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Abstract

Proposed is a fundamentally new approach to man-
ufacturing as a service based on a market of virtual
things: parameterized products and services that can be
searched, composed and optimized, while hiding the un-
derlying complexity of product designs and manufactur-
ing service networks. The approach includes bootstrap-
ping the market with novel computational techniques
and tools to reuse the distributed wealth of existing prod-
uct and process designs by generalizing them into mod-
els of virtual things. The goal is to catalyze the agility,
accessibility and predictability of the manufacturing-
entrepreneurship ecosystem, transforming the Future of
Manufacturing.

1 INTRODUCTION

There is a critical disconnect between entrepreneurs who
envision new products and manufacturers who might
build them. To bridge the disconnect, in this position
paper we propose a fundamentally new approach to
manufacturing as a service based on a market of vir-
tual things: parameterized products and services that
can be searched, composed and optimized, while hid-
ing the underlying complexity of product designs and
manufacturing service networks. Our approach boot-
straps the market with novel computational techniques
and tools to reuse the distributed wealth of existing
product and process designs by generalizing them into
models of virtual things. This will catalyze the agility,
accessibility and predictability of the manufacturing-
entrepreneurship ecosystem, transforming the Future of
Manufacturing.

Entrepreneurs use their domain knowledge and mar-
ket insights to conceptualize innovative products, but
may fail to realize their ideas due to insufficient de-
sign and manufacturing knowledge. They lack agility
(getting a product to market fast), access (to manufac-
turing and supply chain resources), and predictability.
Manufacturers’ specialized knowledge in their vertical
domains amounts to a distributed volume of existing
expert-crafted product and process designs, which as-
sure predictable outcomes. However, they lack agility
and access to markets and revenue opportunities pro-
vided by entrepreneurial ideas outside of existing rigid
supply-chain pyramids. As a result, both entrepreneurs
and manufacturers, especially small and medium enter-
prises (SMEs), miss opportunities to create value.

There has been significant research in manufactur-
ing product and process design (Gingold, Igarashi, and
Zorin, 2009 [1]; Yu, Yeung, Tang, Terzopoulos, Chan, and
Osher, 2011 [2]; LaToza, Shabani, and Van Der Hoek,
2013 [3]; Shin, Kim, Shao, Brodsky, and Lechevalier,
2017 [4]), analysis and optimization (Egge, Brodsky, and
Griva, 2013 [5]; Shao, Brodsky, and Miller, 2018 [6]). Re-
cently, a number of startups have taken important com-
plementary steps to bridge this gap. Companies such as
Xometry offer easy access to manufacturing as a virtual
service, where entrepreneurs may enter a CAD file and
receive a price and commitment in real time. Behind
the scenes, this is enabled through an accurate predic-
tive pricing model and a network of manufacturers with
various capabilities, such as CNC machining, injection
molding, and 3D printing. However, combining these
unit processes into a composite manufacturing process
to come up with a finished consumer product is out
of their scope. Companies like Kerfed improve agility
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Figure 1: The funnel of the manufacturing/entrepreneurship ecosystem.

in manufacturing response to customer demand by ac-
cepting a CAD design of an assembly out of standard
components, and performing analysis to discover the
characteristics of its components and their interconnec-
tion so that they can be (semi-) automatically sourced
from suppliers, and so that the assembled product could
be priced for a customer order. Companies like Physna
boost manufacturers’ agility in responding to customer
demand by searching for similar CAD designs in a large
design database using not only meta-data of existing
designs, but also their geometric and functional proper-
ties, significantly simplifying the creation of a new CAD
design via re-use. CAD/CAM software, like OnShape,
has been widely used for product and process design in
increasingly more diverse vertical domains, enabling de-
signers to specify the blueprints of their idea with high
precision.

However, major challenges remain. First, en-
trepreneurs do not typically have CAD modelling skills;
even when starting from a similar design, they may not
understand the design complexity and intent, and still
need to rely on professional CAD designers. Second,
when using a fixed CAD product design for sourcing
manufacturers, the design is typically not optimized to
consider manufacturability and supply chain and manu-
facturing costs. Yet it is often possible, via small modifi-
cations to a product’s CAD design, to make manufactur-
ing significantly simpler and less expensive with little or
no effect on desirable customer-facing product charac-
teristics. Third, and perhaps most important, US man-
ufacturers, especially SMEs, are still primarily selling
low-margin manufacturing capacity, because they face
stiff competition due to lower labor costs and increas-
ing quality of foreign, especially East and South-East
Asian, manufacturing. Manufacturing SMEs typically

do not offer new innovative products with high profit
margins because they lack access to these innovative
product ideas and the agility to respond to the market
opportunities they present.

