGS performs the
Computation and chooses the optimal
DecisionVariables. The InterfaceMetrics are
implemented by making them available to other
components of the formalization hierarchy.

Decision Guidance Systems (DGSs) are an
advance class of Decision Support Systems (DSS)
that are designed to provide “actionable
recommendations, typically based on formal
analytical models and techniques” (Alexander
Brodsky & Luo, 2015). We use Unity (Nachawati et
al., 2016), a platform for building DGSs from
reusable Analytical Models (AMs). Unity exposes an
algebra of operators and provides an unified, high-

level language called Decision Guidance Analytics
Language (DGAL) (Alexander Brodsky & Luo,
2015).

User

Services
AND
OR

Atomic

BSN
Modeling

Release
Sched

Software
Dev

Algorithms
optimize
simulate

learn
predict

Analytics Engine (Unity)

 Optimization DBMS Learn/Mining Simulation ...Tools

Analytic Models
Software Release Schedule DGS

Figure 5–DGS Architecture.

Figure 5 shows the architecture of our DGS. A
decision maker, the user, uses a GUI to interact with
the system. The user provides inputs and then runs the
DGS Analytics Engine in Unity (Nachawati et al.,
2017), which translates the Analytical Model (AM)
code to low level code understood by an optimization
tool like the CPLEX solver and then executes it. The
user then receives an optimized release schedule and
the associated best BWP configuration, similar to
Table 2. The components of the AM mimic the
formalization hierarchy shown in Figure 3. Note that
the Unity Analytics Engine transparently connects the
AMs to the lower-level, external tools. In our case,
the Analytical Model is translated, by Unity, to
Mixed-Integer Linear Program (MILP) code.

The DGS is an integral part of the Release
Scheduling Methodology, which contains the
following key steps:

1. Gather the ReleaseScheduling parameters
2. Model the BWP
3. Gather the SoftwareDevelopment parameters
4. Setup the Decision Guidance System (DGS)

input data for the To-Be BWP configuration
5. Run the DGS to produce the optimal NPV for

the To-Be configuration
6. Setup the DGS input data for the As-Is BWP

configuration
7. Run the DGS to produce the NPV for the As-Is

configuration
8. Run the DGS to calculate the total NPV of the

savings

In the first step, we gather the ReleaseScheduling
parameters which include potential software features
that might enable savings in the BWP. Feature

dependencies are established, and their sizes are
estimated. For the example described in section 2, the
ReleaseScheduling parameters are shown in table 3.

Table 3-ReleaseScheduling.Parameters.

Parameter Value
BF

(business features) {BF1, BF2, BF2, BF4}

TF
(technical features) {TF1}

DG
(dependency

graph)
{(TF1, BF1), (BF1, BF2),
(TF1, BF3), (BF1, BF4)}

FS
(feature size)

{(TF1,140), (BF1,140),
(BF2,280), (BF3,280),

(BF4,280)
TH

(time horizon) 520
DiscountRate

(daily) 0.01923076923%
NR

(number releases) 4
RD

(release duration) 60

In step 2, the BWP is modelled. The top-level or
root process is defined; in our example we call it
‘Adj’. Each potential process alternative is defined
along with their inputs, outputs, labor rates and the
features that enable them. Each process is assigned a
type of atomic, AND or OR. The daily number of
inputs to the BWP, called Demand is set, and the days
when labor payments are made are determined. This
is important in order to account for the fact that an
amount of cash disbursed in the future is worth less
than the same amount of cash disbursed today. In our
example, we use the rate of 5% per year to discount
the labor payments. These parameters are assigned to
the formalization components BSN.parameters and
Service.parameters. For the example in Section 2, the
parameters are shown in Tables 4, 5, 6 and 7. Note
that the parameters in Table 4 are a numerical
codification of the BWP diagrams in Figures 1 and 2.

Table 4-BSN.Parameters.

Parameter Value
LR (Labor Roles) {IA, AO, A, S}

Rate {(IA, 20), (AO, 50),
(A, 0), (S, 0)}

NLP
(Number Labor Payments) 5

LaborPayDay [56,112, 168,224,520]
BSNI

(top-level process input) {User Application}
BSNO

(top-level process output) {}
Demand

(# top-level inputs) 800
ServicesSet

(space of alternatives)
{Adj, A, B, C, AA, AB,
AC, BA, BB, CA, CB}

rootID
(id of top-level process) Adj

Table 5-Service.Parameters part 1.

