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Abstract
While modeling and optimization of desalination systems’ op-
eration have been extensively studied, currentapproaches are
hard-wired to specific designs and performance metrics, with-
out the flexibility to reuse orextend these models. Bridging
this gap, reported in this paper is the development of a formal
analytic modeland a decision guidance system for desalina-
tion service networks that can be applied to a broad range
ofdesalination designs and architectures. The model and the
system are based on an extensible repository ofatomic compo-
nent models, initially including models for pumps, renewable
energy sources, water and powerstorage, and reverse osmosis
units. An experimental study is conducted to demonstrate
the flexibility of themodel and system, and its scalability to
support realistic size problems.

1 Introduction
The world is facing a great challenge in satisfying increasing
water demand. To deal with the challenge, the United Nations
has formed a plan in its 2030 Agenda to ensure availability
and sustainable management of water for all (UN, 2015). In
an attempt to align with the plan requirements, many solutions
have been proposed to meet the increasing demand for fresh
water while minimizing its negative environmental impacts.

The current trend toward solving the shortage in freshwater
is by combining renewable energy sources with desalination
systems. However, renewable sources of energy are inter-
mittent in their supply of electric power. The uncertainty in
both demand and, especially, supply of power creates a new
challenge in operating interconnected system components to
maximize financial, social and environmental benefits.

There has been work on optimizing desalination systems,
from a desalination unit (Ahmed et al., 2019) through hy-
brid desalination system (Mokheimer et al., 2013) to fully
integrated water and power supply chains (Al-Nory, 2019;
Abdelshafy et al., 2018). Also, several studies have examined
strategical challenges in combining renewable energy with

desalination systems. In (Gençoğlu and Merzi, 2016), the
authors focus on strategical decisions in water desalination
supply chain by using mathematical modeling to optimize
investment terms. Al-Nory and El-Beltagy (2015) focuses on
minimizing the interruption of the power supply by selecting
optimal pumped hydro storage as well as power storage (e.g.,
batteries.) Azhar et al. (2017) propose an efficient desalina-
tion system design combined it with renewable sources to
produce water and energy. Marques et al. (2014) optimize
the investment in water infrastructures by adapting a flexible
water system plan using decision trees. However, these mod-
els are either (1) limited in their focus on specific units or
technologies rather than optimizing the desalination system
as a whole, (2) hard-wired to specific designs and objectives
which limit its usability in solving other designs or optimizing
other performance metrics (Mokheimer et al., 2013; Al-Nory,
2019; Al-Nory and Brodsky, 2014), or (3) focused on long-
term investment in desalination system infrastructures while
making simplifying assumptions on, rather than accurately
modeling the operation of, the underlying infrastructures over
the time horizon (Al Nory and Graves, 2013). We believe,
however, that accurately modeling the resource flows, such as
of power and water, within and across the system components
over the given operational period can reveal unseen saving in
both operation and investment.

To bridge the gap, we propose an approach that helps de-
cision makers optimize desalination system operation over a
given operational window (e.g., 72 hours) without the need to
hard-wire the model to a specific desalination design, archi-
tecture or performance metrics. More specifically, the contri-
butions of this paper are threefold. First, we develop a formal
Analytic Model (AM) for desalination Service Networks (SN)
that can be applied to a broad range of desalination designs
and architectures.

Second, we develop an extensible repository of analytic
models for desalination system components, which initially
includes pumps, renewable energy sources, water and energy
storage and Reverse Osmosis (RO) plants. Unlike hard-wired
models, our frameworks allows extending model repository
with additional components, and instantiating an arbitrary

1



desalination service network, without any other model modifi-
cations.

Third, based on the developed model repository, we develop
a Decision Guidance System (DGS) that (1) allows desalina-
tion system engineers to instantiate their specific desalination
design/architecture, (2) performs iterative optimization over
operational time windows for the selected objective, such as
minimizing CO2-adjusted operational cost, while satisfying
the system and demand constraints; and, (3) makes actionable
recommendations to desalination system operators/control sys-
tem on precise controls of each desalination system component
for every time interval. The system is based on Decision Guid-
ance Analytics Language (DGAL) (Brodsky and Luo, 2015)
and the Decision Guidance Management System architecture
(Unity DGMS) proposed in (Nachawati et al., 2017).