This paper is organized as follows. In Section 2 we
overview our approach; in Section 3 we illustrate the
approach by a real-world example. We discuss a range
of research questions to be addressed to realize the new
approach in Section 4, and conclude in Section 5.

2 OUR APPROACH

We propose a fundamentally new approach to, and a
novel productivity framework for, the manufacturing-
entrepreneurship ecosystem based on bootstrapped mar-
kets of virtual products and services (see Figure 1, mid-
dle funnel layer), which we collectively call V-things. A
virtual product is represented by a parameterized CAD
design, e.g., to characterize a customizable consumer
product, part or raw material. A virtual service repre-
sents a parameterized transformation of virtual prod-
ucts into other virtual products, e.g., to characterize a
customizable manufacturing process, supply, transporta-
tion, logistics or a composed service network. Each V-
thing—product or service—is associated with an analytic
model that describes the product and/or service’s feasi-
bility and customer-facing characteristics (e.g., weight,
durability, strength, volume for a product; and cost, de-
livery time and default risk for a service) as a function
of the product and/or service’s decision and fixed pa-
rameters (e.g., dimensions, position of fixtures, type and
properties of materials for a product; and settings for
manufacturing processes, selection of and ordered quan-
tities from suppliers and manufacturers).

2



The purpose of the Decision Guidance System over a
repository of V-things (Figure 1) is to enable manufactur-
ers and entrepreneurs to (1) search for relevant V-things
(products and services) in the market, (2) compose them
into more complex V-things (e.g., assembled products or
service networks) and, most importantly, (3) guide deci-
sions, activity that involves model training, predictions,
optimization and trade-off analysis, i.e., recommend-
ing users Pareto-optimal choices on V-thing parameter
instantiation (corresponding to specific products and ser-
vices), while eliciting and acting on preferences among
possibly competing objectives, such as cost, reliability
and time to market.

To manufacturers, V-thing markets offer an order-of-
magnitude more agility in response to customer demand
and access to entrepreneurs with ideas. More specu-
latively, V-thing markets may allow manufacturers to
expand their business model, from selling low-margin
manufacturing capacity to agile supply of high-margin
on-demand products in their vertical markets, boosting
their global competitiveness. To scale up the creation
of V-things—products and services—beyond the tradi-
tional limits of generative design, we envision research
and development of novel computational techniques
and V-thing design tools for manufacturers (see bottom
part of the funnel in Figure 1). These techniques and
tools will support search, reuse, and generalization of
manufacturers’ existing product and process designs
into models of V-things, leveraging their domain ex-
pertise to manufacture similar things. We envision an
extensive use of repositories of examples created in a
CAD system as well as physically scanned examples.
The creation of new V-things will also need to leverage
available V-things in the market. We envision associat-
ing virtual things with multi-aspect descriptions to aid
their discovery by entrepreneurs.

To entrepreneurs, V-thing markets offer the agility to
realize their ideas for a new product or service through
flexible search, composition, optimization and Pareto
trade-off analysis using available V-things, while hid-
ing the complexity of underlying product designs and
manufacturing service networks—both process and sup-
ply chain. We expect to design and develop Intelligent
Design Tools for Entrepreneurs (see the top layer of the
funnel in Figure 1), as possible extensions to existing
CAD/CAM tools, using paradigms such as design-by-
sketch and by example, and leveraging V-thing markets.
This agility will drive manufacturing demand.

3 MOTIVATING EXAMPLE

Dentists re-opening their practices after closures due
to COVID-19 need to overcome a major exposure risk.
Many dental procedures—those that require the use of a
high-speed handpiece or an ultrasonic scaler—generate
a pressurized spread of aerosol, which may carry mi-

Figure 2: Dental aerosol funnel connected to HVE suc-
tion line. © Xuction Dental.

