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ABSTRACT: Many software development projects fail because they do not deliver sufficient business benefit to 
justify the investment. Existing approaches to estimating business benefit of software development 
adopt unrealistic assumptions which produce imprecise results. This paper focuses on removing this 
limitation for software projects that automate business workflow processes. For this class of projects, 
the paper proposes a new approach and a decision-guidance framework to select and schedule software 
features over a sequence of software releases as to maximize the net present value of the combined cash 
flow of software development as well as the improved organizational business workflow. The 
uniqueness of the proposed approach is in precise modelling of the business workflow processes and 
the savings achieved by deploying new software functionality.

1 INTRODUCTION 

Many software development projects fail because 
they do not deliver much business benefit. Research 
has shown that 25% of projects fail and another 25% 
do not provide any return on investment (Pucciarelli 
& Wiklund, 2009). Of those projects that do not fail, 
45% of the functionality is never used, resulting in 
zero business value (The Standish Group, 2014). This 
has led to an increasing understanding in the software 
engineering community, that “value creation is the 
final arbiter of success for investments of scarce 
resources; and far greater sophistication than in the 
past is now evident in the search for value” (Boehm 
& Sullivan, 2000). 

This paper focuses on maximizing the business 
value for a class of software projects that automate 
Business Workflow Processes (BWP). It proposes a 
new approach and a decision-guidance framework to 
select and schedule software features over a sequence 
of software releases as to maximize the return on 
investment (ROI). The uniqueness of the proposed 
approach is that ROI analysis is based on precise 
modelling of the BWP and the savings achieved by 
deploying new software functionality. 

There has been extensive work on the selection 
and scheduling of software functionality to increase 
the business value of software investments, among 
them, the highly influential Incremental Funding 

Methodology (IFM) approach (M. Denne & Cleland-
Huang, 2004), (Cleland-Huang & Denne, 2005), 
(Mark Denne & Cleland-Huang, 2003). IFM’s 
approach is to deliver software functionality, called 
features, as early as possible in order to maximize 
their business value. It assumes a software 
development life cycle that delivers software 
continuously and iteratively in releases, in line with 
modern Agile methodologies like Scrum. 

Another approach called F-EVOLVE* (Maurice 
et al., 2006), is an iterative and evolutionary approach 
that facilitates the involvement of stakeholders to 
achieve increments (releases) that result in the highest 
degree of satisfaction among different stakeholders. 
The approach provides a decision support for the 
generation and selection of release plan alternatives.  

A third approach (Van den Akker et al., 2005), 
applies integer linear programming to maximize the 
revenue. 

However, estimating the business benefit of a 
software release is challenging. All existing 
approaches use cash flow as a metric for business 
benefits, but their estimations are inaccurate. IFM and 
Van den Akker et al. assume that cash flow 
estimations are provided externally, that is, they are 
not part of the approach, while F-EVOLVE* gets 
estimates from multiple stakeholders and weights 
them according to the perceived importance of each 
stakeholder. Also, they require the estimation of cash 
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flows at the software feature level which is 
challenging due to the difficulty of drawing a direct 
correlation between a particular business benefit, like 
a reduction in cost, and a specific piece of software. 
Some researchers have acknowledged this difficulty, 
e.g., (Devaraj & Kohli, 2002) noted that “the 
principal issue encountered is whether we can isolate 
the effect of IT on firm performance. It does not have 
an easy answer, because it means disentangling the 
effect of IT from various other factors such as 
competition, economic cycle, capacity utilization, 
and many other context-specific issues.” 

Existing value-based approaches other than the 
three mentioned were not considered because they are 
not comprehensive. For example, (Riegel & Doerr, 
2014) developed heuristics that can be used to 
optimize requirements selection, but their cost metric 
only involves elicitation, not development. (Hannay 
et al., 2017) used benefit points as a metric for 
business value but did not propose a release 
scheduling approach. (Elsaid et al., 2019) used rule-
based fuzzy logic to prioritize requirements but did 
not consider the development cost. 

A significant pitfall of existing value-based 
release scheduling approaches like IFM, F-
EVOLVE* and Van den Akker et al. is that each and 
every dollar of cash flow needs to be allocated to one 
and only one feature. This is not a realistic 
assumption because often, realizing a business 
benefit does require the implementation of more than 
one software feature. Another pitfall is that the cash 
flow of the business benefit (revenue or savings) and 
the cost of development are combined into a single 
value. This conceals the cost of development from the 
decision maker and force development cost changes 
to be applied first to the external cash flows prior to 
being used in the model.  

Because of these pitfalls, the estimation of 
business benefits is often based on a guesswork and, 
as a result, is inaccurate. This inaccuracy, together 
with the estimation of business benefits being 
external to the methodology, are the limitations of 
existing value-based approaches.  

The focus of this paper is addressing the 
limitations of the existing value-based release 
scheduling approaches for the class of software 
projects that improve a Business Workflow Process 
(BWP). We address the limitations by proposing a 
decision-guidance framework that is more precise 
than existing approaches because it is based on a 
formal model of the BWP and its evolution following 
the implementation of software features.  

The key idea, which is also unique, is that the 
implementation of software features allows 

improvements in the BWP, which lead to a reduction 
in cost. As a consequence of this idea, the business 
benefit is not attributed to individual features in silos 
like in the current approaches, but rather to the 
synergetic effect of multiple interrelated features on 
the reduction of the overall cost of the BWP. The 
proposed approach moves the benefit estimation from 
a guesswork to a systematic model-based 
methodology, which, we believe, will result in 
considerably higher return on software investment.  

More specifically, the contributions of this paper 
are threefold. We (1) develop a formal optimization 
model and solution based on a reusable library of 
analytical component models; (2) develop a decision 
guidance system and methodology for software 
release scheduling; and (3) demonstrate the 
methodology using an example from the U.S. Patent 
and Trademark Office.  

The first contribution, the formal model, captures 
the entire space of alternatives for BWP networks 
which produce some output items from input items 
(e.g., documents, requests, approvals, reports etc.).  
Every process in a BWP hierarchy is described, 
recursively, as a flow of items through a number of 
sub-processes.  Some parent processes require an 
exclusive OR choice among their children sub-
processes (introducing alternatives), while others 
require all their children sub-processes to be 
activated.   

The formal optimization model decides on (1) 
which interdependent software features are to be 
implemented and in which software release, and (2) 
which specific alternatives of the BWP network are 
to be activated for each software release over the 
investment horizon. To be activated, atomic 
processes in the BWP hierarchy may require new 
inter-dependent software features to be implemented. 
Improvements in the BWP are measured as cash 
flows and their associated Net Present Value (NPV). 
Cash flows are calculated to represent the ongoing 
costs of the BWP, as well as software development. 
Each potential software release schedule impacts the 
cash flow and results in a different NPV. The formal 
optimization problem is to minimize the NPV of the 
combined cash flow of the BWP plus the software 
cost, while satisfying the constraints of (1) feature-to-
release allocation, (2) dependencies among features, 
and (3) business processes activation.   

As a second contribution, we develop a Decision 
Guidance System (DGS) and methodology that are 
centered around solving the optimization model and 
producing an optimal release sequence. The DGS is 
based on the formal model and is implemented in the 
Decision Guidance Analytics Language (DGAL) 



  

(Alexander Brodsky & Luo, 2015) within Unity 
(Nachawati et al., 2016), a generic platform for the 
creation and execution of decision guidance systems.  

Finally, to demonstrate the approach, we show an 
example from the United States Patent and 
Trademark Office. The example, although simplified, 
contains all the necessary components to apply the 
approach.  