Finally, we conduct a preliminary experimental study to
demonstrate the flexibility of the system applied to four ex-
amples of desalination design, and its scalability to handle
realistic size optimization problems.

The paper is organized as follows. Section 2 illustrates the
concept of desalination service network using an example.
Section 3 overviews a high-level architecture of the devel-
oped Desalination Decision Guidance system and methodol-
ogy. Section 4 formalizes the desalination service network
model. Section 5 discusses the results of the experimental
study. Finally, Section 6 presents concluding remarks and
briefly outlines directions for future work.

2 Desalination Service Network by ex-
ample

The purpose of the Service Network Desalination Model
(SNDM) is to solve a scheduling optimization problem for
different desalination system designs and performance met-
rics. We use a generic structure called a service network (SN)
to allow the model to handle different designs. The SN, as
described in (Brodsky et al., 2017), is a hierarchy of services
that are connected together to capture the flow of commodity
over the network. By using a Service Network, we can create
different desalination system designs, and through the use of
the desalination Analytical Model AM, we can optimize the
performance metrics of these designs.

To illustrate this concept, consider an example of the ser-
vice network for a hybrid energy system with Reverse Os-
mosis (RO) desalination plant system depicted in Fig 1. The
root of the service hierarchy is the Water Desalination Sys-
tem. Within it there are sub-services for a Pump Station, Low
Reservoir, High Reservoir, Power Sources, Power Storage.
These services are connected together to produce fresh water.
In the figure, each arrow indicates the flow of some resource
(such as sea water, water under pressure, fresh water and
power) between these services. A composite service, such
as Power Sources, contains other sub-services, such as Re-
newable Sources and Power Grid, which are atomic services
(i.e., do not have sub-services.) Both atomic and composite
services are optional. Now, we can create many designs by

extending the hierarchy with other sub-services that mimic the
system we intend to represent.

In order for a system to satisfy fresh water demand for a
given operational window, it should produce fresh water by
setting the right amount of flows throughout the system while
minimizing the production cost and the carbon emissions for a
given operational window. Optimization is based, as described
in Section 4, on an analytic model (AM) which computes
metrics such as cost and CO2 emissions, as well as feasibility
constraints, for a given operational window (e.g., of 72 hours),
as a function of operational controls for each component and
time interval (e.g., of 1 hour.) In the model computation, the
flows and feasibility have to be aggregated bottom-up, for all
intervals, by recursively calling each composite service its’
sub-services starting with the root service until reaching the
atomic services at the bottom of the hierarchy, as in figure 2
(step 1:1a,1c). At that point, the AM uses the type of the
atomic service to refer to the corresponding atomic AM in
the library of atomic analytical Models (AMs) which then
calculates the flows and feasibility for that atomic service as
in figure 2 (step 1b). Then, we repeat the same process given
the output from the first step but this time we aggregate and
calculate the metrics for the whole periods as well as some
additional constraints (as in step 2).

3 Desalination decision Guidance Sys-
tem

The developed Desalination Decision Guidance System (DGS)
(1) allows desalination system engineers to instantiate their
specific desalination design/architecture, (2) performs iterative
optimization over operational time windows for the selected
objective, such as minimizing CO2-adjusted operational cost,
while satisfying the system and demand constraints; and, (3)
makes actionable recommendations to desalination system op-
erators/control system on precise controls of each desalination
system component for every time interval. The system is based
on Decision Guidance Analytics Language (DGAL) (Brod-
sky and Luo, 2015) and the Decision Guidance Management
System (Unity DGMS) proposed in (Nachawati et al., 2017),
which in turn is based on the concept proposed in (Brodsky
and Wang, 2008).

Figure 3 depicts the high-level architecture of Desalina-
tion DGs. The middle layer represent the decision guidance
management system that contains a repository of reusable,
modular, and composable models. Through the Graphical
User Interface (GUI), the user can construct many desalina-
tion designs. Through the analytical engine, the DGMS hides
from the user the complexity in dealing with external tools to
perform different analytical tasks (such as optimization, learn-
ing and prediction). For example, to perform optimization
for desalination service network, the analytics engines ma-
chine generates a mixed-integer linear programming (MILP)
model from the simulation-like analytic model (formalized in
Section 4), which was written in Python. The input required
for DG optimization includes (1) an analytic model, (2) an
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analytic model input annotated to indicate which input values
serve as decision variables, and (3) indication of which of the
computed model metrics serves as optimization objective and
constraints.