Figure 3: Dental aerosol collection funnel. © Xuction
Dental.

croorganisms, including the novel coronavirus. The
main mitigating solution offered by dental suppliers
is an extra-oral suction, based on repurposed dust vacu-
ums. This is too bulky, noisy, and expensive for a dental
operator. A dentist entrepreneur comes up with a much
smarter idea: she wants to repurpose an existing HVE
(high-volume evacuation) line already available in the
dental unit and normally used for dental suction—but
not for the collection of aerosol in the air. What is miss-
ing is a specially designed funnel (Figures 2 3) that can
be attached to an existing HVE line and be held in close
proximity to the patient’s mouth during a dental proce-
dure. This funnel must satisfy a number of properties:
(1) it must be of geometry and size that maximize the suc-
tion of aerosol (too small will not be effective for aerosol
cloud; too big will not generate sufficient suction pres-
sure); (2) it must be light, yet strong and autoclavable,
i.e., withstand sterilization temperatures of 175°C; and
(3) it must be attachable to both a cheek retractor and
an external adjustable arm. In addition, the adjustable
arm (Figure 2) must be designed to hold the funnel at-
tached to the HVE line in the required position to enable
hands-free operation, as well as an optional transparent
shield. The entrepreneur dentist envisions that, if intro-
duced to the market quickly, this new aerosol collection
funnel can easily be sold for $70-80 per part, which is
a small fraction compared to $2000-3000 per one bulky
and noisy extra-oral suction device currently on the mar-
ket. She and her dentist colleagues would certainly find
this offering extremely useful and relatively inexpensive.

This motivating example was found in the wild, sug-
gested by a dentist in a Facebook group for dentists.
However, that dentist’s idea would never get anywhere
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beyond a Facebook post. Xuction Dental—a start-up
company in Virginia—invested significant engineering,
material science and manufacturing expertise to imple-
ment it.

As lead users, dentists are very familiar with their
needs and current technologies, but are generally not
technical in the sense of manufacturers or engineers
(Hippel, 1988 [7]). The road to idea realization has high
barriers to entry. Expertise is distributed and siloed:
The entrepreneur must find product designers and man-
ufacturers with whom to partner. Communication is
difficult and tools are inaccessible: Everyone must com-
municate their capabilities and their needs to each other,
using very different languages and perspectives. En-
trepreneurs cannot participate in the digital design of
the product. Product designers may not have access to
manufacturing decisions. Siloed decision-making results
in sub-optimal designs. Work is wasted: The work of
designers and manufacturers is delivered bespoke for
a particular product. Without opportunities for discov-
ery and re-use of designs and processes, productivity is
suppressed and capacity is underused.

In our vision, the dentist entrepreneur uses an acces-
sible Intelligent Design Environment for Entrepreneurs
(Figure 4) in collaboration with other innovators (such
as product designers) who may suggest improvements.
The entrepreneur creates a rough sketch of their prod-
uct vision (e.g., the aerosol suction funnel) and provides
some free text describing it. The design tool constructs a
3D model approximating the funnel sketch and uses it to
search for relevant V-products (e.g., for vacuum polymer
funnels) and associated V-services (e.g., manufacturer
who produces them) in the V-thing market. The dentist
explores one V-product that looks relevant, and the de-
sign tool displays a 3D-model of the V-product fitted to
the dentist’s sketch. The 3D depiction is annotated with
customer-facing characteristics, which can be used to
express known constraints and objectives/criteria to be
considered. For example, the dentist may provide funnel
product constraints, such as the diameter of connecting
hose, the maximum allowed weight, the minimal tem-
perature of 175°C to withstand, and service constraints
such as the number of units to be produced and the
maximum delivery time window. She also chooses ob-
jectives to be considered, such as vacuuming efficiency,
weight, cost-per-unit and delivery time. The design tool
leverages the V-service and V-product analytic models
and uses the Decision Guidance System to recommend
and display a few Pareto-optimal alternatives in terms
of the specified objectives while soliciting comparison
responses. After a number of iterations, the dentist con-
verges to a specific instance of a vacuum funnel and
specific service terms. The dentist initially orders a cou-
ple of samples, tries them out, makes adjustments, and
then places a production order of 10,000 units to the
V-service provider to be sold to dental practices.