This paper is organized as follows: Section 2 
intuitively explains the proposed approach through an 
example; Section 3 describes the formal model; 
Section 4 discusses the methodology and decision 
guidance system; Section 5 is an example of the 
approach; and, Section 6 provides concluding 
remarks and briefly describes future research.  

2 INTUITIVE EXPLANATION OF THE 
RELEASE SCHEDULING APPROACH 

We first describe the proposed approach intuitively 
through an example. The goal is to maximize the 
business value of an investment in an information 
system that improves a business process.  

BWP Modelling 
Consider an organization, like the United States 
Patent Office, which processes applications for 
patents. Consider a simplified and partial version of 
the business process workflow, depicted in Figure 1. 
The process starts with Application Intake (A), which 
takes a User Application and either accepts it by 
producing a Compliant Application or rejects it by 
producing a Non-compliance Notice. Compliant 
applications go through Adjudication (B) and then 
Adjudication Review (C), which produces an 
Adjudicated Application Letter.  

Figure 1–Simplified Patent Adjudication BWP. 

Let us assume that initially, processes A, B and C 
are manual, and the Patent Office is considering 
implementing a software system to automate these 
processes to save cost. To reason about possible 
alternative for automation, the Patent Automation 
Division creates the diagram shown in Figure 2. In it, 
process A has three alternatives; AA (Manual 

Application Intake), AB (Electronic Application 
Intake) and AC (Self-service Application Intake), 
where AA is the initial manual process and AB and 
AC are increasingly automated alternatives of A. 
Similarly, for B, BA is the initial manual process 
while BB is its automated alternative and for C, CA 
is manual while CB is its automated alternative. In 
essence, Figures 1 and 2 show all possible 
configurations of the BWP, composed of a 
combination of alternatives to processes A, B and C.  

Initially there is no software system, consequently 
the BWP configuration is made of manual processes 
AA (Manual Application Intake), BA (Manual 
Adjudication) and CA (Manual Adjudication 
Review). As the software system is implemented, the 
BWP configuration changes to take advantage of 
more efficient processes; AA transitions to AB 
(Electronic Application Intake), BA transitions to BB 
(Electronic Adjudication), etc…  

We model the BWP as a Service Network (SN) 
(A. Brodsky et al., 2017), which is a “network of 
service-oriented components that are linked together 
to produce products”. Figure 1 depicts the root 
Service Network, while Figure 2 details its 
subservices A, B and C. Because the root service 
requires subservices A, B and C, we call this an AND-
type service. Whereas, because service A requires 
only one of subservices AA, AB or AC, service A is 
an OR-type. Services B and C are also OR-types 
while all the other subservices are atomic.  
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Figure 2–BWP Composite Processes A, B and C. 

BWP Cost 
Different automation alternatives potentially reduce 
the cost of the BWP for patent adjudication. Cost 
savings may be due to reduction of the amount of 
manual labor or utilization of less costly labor. 
However, automated process alternatives require the 
implementation of specific software functionality 
called features. For example, process alternative AB 
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(Electronic Application Intake) requires business 
feature BF1 which is the capability to create and edit 
an electronic application. Table 1 shows which 
features are required for each process alternative, 
where BF is a business feature and TF is a technical 
feature.  

Our approach uses the cost reduction of 
automated processes to precisely calculate the 
business value of software. In our approach, there is 
no need to estimate the cash flow at the feature level; 
a feature is just an enabler of a change in the BWP 
configuration.  

Table 1–Process alternatives and required software 
features. 

Process 
Alternative 

Required 
Feature 

Feature 
Functionality 

AA None  
AB BF1 Capability to create and 

edit an electronic appl. 
AC BF4 Capability to allow an 

Applicant to submit an 
application on-line 

BA None  
BB BF2 Capability to annotate 

aspects of the application 
that pass or don't pass 
adjudication rules 

CA None  
CB BF3 Capability to review 

adjudication decision and 
annotate issues that don't 
pass review 

Software Features 

Features must be scheduled over a sequence of 
releases. The set of features implemented in a 
particular release incur a development cost and 
enables a set of candidate BWP configurations, which 
in turn, are associated with labor cost savings. A 
software release schedule is a table of all releases and 
the features planned to be implemented in each 
release. The choice of features to be implemented in 
a particular release is constrained by the fact that 
features require varying levels of effort, but the 
development team has a fixed capacity. This means 
that the total effort scheduled for any release cannot 
exceed the capacity of the development team.  

Another constraint is that features have 
interdependencies that form a graph. Figure 3 depicts 
the dependency graph for our example. It shows that 
business feature BF1 is a prerequisite for BF2 and 

BF4 while technical feature TF1 is a prerequisite for 
BF1 and BF3.  

TF1 BF1 BF2

BF3 BF4
 

Figure 3–Dependency Graph. 

Best BWP Configuration 
There are many possible mappings between features, 
releases and BWP configurations. One such mapping 
is the release sequence shown in Table 2. During 
release 1, TF1 and BF1 are being implemented but 
still not available. Consequently, the best BWP 
configuration is AA, BA, and CA because, according 
to Table 1, it does not require any software feature. 
During release 2, BF3 is being implemented but still 
not available, therefore, the set of completed features 
is {TF1, BF1} consequently, the best BWP 
configuration is AB, BA and CA because feature 
BF1, according to Table 1, enables process AA to 
transition to AB. The same rationale applies to 
releases 3 and 4. After release 4 all features are 
implemented and the best configuration, which is also 
the least costly, is AC, BB and CB.  

Table 2-Example of software release schedule and best 
BWP configuration. 

Software  
Release # 

Features being 
implemented 

Best BWP 
Configuration 

1 TF1, BF1 AA, BA, CA 
2 BF3 AB, BA, CA 
3 BF2 AB, BA, CB 
4 BF4 AB, BB, CB 

After 4  AC, BB, CB 

Note that the feature sequence in Table 2 complies 
with the dependency graph in Figure 3 because TF1 
and BF1 are implemented before BF2, BF3 and BF4. 
Also, TF1 is implemented in the same release as BF1.  

Every software release schedule and related BWP 
configuration, such as the one depicted in Table 2, 
corresponds to a cash flow and the NPV associated 
with (1) the cost of software development, and (2) the 
cost of running the BWP. Our problem is finding a 
software release schedule and BWP configuration 
that maximizes the overall NPV, subject to 
constraints such as the BWP space of alternatives, the 
required software features, the interdependencies 
among features, the one-to-one mapping between 



  

features and releases and the capacity of the 
development team.  

3 FORMAL MODEL 

3.1 Model Introduction 

The release scheduling problem formulation in linear 
programming is:  

𝑀𝑀𝑀𝑀𝑥𝑥𝐷𝐷𝐷𝐷  𝑂𝑂(𝑃𝑃, 𝐷𝐷𝐷𝐷) 
𝑠𝑠. 𝑡𝑡.  𝐶𝐶(𝑃𝑃, 𝐷𝐷𝐷𝐷) 

Where:  
P is a set of parameters,  
DV is a set of decision variables,  
𝐶𝐶(𝑃𝑃, 𝐷𝐷𝐷𝐷) is a predicate, expressed as a function of 

parameters 𝑃𝑃 and decision variables 𝐷𝐷𝐷𝐷, that 
need to be satisfied, and  

𝑂𝑂(𝑃𝑃, 𝐷𝐷𝐷𝐷)  is the NPV metric, expressed as a 
function of P and DV 

The components of the optimization problem are 
described using the ReleaseScheduling 
formalization, which is a tuple ⟨Parameters, 
DecisionVariables, Computation, Constraints, 
InterfaceMetrics⟩, detailed in section 3.2. At a high 
level, the ReleaseScheduling formalization is 
described in Figure 4 as a hierarchy of components.  
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Figure 4-Hierarchy of the Formalizations of the Release 
Scheduling Model. 