id Type Input Output Sub
services RBF

Adj AND A, B, C

N/A
A OR AA,AB,AC

B OR BA, BB

C OR CA, CB

AA Atomic UA CA,NCN

N/A

AB Atomic UA CA,NCN BF1

AC Atomic UA CA,NCN BF4

BA Atomic CA AA

BB Atomic CA AA BF2

CA Atomic AA AL

CB Atomic AA AL BF3

Table 6-Service.Parameters part 2.

id Input Output IO Thru
Ratio

AA UA CA 70%
AA UA NCN 30%
AB UA CA 70%
AB UA NCN 30%
AC UA CA 70%
AC UA NCN 30%
BA CA AA 100%
BB CA AA 100%
CA AA AL 100%
CB AA AL 100%

Table 7-Service.Parameters part 3.

id Role Input Output RoleTime
PerIO

AA IO UA 0.250
AA IO CA 0.125
AA IO NCN 0.219
AB IO UA 0.145
AB S CA 0.000
AB S NCN 0.000
AC A UA 0.063
AC S CA 0.000
AC S NCN 0.000
BA AO CA 0.042
BA AO AA 0.208
BB AO CA 0.021
BB AO AA 0.129
CA AO AA 0.021
CA AO AL 0.167
CB AO AA 0.017
CB AO AL 0.083

In step 3 of the methodology, we gather the
SoftwareDevelopment parameters as shown in
Table 8 for our example.

In step 4, we setup the DGS input data for the To-
Be configuration. All the parameters above are coded
in a JSON file which is used as input to the DGS.

In step 5, we run the DGS, which translates the
Analytical Model to Mixed-Integer Linear
Programming code and invokes the MILP solver to
produce the optimal NPV for the To-Be BWP
configuration. The main DecisionVariables, that are
instantiated during the optimization are IBF(r)
(Implemented Business Features), ITF(r)
(Implemented Technical Features) and On(id,r),
which indicates whether process id belongs to the best
BWP configuration for release r. The second column
in Table 2 captures the values of IBF and ITF for each
release r, while the third column shows the processes
that have On=1.

With the DecisionVariables instantiated, the daily
cost of the To-Be BWP and the software development
is calculated according to the Computation
formalization and shown in Table 9.

Note that the daily cost is accrued but only paid on
pay days and in our example, there are only 5
payments during the time horizon of 2 years, or 520
business days.

Table 8-SoftwareDevelopment.Parameters.

Parameter Value Unit
TS

(Team Size) 5

DP
(Dev Productivity) 1 (points/day)

DC
(Dev Cost) 1,040 (US$/point)

OC
(Operations Cost) 0.25 (US$/point/day)

SS
(System Size prior
to development)

0 (points)

NSP
(# Soft Payments) 5

SWPayDay [56,112,168,224,520]

Table 9-To-Be Daily Cost.

 Daily Cost
Rel BWP Software
1 $ 18,715.20 $ 5,200.00
2 $ 14,584.00 $ 5,270.00
3 $ 12,120.00 $ 5,340.00
4 $ 9,315.33 $ 5,410.00

After 4 $ 6,995.33 $ 280.00

Table 9 shows that the least costly BWP
configuration is the one after all releases are
implemented. This is expected because the
availability of all software features enables the best
BWP of all possible alternatives. Table 9 also shows
that after the software is implemented, there is a daily
labor cost to operate the software.

Once the daily cost is computed, the cash flow
disbursement is calculated for each day of the time
horizon. The NPV is the sum of the cash flows of the
BWP plus the software, discounted at 5% per year.
Table 10 shows the NPV results.

Table 10-NPV of the To-Be Configuration

 BWP
Cash Flow

Software
Cash Flow

NPV

1 -1,048,051.20 -291,200.00 -1,324,907.25
2 -816,704.00 -295,120.00 -1,088,135.32
3 -678,720.00 -299,040.00 -946,678.61
4 -521,658.67 -302,960.00 -790,104.44

after 4 -2,070,618.67 -82,880.00 -1,949,834.80
 Accumulated NPV(To-Be): -6,099,660.42

Once the NPV of the To-Be is determined in step
5, in step 6, we setup the DGS input data in
preparation for the calculation of the NPV of the As-
Is. Basically, the decision variables are instantiated so
that the resulting BWP configuration is the one before
the system is developed, that is, AA, BA, CA, as
shown in the first row of Table 2.

In step 7, we run the DGS to produce the NPV for
the As-Is, which is shown in Table 11. Note that there
is no cost for software development.

In step 8, we run the DGS to calculate the total
NPV of the savings, which is the NPV of the To-Be
minus the NPV of the As-Is. The result is
2,994,064.77, which means that investing in the
software release schedule as depicted in Table 2,
reduces the total cost by almost 3 million US dollars
over 2 years.