The creator of the vacuum polymer funnel V-product

Figure 4: The Entrepreneur Design Environment.

and associated manufacturing V-service may be a small
injection molding manufacturer, who happen to produce
similar products, and who decided to extend its business
model from selling manufacturing (injection molding)
capacity to wholesale of some V-products, such as on-
demand vacuum polymer funnels. To do that, the man-
ufacturer uses in-house and/or hired expertise to spec-
ify V-product and V-service designs, leveraging many
specific expert-crafted CAD/CAM product and process
designs of similar things produced in the past. Design
Tool for V-things helps manufacturers to search for rel-
evant specific designs, and generalize them with ana-
lytic model, that expresses feasibility and customer fac-
ing characteristics such as vacuuming efficiency, weight,
cost-per-unit and delivery time as a function of internal
product and process parameters: geometry, dimensions,
type and density of polymer material, as well as process
settings. While this task requires expertise, even with the
help of the V-thing Design Tool, the outcome is highly
reusable and allows the manufacturer significant agility
and access to otherwise unavailable markets, such as for
the dental aerosol collection funnel, which can be sold at
much higher profit margins. In turn, the manufacturer
may use some other existing V-things in the market, e.g.,
polymer material V-product and associated V-service.
The manufacturer of polymer material, in turn, lever-
ages its expertise in designing and producing special
polymers with unique properties, such as low density
and the ability to withstand high temperature. Of course,
behind V-things in the market may also be engineering
and technology firms that want to expand their business
model from selling consulting to becoming virtual man-
ufacturers, while generating demand for manufacturing
capacity in the external service network.

4 TECHNICAL PROBLEMS

To realize this new paradigm, we need to overcome a
number of mathematically and computationally chal-
lenging research problems.
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4.1 V-things Math Framework, Composi-
tion, Search and Decision Guidance

The framework will include mathematical formaliza-
tion of V-things—products and services—including their
design specs, customer facing specs, customer require-
ments specs, and the notions of feasible and optimal
parameter instantiation based on analytic models associ-
ated with V-things. To support the creation of V-things
by manufacturers one needs to design recursive compo-
sitional models—e.g., for product assembly and service
networks—in such a way that compositions would be
easy (e.g., graphically) to specify by (non-mathematical)
domain users, yet can be interpreted as formal analytic
models by the system.

We envision a virtual product to be represented by
a parameterized CAD design, e.g., to characterize a
customizable consumer product, part or raw material.
A virtual service represents a parameterized transfor-
mation of virtual products into other virtual products,
e.g., to characterize a customizable manufacturing pro-
cess, supply, transportation, logistics or a composed
service network. Each V-thing—product or service—is
associated with an analytic model that describes the
product and/or service’s feasibility and customer-facing
metrics/characteristics as a function of the product
and/or service’s (fixed and decision) parameters. For V-
products, examples of customer-facing metrics include
external dimensions, weight, durability and vacuum
efficiency; while examples of internal parameters in-
clude internal dimensions, position of fixtures, and type
and properties of materials. For V-services, examples
of customer-facing metrics include cost-per-unit, total
ordered quantities per item, delivery time, carbon emis-
sions per unit, and default risk; while examples of inter-
nal parameters include settings for unit manufacturing
processes (e.g., CNC machining, injection molding or
3D printing) and selection of and ordered quantities
from suppliers and manufacturers. Intuitively, V-things’
customer-facing metrics are all that customers care about
when selecting products and services; whereas, cus-
tomers do not care about, or even understand, V-thing
parameters outside the set of customer-facing metrics.

Consider an example of a manufacturing service net-
work (Figure 5) for a heat sink product (Brodsky, A.,
Krishnamoorthy, M., Nachawati, M. O., Bernstein, W.
Z., and Menascé, 2017 [8]; Brodsky, Nachawati, Krish-
namoorthy, Bernstein, and Menascé, 2019 [9]), produced
by Birmingham Aluminum Ltd. This product is an as-
sembly of aluminum and the covering plastic frame us-
ing accessories. Both the product and the service are
composite. The service to produce the finished heat sink
product (HS) involves a hierarchical service network,
which includes supply, manufacturing and demand ser-
vices; in turn, manufacturing is also a service network,
composed of aluminum plate contract manufacturer,
smelting, HS base production line, HS base contract man-