The hierarchy in Figure 4 establishes a parent-
child relationship where the child inherits all 
formalizations from the parent and the parent has 
access to all the formalizations of the child. For 
example, ReleaseScheduling is the parent of Business 
Service Network (BSN), consequently the BSN tuple 
is available to ReleaseScheduling and BSN inherits 

Parameters, DecisionVariables, Computations and 
InterfaceMetrics from ReleaseScheduling.  

In the next sections we describe the components 
of the Release Scheduling formalization hierarchy in 
details. 

3.2 Release Scheduling Formalization 

ReleaseScheduling (RSch) formalization is a tuple 
⟨Parameters, DecisionVariables, Computation, 
Constraints, InterfaceMetrics⟩ 
where:  

Parameters, also denoted Parm,  is a tuple 
⟨Features, TH, DiscountRate, ReleaseInfo,  
BSN.Parameters, SWD.Parameters⟩ 
Features is a tuple  ⟨BF, TF, DG, FS ⟩ where:  
• BF  is a set of business features 
• TF  is a set of technical features, such that  
𝐵𝐵𝐵𝐵 ∩ 𝑇𝑇𝑇𝑇 =  ∅ 

• DG, (Dependency Graph), is a partial order over     
F = BF  ∪ TF, (f1, f2) ∈ DG also denoted f1 ≺ f2, 
means that f2 is dependent on f1, that is, feature f1 is 
a pre-requisite for feature f2.   

• 𝑭𝑭𝑭𝑭: 𝐹𝐹 →  ℝ+ is a function described as follows: 
(∀ 𝑓𝑓 ∈ 𝐹𝐹), 𝐹𝐹𝐹𝐹(𝑓𝑓) gives the size, in effort point, of 
each feature 𝑓𝑓.  

• TH is the time horizon for analysis in days 
• DiscountRate is the daily rate to discount cash 

flows.   
• ReleaseInfo  is a tuple  ⟨NR, RD ⟩, where:  
• NR is the number or releases 
• 𝑹𝑹𝑹𝑹 ∶ [1. . 𝑁𝑁𝑁𝑁] →  ℝ+ is a function described as 

follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝑅𝑅𝑅𝑅(𝑟𝑟)  gives the 
maximum duration in days for release 𝑟𝑟. 

• BSN.Parameters is defined in section 3.3 
• SWD.Parameters is defined in section 3.8 

DecisionVariables, also denoted DV, is a tuple  
⟨𝐼𝐼𝐼𝐼𝐼𝐼, 𝐼𝐼𝐼𝐼𝐼𝐼, 𝐵𝐵𝐵𝐵𝐵𝐵. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,
𝑆𝑆𝑆𝑆𝑆𝑆.𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⟩ 
where:  
• 𝑰𝑰𝑰𝑰𝑰𝑰 ∶ [1. . 𝑁𝑁𝑁𝑁] → 2𝐵𝐵𝐵𝐵 is a function described as 

follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) gives a set of 
business features planned to be implemented in 
release 𝑟𝑟. 

• 𝑰𝑰𝑰𝑰𝑰𝑰 ∶ [1. . 𝑁𝑁𝑁𝑁] → 2𝐵𝐵𝐵𝐵  is a function described as 
follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) gives a set of 
technical features planned to be implemented in 
release 𝑟𝑟. 

• 𝑩𝑩𝑩𝑩𝑩𝑩.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 is defined in section 
3.3. 



• 𝑺𝑺𝑺𝑺𝑺𝑺.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝒔𝒔 is defined in section 
3.8. 

Computation 
1. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: [1. . 𝑁𝑁𝑁𝑁 + 1] → 2𝐵𝐵𝐵𝐵 be a function 

described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑟𝑟) gives the set of all business features 
implemented up to release 𝑟𝑟 or the period after the 
last release, computed as follows:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑟𝑟) =  �𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖)
𝑟𝑟−1

𝑖𝑖=1

  

2. Let 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹: [1. . 𝑇𝑇𝑇𝑇] → ℝ be a 
function described as follows: (∀ 𝑑𝑑 ∈
[1. . 𝑇𝑇𝑇𝑇]), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) gives the 
combined income/expenditure of both the Business 
Service Network and the Software Development, 
(∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]), computed as follows:    

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑)
= 𝐵𝐵𝐵𝐵𝐵𝐵. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑑𝑑)
+  𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑)  

where:  
• BSN.IM.CashFlow is defined in subsection 

BSN.InterfaceMetrics of section 3.3 
• SWD.IM.CashFlow is defined in subsection 

Software.InterfaceMetrics of section 3.8. 

Note that a negative cash flow means that it is a cash 
outflow.  

3. Let 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇: [1. . 𝑇𝑇𝑇𝑇] → ℝ be a 
function described as follows: (∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]),
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑑𝑑) gives the Net Present 
Value (NPV) of the CombinedCashFlow for the 
time investment window[1. . 𝑑𝑑], computed as 
follows: 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑑𝑑)

= �
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖)

(1 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)𝑖𝑖

𝑑𝑑

𝑖𝑖=1

 

4. Let F = BF  ∪ TF 
5. Let 𝐼𝐼𝐼𝐼(𝑟𝑟) =  𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) ∪ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟), (∀𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]) 
6. FeatureSetsForReleasesArePairwiseDisjoint 

constraint is:  
(∀ 𝑖𝑖, 𝑗𝑗, ∈ [1. . 𝑁𝑁𝑁𝑁], 𝑖𝑖 ≠ 𝑗𝑗), 𝐼𝐼𝐼𝐼(𝑖𝑖) ∩ 𝐼𝐼𝐼𝐼(𝑗𝑗) = ∅ 

7. DependencyGraphIsSatisfied constraint is:  
(∀𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁])(∀ 𝑓𝑓1, 𝑓𝑓2  ∈  𝐹𝐹), 

 (𝑓𝑓1 ≺ 𝑓𝑓2 ∧ 𝑓𝑓2 ∈ 𝐼𝐼𝐼𝐼(𝑟𝑟)) → (𝑓𝑓1 ∈  �𝐼𝐼𝐼𝐼(𝑖𝑖)
𝑟𝑟

𝑖𝑖=1

)  

Constraints 
1. FeatureSetsForReleasesArePairwiseDisjoint  is 

defined in computation #6 above.  
2. DependencyGraphIsSatisfied is defined in 

computation #7 above. 
3. BSN.Constraints is defined in section 3.3. 

4. SWD.Constraints is defined in section 3.8. 

InterfaceMetrics, also denoted IM, is a tuple 
⟨𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝐵𝐵𝐵𝐵𝐵𝐵. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑠𝑠,
𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ⟩,  
where:  
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 is defined in computation 

#2 above. 
• 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 is defined in computation #3 

above. 
• BSN.InterfaceMetrics is defined in section 3.3 
• SWD.InterfaceMetrics is defined in section 3.8 

3.3 BUSINESS SERVICE NETWORK 

FORMALIZATION 

A Business Service Network (BSN) is the formal 
equivalent of the BWP.  
 