Table 11-NPV of the A-Is Configuration.

Release BWP Cash Flow NPV

1 -1,048,051.20 -1,036,826.13
2 -1,048,051.20 -1,025,721.28
3 -1,048,051.20 -1,014,735.36
4 -1,048,051.20 -1,003,867.12

after 4 -5,539,699.20 -5,012,575.31
Accumulated NPV(As-Is): -9,093,725.19

5 CONCLUSION AND FUTURE WORK

In this paper we introduced a software release
scheduling approach that is more precise than existing
value-based approaches because it is based on a
formal model of the Business Workflow Process and
its evolution following the implementation of
software features. We described the approach
intuitively, defined the formal model, explained the
Decision Guidance System and demonstrated the
methodology through an example.

There are many areas for future work, for
example, a case study can be conducted, and the
approach can be extended to include non-labor costs
such as office space and IT infrastructure.

REFERENCES

Boehm, B. W., & Sullivan, K. J. (2000). Software
economics: A roadmap. Proceedings of the
Conference on The Future of Software
Engineering - ICSE ’00, 319–343.

Brodsky, A., Krishnamoorthy, M., Nachawati, M. O.,
Bernstein, W. Z., & Menascé, D. A. (2017).
Manufacturing and contract service networks:
Composition, optimization and tradeoff analysis
based on a reusable repository of performance
models. 2017 IEEE International Conference on
Big Data (Big Data), 1716–1725.

Brodsky, Alexander, & Luo, J. (2015). Decision Guidance
Analytics Language (DGAL)-Toward Reusable
Knowledge Base Centric Modeling. 17th
International Conference on Enterprise
Information Systems (ICEIS), 67–78.

Cleland-Huang, J., & Denne, M. (2005). Financially
informed requirements prioritization.
Proceedings. 27th International Conference on
Software Engineering, 2005. ICSE 2005., 710–

Denne, M., & Cleland-Huang, J. (2004). The incremental
funding method: Data-driven software
development. IEEE Software, 21(3), 39–47.

Denne, Mark, & Cleland-Huang, J. (2003). Software by
Numbers: Low-Risk, High-Return Development.
Prentice Hall.

Devaraj, S., & Kohli, R. (2002). The IT Payoff: Measuring
the Business Value of Information Technology
Investments. FT Press.

Elsaid, A. H., Salem, R. K., & Abdelkader, H. M. (2019).
Proposed framework for planning software
releases using fuzzy rule-based system. IET
Software, 13(6), 543–554.

Hannay, J. E., Benestad, H. C., & Strand, K. (2017). Benefit
Points: The Best Part of the Story. IEEE
Software, 34(3), 73–85.

Maurice, S., Ruhe, G., Saliu, O., & Ngo-The, A. (2006).
Decision Support for Value-Based Software
Release Planning. In Value-Based Software
Engineering (pp. 247–261). Springer, Berlin,
Heidelberg.

Nachawati, M. O., Brodsky, A., & Luo, J. (2016). Unity: A
NoSQL-based Platform for Building Decision
Guidance Systems from Reusable Analytics
Models. Technical Report GMU-CS-TR-2016-4.
George Mason University.

Nachawati, M. O., Brodsky, A., & Luo, J. (2017). Unity
Decision Guidance Management System:
Analytics Engine and Reusable Model
Repository. ICEIS (1), 312–323.

Pucciarelli, J., & Wiklund, D. (2009). Improving IT Project
Outcomes by Systematically Managing and
Hedging Risk. IDC Report.

Riegel, N., & Doerr, J. (2014). An Analysis of Priority-
Based Decision Heuristics for Optimizing
Elicitation Efficiency. In Requirements
Engineering: Foundation for Software Quality
(pp. 268–284). Springer International Publishing.

The Standish Group. (2014). CHAOS Manifesto 2014.
Van den Akker, M., Brinkkemper, S., Diepen, G., &

Versendaal, J. (2005). Determination of the Next
Release of a Software Product: An Approach
using Integer Linear Programming. CAiSE Short
Paper Proceedings.

	2 Intuitive Explanation of The Release Scheduling Approach
	3 Formal Model
	3.1 Model Introduction
	3.2 Release Scheduling Formalization

	3.3 Business Service Network Formalization
	3.4 Service Formalization
	3.5 ANDservice Formalization
	3.6 ORservice Formalization
	3.7 InputDrivenAtomicService Formalization
	3.8 Software Development Formalization
	3.9 Optimization Formulation

	4. Release Scheduling Methodology and DGS Example
	5 Conclusion and Future Work