ufacturer and HS production line. In turn, HS produc-
tion line is a service network composed of HS shearing,
anodizing, CNC machining, quality inspection, and final
assembly, etc. The challenge here is to avoid hard-wired
and time-consuming development of analytic models
for every composition of V-products (like the assembled
heat sink) and V-services (like the heat sink service net-
work). To address this challenge, one needs to design
(re-usable) recursive compositional models—across both
product assembly and service network compositional
hierarchies—in such a way that compositions would be
easy to specify (e.g., graphically) by (non-technical) do-
main users, yet can be interpreted as formal analytic
models by the system. To achieve this goal, we envision
leveraging techniques from the Factory Optima system,
which was designed and developed for NIST (Brodsky,
Krishnamoorthy, Bernstein, and Nachawati, 2016 [10];
Brodsky et al, 2017 [8]; Brodsky et al, 2019 [9]; Brodsky,
Shao, Krishnamoorthy, Narayanan, Menascé, and Ak,
2016 [11]), but which has not considered parameterized
or composed product designs.

While searching for V-things in the market repository
is conceptually similar to searching for regular products
and services, it is fundamentally different and more chal-
lenging computationally. Just a match between a user
requirement spec and a particular V-thing customer fac-
ing spec is a constraint satisfaction problem, which, like
the corresponding optimization problem, may be both
non-linear and combinatorial in high-dimensional space.

To scale up online optimization for practical size prob-
lems within manageable computational time, one idea
is to design pre-processing algorithms that generate dif-
ferentiable surrogates for (combinatorial components
of) analytic models used in optimization problems. To
scale-up search for V-things, we will need to design of-
fline pre-processing algorithms to generate bounding
polyhedral set approximations that are amenable to effi-
cient (multi-dimensional) indexing techniques for search.
Another major challenge we need to overcome has to
do with the fact that composable and modular analytic
models—against which optimization is applied—are ex-
pressed using object-oriented code (e.g., in Python); yet
the best mathematical programming algorithms require,
as input, a closed-form-arithmetic (“white-box”) opti-
mization model (as opposed to simulation-like “black-
box” model). This can be done by leveraging and fur-
ther developing symbolic computation techniques to
machine generate closed-form-arithmetic optimization
models from software code in order to use the best ex-
isting, as well as develop extensions to, mathematical
programming algorithms (Brodsky and Wang, 2008 [12];
Brodsky and Luo, 2015 [13]).
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Figure 5: Example of manufacturing service network for heat sink product.

4.2 Design Tools for Virtual Things for
Manufacturers

The goal is to design computational techniques to gener-
alize manufacturers’ existing designs (products and ser-
vices) as V-things. Bootstrapping the v-things repository
involves identifying its decision parameters and ana-
lytic models that express feasibility and customer-facing
characteristics as a function of these parameters. The
challenge is that black-box data-driven approaches may
fail to find straightforward and reliable shape designs or
governing equations. To solve this problem, we envision
the need to leverage and extend the techniques of pro-
gram synthesis (Solar-Lezama, 2008 [14]) to enable the
creation of analytic models by non-programmers, result-
ing in “grey-box” models that are partly physics-based
and partly data-driven. Since there are many model and
non-decision parameter alternatives, we envision the
use of machine learning algorithms to train, validate,
and select the best model alternatives.

We propose example-based techniques for generating
parametric CAD models. Rather than requiring man-
ufacturers to re-train with a new design tool, we envi-
sion the need to analyze a set of existing shapes and
semi-automatically find parameters to define a family
of shapes comprising a V-product. For example, an en-
gineer with CAD experience could create multiple in-
stances of a design with their favorite CAD tool. Alterna-
tively, a machine operator can create multiple variations
of a physical object. We envision the need to analyze and
filter these shapes and propose variables. For example,
parameters could be continuous like repeated lengths,
which may appear in whole multiples, or discrete like
symmetry relationships or choice of materials.

We envision developing approaches for enabling users
to author models expressing performance characteristics
of v-things, such as strength, stability, manufacturing

expense and feasibility, and material waste. The met-
rics associated with each v-thing can be used for e.g.,
Pareto front discovery and optimization. The metrics
can measure mass, strain under load, manufacturing
material waste, torque, etc. Users can design finite ele-
ment simulations involving the part. Importantly, it is
desirable for metrics to be differentiable when possible,
allowing their use in gradient-based optimization appli-
cations (e.g., decision guidance, Pareto front discovery,
and deep learning).