BusinessServiceNetwork formalization, also 
denoted BSN, is a tuple ⟨Parameters, 
DecisionVariables, Computation, Constraints, 
InterfaceMetrics⟩, where: 

Parameters, also denoted Parm, is a tuple  
⟨LaborRates, LaborPaySched, BSNDemand, 
ServicesSet, rootID⟩,  
where: 
• LaborRates is a tuple ⟨LR, Rate⟩ where:  
• LR is a set of labor roles 
• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹: 𝐿𝐿𝐿𝐿 → ℝ+ is a function described as follows: 

(∀ 𝑙𝑙 ∈  𝐿𝐿𝐿𝐿), 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙)  gives the hourly rate for 
labor role 𝑙𝑙. 

• LaborPaySched, the labor cost payment schedule, 
is a tuple ⟨𝑁𝑁𝑁𝑁𝑁𝑁, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿⟩,  
where:  
• 𝑵𝑵𝑵𝑵𝑵𝑵 ∈ ℝ+is the number of labor payments over 

the entire time horizon 
• 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳: [1. . 𝑁𝑁𝑁𝑁𝑁𝑁] →  [1. . 𝑇𝑇𝑇𝑇] is a 

function described as follows: (∀ 𝑝𝑝 ∈
  [1. . 𝑁𝑁𝑁𝑁𝑁𝑁), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝) gives the day, 
relative to the first day of the time horizon, on 
which a payment 𝑝𝑝 is made. 

• BSNDemand, is a tuple ⟨𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⟩,  
where:  
• BSNI  is a set of input items ids that have to be 

processed by the Service Network.  
• BSNO  is a set of output items ids that have to be 

produced by the Service Network.  
• 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ⋃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 → ℝ+ is a function 

described as follows: (∀ 𝑗𝑗 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ⋃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵),



  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑗𝑗)  gives for every item 𝑗𝑗, the required 
processing throughput per hour. 

• ServicesSet  is the set of all services in the Service 
Network, defined in section 3.4.   

• 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 is the id of the Service, in the ServicesSet, 
which is designated to be the “root”. The definition 
of a Service is given in section 3.4.  

DecisionVariables is the set 
{𝑠𝑠. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 | 𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆}. See 
section 3.4. 

Computation 
1. Let root be a Service in ServicesSet with id=rootid 
2. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 constraint: 
(∀ 𝑖𝑖 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]), 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖, 𝑟𝑟)

≥ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑖𝑖) 
3. 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 constraint: 
(∀ 𝑜𝑜 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]), 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝐼𝐼𝐼𝐼. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑜𝑜, 𝑟𝑟)

≥ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (𝑜𝑜) 
4. Let 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∶ [1. . 𝑇𝑇𝑇𝑇] → ℝ+be a 

function described as follows: (∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]),
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑) gives the service network 
labor cost accrued for day 𝑑𝑑 computed as:  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑)
= 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟) 
Where:  
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑟𝑟) is 

defined in subsections 4.5, 4.6 and 4.7,  
• r is the release period (or period after the last 

release) where day d appears, i.e.,   
𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟) ≤ 𝑑𝑑 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) 

5. Let 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵: [1. . 𝑁𝑁𝑁𝑁𝑁𝑁] → ℝ be a function 
described as follows: (∀ 𝑝𝑝 ∈ [1. . 𝑁𝑁𝑁𝑁𝑁𝑁]),
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝) gives the service network labor 
payment in dollars, for each scheduled payment 𝑝𝑝, 
computed as:  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝)

=

⎩
⎪⎪
⎨

⎪⎪
⎧

� 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷(𝑑𝑑)
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)

𝑑𝑑=1

   ∀𝑝𝑝 = 1               

� 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑑𝑑) 
∀𝑝𝑝 = [2. . 𝑁𝑁𝑁𝑁𝑁𝑁]  

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)

𝑑𝑑=𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝−1)+1

 

6. Let 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∶ [1. . 𝑇𝑇𝑇𝑇] → ℝ+ be a function 
described as follows: (∀ 𝑑𝑑 ∈
[1. . 𝑇𝑇𝑇𝑇]), 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝑜𝑜𝑤𝑤(𝑑𝑑) gives the cash flow for 
the entire Business Service Network for day 𝑑𝑑, 
computed as follows: 
𝑖𝑖𝑖𝑖 𝑑𝑑 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝 

Then 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) =  −𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝) 
Otherwise 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) = 0 

 
Constraints  
1. 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩(see Computation #2)  
2. 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (see Computation #3)  
3. 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺. 𝑰𝑰𝑰𝑰(𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓, 𝒓𝒓). 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪, (See 

section 3.4) 

InterfaceMetrics, also denoted IM, is a tuple 
⟨𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹⟩, where:  
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 is defined in computation #6 above.  

3.4 SERVICE FORMALIZATION 

ServicesSet  formalization is a set of Service, where:  
Service is a tuple ⟨Parameters, DecisionVariables, 
Computation, Constraints, InterfaceMetrics⟩, defined 
separately for each 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∈ {𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼}  
• Every service has an id and a ServiceType. We 

denote by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖) the service with identifier 
id.  

• ANDservice type is defined in section 3.5.  
• ORservice type is defined in section 3.6.  
• InputDrivenAtomicService type is defined in 

section 3.7.  

3.5 ANDSERVICE FORMALIZATION 

Intuitively, an ANDservice is a composite service, 
that is, an aggregation of sub-services such that all 
sub-services are activated.  
ANDservice formalization is a tuple ⟨Parameters, 
DecisionVariables, Computation, Constraints, 
InterfaceMetrics⟩ 
where: 

Parameters, also denoted Parm, is a tuple  
⟨𝑖𝑖𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝐼𝐼(𝑖𝑖𝑖𝑖), 𝑂𝑂(𝑖𝑖𝑖𝑖), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)⟩ 
where: 
• id  is the Service id, which must be unique across 

all services in the ServicesSet.  
• I(id)  is a set of inputs 
• O(id)  is a set of outputs 
• Subservices(id)  is a set of the ids of the sub-

services.  
• ServiceType(id) is ANDservice. 

DecisionVariables, also denoted DV, is a tuple 
⟨𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩ 
where: 



• 𝑶𝑶𝑶𝑶(𝒊𝒊𝒊𝒊): [1. . 𝑁𝑁𝑁𝑁 + 1] → {0,1} is a function that 
determines whether the Service id is activated or 
not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted by On(id,r) is as 
follows: 
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟)
= �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                     
 

• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖): 𝐼𝐼(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is a 
function described as follows: (∀ 𝑖𝑖 ∈ 𝐼𝐼 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈
[1. . 𝑁𝑁𝑁𝑁 + 1]),  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑖𝑖, 𝑟𝑟), also denoted 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟), gives the throughput of 𝑖𝑖 (or 
quantity per day) during release 𝑟𝑟 or the period 
after the last release. 

• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖): 𝑂𝑂(𝑖𝑖𝑑𝑑) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is 
a function described as follows: (∀ 𝑜𝑜 ∈
𝑂𝑂(𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]), 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑜𝑜, 𝑟𝑟), also denoted 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑜𝑜, 𝑟𝑟), gives the throughput of 𝑜𝑜 
(or quantity per day) during release 𝑟𝑟 or the period 
after the last release. 