Rather than requiring knowledge of programming,
which manufacturers may not possess, we envision cre-
ating novel end user programming techniques which
enable performance models to be created through ex-
amples. To solve this problem, one idea is to use “grey-
box” models that are partly analytical or physics-based
and partly data-driven. To do that one can leverage
and extend the techniques of program synthesis (Solar-
Lezama, 2008) to enable the creation of analytic or
physics-based models with meaningful parameters by
non-programmers. The resulting programs will have
an overly large set of parameters. We propose to put
the user in charge of suggesting and filtering possible
parameters to be user-facing. To do this, one can explore
Programming by Demonstration approaches (Cypher
and Halbert, 1993 [15]; Lieberman, 2001 [16]). Users can
describe examples of performance for specific inputs
or mark measurements (solo or repeated) and compo-
nents with a symmetry relationship. Since there are
many model and non-decision parameter alternatives,
we will use machine learning regression and classifica-
tion algorithms to train, validate, and select the best
model alternatives. It is also important to explore ways
in which shapes and performance characteristics can be
visualized, helping communicate the effects of choices
on the model.

Manufacturer’s knowledge and experience in manu-
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facturing also make them uniquely well-suited to create
v-services for a v-product’s creation. The v-service for
manufacturing a v-product entails sourcing raw mate-
rials and arranging the manufacturing process. We pro-
pose to leverage our prior work using flow diagrams
to specify v-services. This will be integrated into the
v-thing designer, allowing manufacturers to design a
shape’s parameters simultaneously with its manufac-
turing process. To enable manufacturers, who are not
expected to be programmers, to design the analytical
models for the v-services, we envision the use and explo-
ration of Programming by Demonstration approaches
(Cypher and Halbert, 1993 [15]) (see End-User Author-
ing of Performance Analytic Models).

4.3 Intelligent Computational Design Tools
for Entrepreneurs

Intelligent computational design tools for entrepreneurs
and their collaborators must enable them to turn ideas
into virtual things and then into prototypes without
having expertise in CAD or engineering. We envision
intuitive search approaches based on sketching, similar-
product search, and assembly-based modelling to enable
entrepreneurs to find and compose virtual things within
the marketplace intuitively. Such approaches will also
encourage the reuse and adaptation of existing virtual
things to unleash their potential. The computational de-
sign tools driven by decision guidance will also perform
optimization and Pareto trade-off analysis to automat-
ically suggest design alternatives. Entrepreneurs will
be able to select between alternatives, providing pref-
erences which the system uses to iteratively elicit the
utility function and use it to generate new alternatives,
and collaborate with the tools in the ideation process.

Sketching is a natural, straightforward way of expres-
sion for illustrating creative ideas. Compared to using
traditional, sophisticated CAD software (e.g., 3ds Max)
for creating 3D model designs, which requires a steep
learning curve to master, it is much easier for people to
sketch their ideas on a tablet. A sketch-based design in-
terface allows people to focus on envisioning the design
of their products rather than operating the sophisticated
interface of CAD software.

There are many challenges in creating a convenient
and effective sketch-based design interface. One chal-
lenge is due to the irregularity of sketches: most peo-
ple are not artists and they can only sketch their ideas
roughly. One approach to tackle this problem is to de-
vise machine learning approaches for inferring a clean
and valid design from a user’s sketches. Recent work us-
ing generative adversarial networks (GAN) for inferring
3D models from sketches provides a promising solution
(Guérin, Digne, Galin, Peytavie, Wolf, Benes, and Mar-
tinez, 2017 [17]; Portenier, Hu, Szabó, Bigdeli, Favaro,
and Zwicker, 2018 [18]). Sketch-based interfaces have
also been proposed for creating furniture designs (Xie,

Figure 6: A sketch-based interface for furniture design.

Xu, Mitra, Cohen-Or, Gong, Su, and Chen, 2013 [19])
(Figure 6).