Computation 
1. AllSubservicesAreActivated constraint:  

Let n be the cardinality of Subservices(id). Then the 
constraint is:  

𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟) = 1 → � 𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑟𝑟)  = 𝑛𝑛 
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

   

∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]  
2. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑑𝑑) be a set of inputs and outputs, 

computed as follows:  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

= 𝐼𝐼(𝑖𝑖𝑖𝑖)�𝑂𝑂(𝑖𝑖𝑖𝑖)⋃� � 𝐼𝐼(𝑖𝑖) 
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

� 

⋃� � 𝑂𝑂(𝑖𝑖)
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

� 

3. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖): 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂 ×
[1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ be a function described as 
follows: (∀𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)(𝑗𝑗, 𝑟𝑟), also denoted 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟), gives the total supply of 
item 𝑗𝑗 during release 𝑟𝑟 (and the period after the last 
release), computed as follows: 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)
= 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

+  � 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟)
𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

 

Where:  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

= �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝐼𝐼(𝑖𝑖𝑖𝑖)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                  

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟)

= �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑂𝑂(𝑠𝑠)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                   

 

4. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖): 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ×
[1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ be a function described as 
follows:  
(∀ 𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)(𝑗𝑗, 𝑟𝑟), also denoted 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑑𝑑, 𝑗𝑗, 𝑟𝑟),  gives the total 
demand of item 𝑗𝑗 during release 𝑟𝑟 (and the period 
after the last release), computed as follows: 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)
= 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

+  � 𝐼𝐼𝐼𝐼𝐼𝐼𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟)
𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

 

Where:  
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟)

= �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑠𝑠, 𝑗𝑗, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝐼𝐼(𝑖𝑖𝑖𝑖)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                  

 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)

= �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟) 𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑂𝑂(𝑠𝑠)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                   

 
5. SupplyItemMatchesDemandItem constraint is:  
∀ 𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1], 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)
= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟) 

6. Let  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ be a 
function described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, 𝑟𝑟),  gives the total dollar cost per 
day during period r and the period after the last 
period, computed as:  

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, 𝑟𝑟)

=  � 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 𝐼𝐼𝐼𝐼. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖, 𝑟𝑟)
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

  

Constraints are as follows:  
1. AllSubservicesAreActivated (see computation #1) 
2. SupplyItemMatchesDemand (see computation #5) 

InterfaceMetrics, also denoted IM, is a tuple 
⟨𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩ 
where:  
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑖𝑖𝑖𝑖) is defined in computation #6 

above.  
• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖) is defined in DecisionVariables 

above.  
• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖) is defined in DecisionVariables 

above.  



  

3.6  ORSERVICE FORMALIZATION 

Intuitively, an ORservice is a composite service, that 
is, an aggregation of sub-services such that only one 
sub-services is activated.  
ORservice formalization is a tuple ⟨Parameters, 
DecisionVariables, Computation, Constraints, 
InterfaceMetrics⟩ 
where: 
Parameters, also denoted Parm, is a tuple  
⟨𝑖𝑖𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝐼𝐼(𝑖𝑖𝑖𝑖), 𝑂𝑂(𝑖𝑖𝑖𝑖), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)⟩ 
where: 
• id  is the Service id, which must be unique across 

all services in the ServicesSet.  
• I(id)  is a set of inputs 
• O(id)  is a set of outputs 
• Subservices(id)  is a set of the ids of the sub-

services.  
• ServiceType(id) is ORservice. 

DecisionVariables, also denoted DV, is a tuple 
⟨𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩ 
where: 
• 𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] → {0,1} is a function that 

determines whether the Service id is activated or 
not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted by On(id,r) is as 
follows: 
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟)
= �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                     
  

• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖): 𝐼𝐼(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is a 
function described as follows: (∀ 𝑖𝑖 ∈ 𝐼𝐼 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈
[1. . 𝑁𝑁𝑁𝑁 + 1]), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑖𝑖, 𝑟𝑟), also denoted 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟), gives the throughput of 𝑖𝑖 (or 
quantity per day) during release 𝑟𝑟 or the period 
after the last release. 

• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝒓𝒓𝒓𝒓(𝑖𝑖𝑖𝑖): 𝑂𝑂(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is 
a function described as follows: (∀ 𝑜𝑜 ∈
𝑂𝑂 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]), 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑜𝑜, 𝑟𝑟), also denoted 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑜𝑜, 𝑟𝑟), gives the throughput of 𝑜𝑜 
(or quantity per day) during release 𝑟𝑟 or the period 
after the last release. 

Computation 
1. OnlyOneServiceIsActivated constraint:  

𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟) = 1 → � 𝑂𝑂𝑂𝑂(𝑖𝑖, 𝑟𝑟) = 1 
𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖)

 

∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1] 
2. Same as ANDservice computation #2 
3. Same as ANDservice computation #3 
4. Same as ANDservice computation #4 

5. SupplyItemMatchesDemandItem constraint:  
Same as ANDservice computation #5 

6. CostPerDay computation: Same as ANDservice 
computation #6 

Constraints are as follows:  
1. OnlyOneServiceIsActivated (see computation #1) 
2. SupplyItemMatchesDemandItem (see 

computation #2) 

InterfaceMetrics, also denoted IM, is a tuple 
⟨𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩ 
where:  
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑖𝑖𝑖𝑖) is defined in #6 above.  
• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖) is defined in DecisionVariables.  
• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖) is defined in 

DecisionVariables.  

3.7 INPUTDRIVENATOMICSERVICE 

FORMALIZATION 

Intuitively, an Input DrivenAtomicService is an 
indivisible service which’s throughput is driven by 
the number of inputs that it needs to consume, for 
example, a process that receives applications and 
adjudicates them.  

InputDrivenAtomicService formalization is a tuple 
⟨Parameters, DecisionVariables, Computation, 
Constraints, InterfaceMetrics⟩ 

Parameters, also denoted Parm, is a tuple  
⟨𝑖𝑖𝑖𝑖, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝐼𝐼(𝑖𝑖𝑖𝑖), 𝑂𝑂(𝑖𝑖𝑖𝑖), 𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖),
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖)⟩ 
where: 
• id  is the Service id.  
• I(id)  is a set of inputs 
• O(id)  is a set of outputs 
• 𝑹𝑹𝑹𝑹𝑹𝑹(𝑖𝑖𝑖𝑖) ⊆ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 𝐵𝐵𝐵𝐵 is a 

set of business features required by Service id 
• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒆𝒆𝒔𝒔(𝑖𝑖𝑖𝑖) ⊆ 𝐵𝐵𝐵𝐵𝐵𝐵. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. 𝐿𝐿𝐿𝐿 is a set of 

roles involved in the business service 
• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖): 𝐼𝐼(𝑖𝑖𝑖𝑖) × 𝑂𝑂(𝑖𝑖𝑖𝑖) → ℝ+ is a 

function described as follows:  �∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑖𝑖)�,
�∀ 𝑜𝑜 ∈ 𝑂𝑂(𝑖𝑖𝑖𝑖)�, 𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑖𝑖, 𝑜𝑜) also 
denoted as 𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑜𝑜), gives for input 𝑖𝑖 
and output 𝑜𝑜, the ratio of input throughput toward 
the output throughput. 

• 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝑖𝑖𝑖𝑖): 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) ×
(𝐼𝐼(𝑖𝑖𝑖𝑖)⋃𝑂𝑂(𝑖𝑖𝑖𝑖)) → ℝ+ is a function described as 
follows:   (∀ 𝑙𝑙 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), ∀ 𝑗𝑗 ∈



𝐼𝐼(𝑖𝑖𝑖𝑖)⋃𝑂𝑂(𝑖𝑖𝑖𝑖)), 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖)(𝑙𝑙, 𝑗𝑗), also 
denoted as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑗𝑗), gives the 
amount of time in hours that role 𝑙𝑙 spends per item 
𝑗𝑗 .  

• ServiceType(id) is InputDrivenAtomicService 

DecisionVariables, also denoted DV, is a tuple 
⟨𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩ 
where: 
• 𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] → {0,1} is a function that 

determines whether the Service id is activated or 
not, for a particular release, i.e., (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted by On(id,r) is as 
follows: 
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟)
= �1 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                     
 

• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖): 𝐼𝐼(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is a 
function described as follows: (∀ 𝑖𝑖 ∈ 𝐼𝐼 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈
[1. . 𝑁𝑁𝑁𝑁 + 1]), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑖𝑖, 𝑟𝑟), also denoted 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟), gives the throughput of 𝑖𝑖 (or 
quantity per day) during release 𝑟𝑟 or the period 
after the last release. 

• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖): 𝑂𝑂(𝑖𝑖𝑖𝑖) × [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ is 
a function described as follows: (∀ 𝑜𝑜 ∈
𝑂𝑂 (𝑖𝑖𝑖𝑖), ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]), 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)(𝑜𝑜, 𝑟𝑟), also denoted 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑑𝑑, 𝑜𝑜, 𝑟𝑟), gives the throughput of 𝑜𝑜 
(or quantity per day) during release 𝑟𝑟 or the period 
after the last release. 

Computation  
1. FeatureDependencyIsSatisfied constraint:  
∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1],   
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟) = 1 → 
𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖) ⊆ 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝐼𝐼𝐼𝐼. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑟𝑟)    

2. DeactivatedServicesIsSatisfied constraint: 
∀𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1], 
𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖, 𝑟𝑟) = 0 → 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟) = 0       
∀ 𝑖𝑖 ∈ 𝐼𝐼(𝑖𝑖𝑖𝑖)   

3. ConsumptionIsSatisfied constraint: 
∀ 𝑜𝑜 ∈ 𝑂𝑂, ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1],  
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑜𝑜, 𝑟𝑟)

= � 𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑜𝑜)
𝑖𝑖∈𝐼𝐼(𝑖𝑖𝑖𝑖)

× 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑟𝑟) 
4. Let  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] ×
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖) → ℝ+ be a function described 
as follows: (∀  𝑙𝑙 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖𝑖𝑖), 𝑟𝑟 ∈
[1. . 𝑁𝑁𝑁𝑁 + 1]), 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖)(𝑙𝑙, 𝑟𝑟), also 
denoted 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑟𝑟),  gives the total 
duration per day for role 𝑙𝑙 and release 𝑟𝑟 (and the 
period after the last release), computed as:   

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑟𝑟)
= �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑗𝑗)

𝑗𝑗∈𝐼𝐼
× 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟)
+ �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑗𝑗)

𝑗𝑗∈𝑂𝑂
× 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖, 𝑗𝑗, 𝑟𝑟) 

5. Let  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖): [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ be a 
function described as follows:(∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖)(𝑟𝑟), also denoted 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, 𝑟𝑟),  gives the total dollar cost per 
day during period r (and the period after the last 
period), computed as:  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖, 𝑟𝑟)

= �(𝐵𝐵𝐵𝐵𝐵𝐵. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑙𝑙)
𝑙𝑙∈𝑅𝑅

× 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖𝑖𝑖, 𝑙𝑙, 𝑟𝑟)) 

Constraints are as follows:  
1. FeatureDependencyIsSatisfied (see computation 

#1) 
2. DeactivatedServicesIsSatisfied (see computation 

#2) 
3. ConsumptionIsSatisfied (see computation #3) 

InterfaceMetrics, also denoted IM, is a tuple 
⟨𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖𝑖𝑖), 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑟𝑟𝑢𝑢(𝑖𝑖𝑖𝑖), 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑟𝑟𝑟𝑟(𝑖𝑖𝑖𝑖)⟩ 
where: 
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑖𝑖𝑖𝑖) is defined in computation #5.  
• 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰(𝑖𝑖𝑖𝑖) is defined in DecisionVariables.  
• 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶(𝑖𝑖𝑖𝑖) is defined in 

DecisionVariables.  

3.8 SOFTWARE DEVELOPMENT 

FORMALIZATION 

SoftwareDevelopment formalization, also denoted 
SWD, is a tuple ⟨Parameters, DecisionVariables, 
Computation, Constraints, InterfaceMetrics⟩ 
where: 

Parameters, also denoted Parm, is a tuple   ⟨TS, DP, 
DC, OC, SS, SWPaySched⟩,  
where:  
• 𝑻𝑻𝑻𝑻 ∶ [1. . 𝑁𝑁𝑁𝑁] →  ℝ+ is a function that gives the 

team size, in full time equivalents,  for each release. 
• 𝑫𝑫𝑫𝑫 ∶ [1. . 𝑁𝑁𝑁𝑁] →  ℝ+ is a function that gives the 

developer productivity for each release in effort 
points per day.  

• DC  ∈ ℝ+ is the developer cost in dollars per effort 
point. 



 

 

• OC  ∈ ℝ+ is the operations cost in dollars per effort 
point per day. 

• SS ∈ ℝ+ is the size, in effort points, of the As-Is 
system (prior to development). 

• SWPaySched, the software cost payment schedule, 
is a tuple ⟨𝑁𝑁𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠⟩,  
where:  

• 𝑁𝑁𝑁𝑁𝑁𝑁 ∈ ℝ+is the number of payments to the 
software team over the entire time 
horizon. 

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: [1. . 𝑁𝑁𝑁𝑁𝑁𝑁] →  [1. . 𝑇𝑇𝑇𝑇] is a 
function, i.e. (∀ 𝑝𝑝 ∈ [1. . 𝑁𝑁𝑁𝑁𝑁𝑁]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝) gives the day (relative to 
the first day of the software development 
project) where payment 𝑝𝑝 is made. 

DecisionVariables, also denoted DV, is an empty 
tuple. 

Computation: 
1. Let 𝑅𝑅𝑅𝑅 ∶ [1. . 𝑁𝑁𝑁𝑁] → ℝ+be a function described as 

follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝑅𝑅𝑅𝑅(𝑟𝑟) gives the 
maximum capacity, in effort points, for release 𝑟𝑟 
computed as:  
𝑅𝑅𝑅𝑅(𝑟𝑟) = 𝑇𝑇𝑇𝑇(𝑟𝑟) × 𝐷𝐷𝐷𝐷(𝑟𝑟) × 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑅𝑅𝑅𝑅(𝑟𝑟)   

2. Let 𝑅𝑅𝑅𝑅 ∶ [1. . 𝑁𝑁𝑁𝑁] → ℝ+ be a function described as 
follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]), 𝑅𝑅𝑅𝑅(𝑟𝑟) gives the actual 
size, in effort points, of release 𝑟𝑟, once features are 
assigned to it. The computation is as follows:  
𝑅𝑅𝑅𝑅(𝑟𝑟)

= � � 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝐹𝐹𝐹𝐹(𝑗𝑗)
𝑗𝑗∈ 𝑅𝑅𝑅𝑅𝑅𝑅ℎ.𝐷𝐷𝐷𝐷.𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟)

+ � 𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝐹𝐹𝐹𝐹(𝑗𝑗)
𝑗𝑗∈ 𝑅𝑅𝑅𝑅𝑅𝑅ℎ.𝐷𝐷𝐷𝐷.𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟)

�    

3. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 constraint:  
𝑅𝑅𝑅𝑅(𝑟𝑟) ≤ 𝑅𝑅𝑅𝑅(𝑟𝑟)     ∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁]  

 
4. Let 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∶ [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+be a function 

described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟) gives the day when release 𝑟𝑟 actually 
starts, computed as: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟)

=  �

1     𝑟𝑟 = 1                                                                            
  

𝑅𝑅𝑅𝑅(𝑟𝑟)
𝑇𝑇𝑇𝑇(𝑟𝑟) × 𝐷𝐷𝐷𝐷(𝑟𝑟) + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟 − 1) ∀ 𝑟𝑟 = [2. . 𝑁𝑁𝑁𝑁 + 1]