For most people, it is much simpler to design a vir-
tual service or product guided by suggestions. For ex-
ample, when renovating homes, people often refer to
a magazine showing many examples of home renova-
tion projects to get inspiration, rather than designing
from scratch. Akin to this, we envision suggestive de-
sign interfaces to help entrepreneurs with design. For
instance, consider the design of a chair. A suggestive
user interface may work like this:

1. The user first specifies the high-level goals of the
chair design, such as the style (e.g., classic or mod-
ern?), context of use (e.g., a dining chair or a
desk chair?), physical properties (e.g., dimensions,
weights), and functionalities (e.g., adjustable?). The
user may also sketch his or her rough idea or pro-
vide an existing similar design.

2. According to the user’s specification from step (1),
the system samples a number of feasible design
solutions that match with the user’s preference;

3. The user chooses one of the suggestions;

4. The user may modify the suggested design to better
match with the user envisions;

5. The system generates new suggestions based on the
specified modifications.

6. Repeat steps (3) to (5) until the user obtains a desired
final design.

Here, the research challenge lies in inferring what the
user wants from the high-level description or rough
sketch in step 1). A promising strategy to overcome such
a challenge involves applying a data-driven approach to
learn statistical patterns of design from a large database
of existing designs. For example, given a database of
3D chair designs, one can train machine learning clas-
sifiers to determine perceptual shape style similarity
(Lun, Kalogerakis, and Sheffer, 2015 [20]). Given a rough
sketch or a partially finished chair design, a suggestive
interface can infer and recommend possible full designs
according to styles and assembly schemes learned from
existing chair designs (Xie et al, 2013 [19]).
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Another promising strategy to help entrepreneurs cre-
ate designs is assembly-based 3D modeling. The idea is
to provide users with simple primitive shapes that they
can assemble into a complex object.

Akin to the furniture design of IKEA, the algorithm
automatically decomposes a furniture product (e.g., a
chair) into a number of manufacturable, modular com-
ponents which customers can easily assemble into the
full products. Due to its simplicity, such a concept has
been applied for designing toys, e.g., the famous toy “Mr.
Potato Head.” A child plays with this toy by assembling
primitive pieces (e.g., hat, arm) to create a desired charac-
ter. Compared to the traditional approach of creating 3D
objects from scratch using low-level mesh or primitive
manipulation tools in CAD software, assembly-based
modeling is much simpler to learn and perform.

A major research challenge of realizing assembly-
based modeling lies in designing a set of compatible
primitive shapes that the user can conveniently assem-
ble into many objects. A trivial solution is to design a
set of very general-purpose primitive shapes, like LEGO
bricks of different dimensions, which give a high-degree
of freedom and hence high flexibility with respect to the
objects they can assemble. However, it typically takes
many very general-purpose primitive shapes to assem-
ble a desired object, and hence the physical assembly
process could be time-consuming and complex.

To tackle such challenges, we will employ a recently
devised approach called “hands-on assembly-based
modeling” (Duncan, Yu, and Yeung, 2016 [21]). The key
idea is to create an algorithm to automatically extract
and generate a set of compatible, interchangeable, and
semantically meaningful primitive shapes given a set of
existing objects. Such primitive shapes can be used for as-
sembling many variations of the original objects. Given
a small set of chair 3D models, which can be easily found
on the Internet, the algorithm automatically decomposes
the chairs into a set of compatible, interchangeable, and
3D-printable primitive components—such as legs, bases,
and backs—that a lay user can easily assemble into dif-
ferent new chairs.

It is important to impose physical and functional con-
straints on the generated primitive shapes, as well as the
final product assembled using these primitive shapes.
Such constraints have practical implications. For ex-
ample, realized as virtual products that are traded on
our platform, the primitive shapes should be compact
and regular to facilitate manufacturing, packaging, and
transportation; while the final object assembled should
possess desirable physical properties (e.g., the assembled
chair must be sturdy).

5 CONCLUSIONS

In conclusion, we envision the new design environments
and markets for virtual things as the bridge over the

gap between unmatched entrepreneurial initiatives and
manufacturing capabilities of the value creation ecosys-
tem today. We hope to explore innovative approaches
both theoretically and methodologically that aim to cat-
alyze the agility, accessibility, and predictability of the
ecosystem by focusing on the three research thrusts: (1)
V-things Math Framework, Composition, Search and De-
cision Guidance; (2) Design Tools for V-things for Manu-
facturers; (3) Intelligent Computational Design Tools for
Entrepreneurs.
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