 

 
5. Let 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∶ [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ be a function 

described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 + 1]),
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) gives the day when release 𝑟𝑟 ends, 
computed as:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟)

=  �
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟 + 1) − 1     𝑟𝑟 = [1. . 𝑁𝑁𝑁𝑁]

  
𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝑇𝑇𝑇𝑇  𝑟𝑟 = 𝑁𝑁𝑁𝑁 + 1                         

 

 
6. Let 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∶ [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+ be a 

function described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑅𝑅 +
1]), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟) gives the dollar cost of 
development per day for release 𝑟𝑟, computed as:  
∀ 𝑟𝑟 = [1. . 𝑁𝑁𝑁𝑁 + 1] 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)

= 𝑅𝑅𝑅𝑅(𝑟𝑟) ×
𝐷𝐷𝐷𝐷

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟) + 1
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑁𝑁𝑁𝑁 + 1) = 0 
 
7. Let 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∶ [1. . 𝑁𝑁𝑁𝑁 + 1] → ℝ+be a 

function described as follows: (∀ 𝑟𝑟 ∈ [1. . 𝑁𝑁𝑁𝑁 +
1]), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟) gives the dollar cost of 
operations per day for release 𝑟𝑟, and the period after 
the last release, computed as:  
𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟)

=  �

(𝑆𝑆𝑆𝑆 × 𝑂𝑂𝑂𝑂)                                 𝑟𝑟 = 1                 

((�𝑅𝑅𝑅𝑅(𝑖𝑖)) + 𝑆𝑆𝑆𝑆) × 𝑂𝑂𝑂𝑂      ∀ 𝑟𝑟 = [2. . 𝑁𝑁𝑁𝑁 + 1]
𝑟𝑟−1

𝑖𝑖=1

 

 
8. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∶ [1. . 𝑇𝑇𝑇𝑇] → ℝ+be a 

function described as follows: (∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑) gives the software cost 
accrued for each day 𝑑𝑑 in the time horizon, 
computed as:  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑)

= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟)
+ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑟𝑟) 

where r is the release period (or period after the last 
release), where day d appears, i.e.,  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑟𝑟) ≤ 𝑑𝑑 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟) 
 
9. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: [1. . 𝑁𝑁𝑁𝑁𝑁𝑁] → ℝ be a function 

described as follows: (∀ 𝑝𝑝 ∈ [1. . 𝑁𝑁𝑁𝑁𝑁𝑁]),
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑) gives the software payment in 
dollars, for each scheduled payment 𝑝𝑝, computed 
as follows:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝)

=

⎩
⎪⎪
⎨

⎪⎪
⎧

� 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑)
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝)

𝑑𝑑=1

        𝑝𝑝 = 1               

� 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑)   𝑝𝑝 = [2. . 𝑁𝑁𝑁𝑁𝑁𝑁]  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝)

𝑑𝑑=𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝−1)+1

 

 
10. Let  𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∶ [1. . 𝑇𝑇𝑇𝑇] → ℝ+, be a function 

described as follows: (∀ 𝑑𝑑 ∈ [1. . 𝑇𝑇𝑇𝑇]),



𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) gives the cash flow of software 
cost for day 𝑑𝑑, is computed as: 

   𝑖𝑖𝑖𝑖 𝑑𝑑 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝 
𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) = −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑝𝑝) 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑑𝑑) = 0  

Constraints  
1. 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

(defined fin computation #3) 

InterfaceMetrics, also denoted IM, is a tuple 
⟨𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⟩, where: 
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑑𝑑) is defined in computation #10.  
• 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇(𝑟𝑟) is defined in computation #4.  
• 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝑟𝑟) is defined in computation #5.  
 

3.9 Optimization Formulation 

The formalizations in the previous sections are 
building blocks; we now use them to formulate the 
optimization of the NPV of the final BWP 
configuration, called the To-Be.  

Given the top-level formal optimization model 
𝑅𝑅𝑅𝑅𝑅𝑅ℎ⟨𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐷𝐷𝐷𝐷, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐼𝐼𝐼𝐼⟩,  
the optimal NPV for the To-Be BWP, for a time 
horizon of 𝑡𝑡ℎ days, is:  

𝑁𝑁𝑁𝑁𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑀𝑀   𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝐼𝐼𝐼𝐼. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡ℎ)  
𝑠𝑠. 𝑡𝑡.   𝑅𝑅𝑅𝑅𝑅𝑅ℎ. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

4. RELEASE SCHEDULING 

METHODOLOGY AND DGS EXAMPLE 

The optimization model formalized in the previous 
section is implemented in the Decision Guidance 
System (DGS). It uses the Parameters in the input file 
to maximize the NPV, subject to the Constraints. 
During the maximization, the DGS performs the 
Computation and chooses the optimal 
DecisionVariables. The InterfaceMetrics are 
implemented by making them available to other 
components of the formalization hierarchy. 

Decision Guidance Systems (DGSs) are an 
advance class of Decision Support Systems (DSS) 
that are designed to provide “actionable 
recommendations, typically based on formal 
analytical models and techniques” (Alexander 
Brodsky & Luo, 2015). We use Unity (Nachawati et 
al., 2016), a platform for building DGSs from 
reusable Analytical Models (AMs). Unity exposes an 
algebra of operators and provides an unified, high-

level language called Decision Guidance Analytics 
Language (DGAL) (Alexander Brodsky & Luo, 
2015).  
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Figure 5–DGS Architecture. 

Figure 5 shows the architecture of our DGS. A 
decision maker, the user, uses a GUI to interact with 
the system. The user provides inputs and then runs the 
DGS Analytics Engine in Unity (Nachawati et al., 
2017), which translates the Analytical Model (AM) 
code to low level code understood by an optimization 
tool like the CPLEX solver and then executes it. The 
user then receives an optimized release schedule and 
the associated best BWP configuration, similar to 
Table 2. The components of the AM mimic the 
formalization hierarchy shown in Figure 3. Note that 
the Unity Analytics Engine transparently connects the 
AMs to the lower-level, external tools. In our case, 
the Analytical Model is translated, by Unity, to 
Mixed-Integer Linear Program (MILP) code. 

The DGS is an integral part of the Release 
Scheduling Methodology, which contains the 
following key steps: 

1. Gather the ReleaseScheduling parameters 
2. Model the BWP 
3. Gather the SoftwareDevelopment parameters 
4. Setup the Decision Guidance System (DGS) 

input data for the To-Be BWP configuration 
5. Run the DGS to produce the optimal NPV for 

the To-Be configuration 
6. Setup the DGS input data for the As-Is BWP 

configuration 
7. Run the DGS to produce the NPV for the As-Is 

configuration 
8. Run the DGS to calculate the total NPV of the 

savings 

In the first step, we gather the ReleaseScheduling 
parameters which include potential software features 
that might enable savings in the BWP. Feature 



 

 

dependencies are established, and their sizes are 
estimated. For the example described in section 2, the 
ReleaseScheduling parameters are shown in table 3.  

Table 3-ReleaseScheduling.Parameters. 

Parameter Value 
BF 

(business features) {BF1, BF2, BF2, BF4} 

TF 
(technical features) {TF1} 

DG 
(dependency 

graph) 
{(TF1, BF1), (BF1, BF2),  
(TF1, BF3), (BF1, BF4)} 

FS 
(feature size) 

{(TF1,140), (BF1,140), 
(BF2,280), (BF3,280), 

(BF4,280) 
TH 

(time horizon) 520 
DiscountRate 

(daily) 0.01923076923% 
NR 

(number releases) 4 
RD 

(release duration) 60 

In step 2, the BWP is modelled. The top-level or 
root process is defined; in our example we call it 
‘Adj’. Each potential process alternative is defined 
along with their inputs, outputs, labor rates and the 
features that enable them. Each process is assigned a 
type of atomic, AND or OR. The daily number of 
inputs to the BWP, called Demand is set, and the days 
when labor payments are made are determined. This 
is important in order to account for the fact that an 
amount of cash disbursed in the future is worth less 
than the same amount of cash disbursed today. In our 
example, we use the rate of 5% per year to discount 
the labor payments. These parameters are assigned to 
the formalization components BSN.parameters and 
Service.parameters. For the example in Section 2, the 
parameters are shown in Tables 4, 5, 6 and 7. Note 
that the parameters in Table 4 are a numerical 
codification of the BWP diagrams in Figures 1 and 2. 

 

 

 

 

 

 

 

Table 4-BSN.Parameters. 

Parameter Value 
LR (Labor Roles) {IA, AO, A, S} 

Rate {(IA, 20), (AO, 50), 
(A, 0), (S, 0)} 

NLP 
(Number Labor Payments) 5 

LaborPayDay [56,112, 168,224,520] 
BSNI 

(top-level process input) {User Application} 
BSNO 

(top-level process output) {} 
Demand 

(# top-level inputs) 800 
ServicesSet 

(space of alternatives) 
{Adj, A, B, C, AA, AB, 
AC, BA, BB, CA, CB} 

rootID  
(id of top-level process) Adj 

Table 5-Service.Parameters part 1. 

id Type Input Output Sub 
services RBF 

Adj AND   A, B, C 

N/A 
A OR   AA,AB,AC 

B OR   BA, BB 

C OR   CA, CB 

AA Atomic UA CA,NCN 

N/A 

 

AB Atomic UA CA,NCN BF1 

AC Atomic UA CA,NCN BF4 

BA Atomic CA AA  

BB Atomic CA AA BF2 

CA Atomic AA AL  

CB Atomic AA AL BF3 

Table 6-Service.Parameters part 2. 

id Input Output IO Thru 
Ratio 

AA UA CA 70% 
AA UA NCN 30% 
AB UA CA 70% 
AB UA NCN 30% 
AC UA CA 70% 
AC UA NCN 30% 
BA CA AA 100% 
BB CA AA 100% 
CA AA AL 100% 
CB AA AL 100% 



Table 7-Service.Parameters part 3. 

id Role Input Output RoleTime 
PerIO 

AA IO UA  0.250 
AA IO  CA 0.125 
AA IO  NCN 0.219 
AB IO UA  0.145 
AB S  CA 0.000 
AB S  NCN 0.000 
AC A UA  0.063 
AC S  CA 0.000 
AC S  NCN 0.000 
BA AO CA  0.042 
BA AO  AA 0.208 
BB AO CA  0.021 
BB AO  AA 0.129 
CA AO AA  0.021 
CA AO  AL 0.167 
CB AO AA  0.017 
CB AO  AL 0.083 

In step 3 of the methodology, we gather the 
SoftwareDevelopment parameters as shown in 
Table 8 for our example. 

In step 4, we setup the DGS input data for the To-
Be configuration. All the parameters above are coded 
in a JSON file which is used as input to the DGS.  

In step 5, we run the DGS, which translates the 
Analytical Model to Mixed-Integer Linear 
Programming code and invokes the MILP solver to 
produce the optimal NPV for the To-Be BWP 
configuration. The main DecisionVariables, that are 
instantiated during the optimization are IBF(r) 
(Implemented Business Features), ITF(r) 
(Implemented Technical Features) and On(id,r), 
which indicates whether process id belongs to the best 
BWP configuration for release r. The second column 
in Table 2 captures the values of IBF and ITF for each 
release r, while the third column shows the processes 
that have On=1.  

With the DecisionVariables instantiated, the daily 
cost of the To-Be BWP and the software development 
is calculated according to the Computation 
formalization and shown in Table 9.  

Note that the daily cost is accrued but only paid on 
pay days and in our example, there are only 5 
payments during the time horizon of 2 years, or 520 
business days.  

Table 8-SoftwareDevelopment.Parameters. 

Parameter Value Unit 
TS 

(Team Size) 5  

DP 
(Dev Productivity) 1 (points/day) 

DC 
(Dev Cost) 1,040 (US$/point) 

OC 
(Operations Cost) 0.25 (US$/point/day) 

SS 
(System Size prior 
to development) 

0 (points) 

NSP 
(# Soft Payments) 5  

SWPayDay [56,112,168,224,520] 

Table 9-To-Be Daily Cost. 

 Daily Cost 
Rel BWP Software 
1  $ 18,715.20  $   5,200.00 
2  $ 14,584.00  $   5,270.00 
3  $ 12,120.00  $   5,340.00 
4  $   9,315.33  $   5,410.00 

After 4  $   6,995.33  $     280.00 

Table 9 shows that the least costly BWP 
configuration is the one after all releases are 
implemented. This is expected because the 
availability of all software features enables the best 
BWP of all possible alternatives. Table 9 also shows 
that after the software is implemented, there is a daily 
labor cost to operate the software.  

Once the daily cost is computed, the cash flow 
disbursement is calculated for each day of the time 
horizon. The NPV is the sum of the cash flows of the 
BWP plus the software, discounted at 5% per year. 
Table 10 shows the NPV results.  

Table 10-NPV of the To-Be Configuration 

 BWP 
Cash Flow 

Software 
Cash Flow 

NPV 

1 -1,048,051.20 -291,200.00 -1,324,907.25 
2 -816,704.00 -295,120.00 -1,088,135.32 
3 -678,720.00 -299,040.00 -946,678.61 
4 -521,658.67 -302,960.00 -790,104.44 

after 4 -2,070,618.67 -82,880.00 -1,949,834.80 
 Accumulated NPV(To-Be): -6,099,660.42 



 

 

Once the NPV of the To-Be is determined in step 
5, in step 6, we setup the DGS input data in 
preparation for the calculation of the NPV of the As-
Is. Basically, the decision variables are instantiated so 
that the resulting BWP configuration is the one before 
the system is developed, that is, AA, BA, CA, as 
shown in the first row of Table 2.  

In step 7, we run the DGS to produce the NPV for 
the As-Is, which is shown in Table 11. Note that there 
is no cost for software development.  

In step 8, we run the DGS to calculate the total 
NPV of the savings, which is the NPV of the To-Be 
minus the NPV of the As-Is. The result is 
2,994,064.77, which means that investing in the 
software release schedule as depicted in Table 2, 
reduces the total cost by almost 3 million US dollars 
over 2 years.  

Table 11-NPV of the A-Is Configuration. 

Release BWP Cash Flow NPV 

1 -1,048,051.20 -1,036,826.13 
2 -1,048,051.20 -1,025,721.28 
3 -1,048,051.20 -1,014,735.36 
4 -1,048,051.20 -1,003,867.12 

after 4 -5,539,699.20 -5,012,575.31 
Accumulated NPV(As-Is): -9,093,725.19 

5 CONCLUSION AND FUTURE WORK 

In this paper we introduced a software release 
scheduling approach that is more precise than existing 
value-based approaches because it is based on a 
formal model of the Business Workflow Process and 
its evolution following the implementation of 
software features. We described the approach 
intuitively, defined the formal model, explained the 
Decision Guidance System and demonstrated the 
methodology through an example.  

There are many areas for future work, for 
example, a case study can be conducted, and the 
approach can be extended to include non-labor costs 
such as office space and IT infrastructure. 
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