For desalination plant users, we envision the following
workflow for using Desalination DGS:

1. A desalination plant engineer interacts with the DGS to
create an instance of the plant’s design and architecture.

2. An desalination plant engineer interacts with the DGS
to instantiate additional system parameters, such as the
length of operational window (e.g., 72 hours), and the
frequency of re-optimization (e.g., at the top of every
hour)

3. A plant operator, on a periodic basis, updates the demand
for fresh water. The system performs optimization and
makes actionable recommendation on precise controls
of every system component, every operational interval.
Some of these controls can automatically actuate the
underlying system components, whereas some other will
be displayed to the plant operator, who can approve and
actuate plant controls.

4 Formalization of Service Network
Desalination Model

4.1 High-level Optimization Problem
The desalination operational optimization is based on the ana-
lytic performance model (AM), which computes performance
metrics, such as cost and carbon emissions, as well as feasi-
bility constraints, as a function of fixed and control (decision)
parameters of the desalination service network over the opera-
tional time window.

More formally, the analytic performance model AM is a
function:

AM : IN ! OUT (1)

where:
IN is a set of all valid inputs
OUT is a set of all valid outputs

The AM forms a valid output instance out 2 OUT of perfor-
mance metrics, such as operational cost or waste, from a valid
input in 2 IN of fixed and controlled operational parameters.

Then, the desalination optimization problem is:

min
in 2 IN

ob j(AM(in))

s.t. C(AM(in))
(2)

where

• Ob j : OUT ! R is an objective function, which gives
the real objective value in R given a valid output instance
of the AM.

• C : OUT ! {T ,F} is a constraint function C, which gives
True or False given a valid output instance of the AM.

In contrast of hardwired models, we describe the objective
and constraints as a function of analytical model AM output.
By doing that we loosening the tightly connected model, so
that same AM can be used to formulate multiple desalination
optimization problems using different system designs and
objective functions.

In the following, we will use the following notation for a
set of key-value pairs:

m = {key1 :value1,
key2 :value2,

. . .

keyn :valuen}

(3)

where the keys are unique identifiers. Note that this set
represents a mapping

m : {key1, . . . ,keyn}�![n
i=1Di

from the set of keys to union of the domains so that
m(keyi) 2 Di for all i = 1, . . . ,n. We will use the notation
keys(m) = {key1, . . . ,keyn} to denote the set of all keys
associated with the set m of key-value pairs.

Now using the above notations we can describe all of the
components above; starting with a valid service network de-
salination model output instance out in section 4.2, followed
by the input instance in in section 4.3, and finally, we describe
the analytic model which is a function that computes an output
instance from the input instance.

4.2 Service Network desalination Instance:
The Model Output

A valid SN desalination output instance out is a set of key:value
pairs:

{config : h config parametersi
rootServiceID : root service id,

services : h set of servicesi,
constraints : ”True”or”False”,

metrics : h set of metricsi}

(4)

where :

• config value is a set of:

{operationalInterval : value,
operationalWindow :w}

where config value defines the time horizon using the
operationalInterval string that represents the unit of
time in which the system operates (e.g, hour). The
operationalWindow (w) represents the number of in-
tervals, so that operational decisions can be made over
these intervals.

• rootServiceID is the id of a service in services desig-
nated as a root service.
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• Services: is a set optional key:value pairs of the form:

{powerService :{energyContracts : service1,
renewableEnergy : service2},
other : service3},

lowReservoirs :service4,
powerStorage :service5,
pumpStation :service6,

highReservoirs :service7,
desalinationPlant :service8,

waterStorage :service9}

(5)

where each key represent service id which
uniquely identifies that service and each
servicei 2 {service1 . . . service9} is either a
composite or an atomic service. As each composite
service, such as powerService, contains at least one
subservice, it includes the IDs of these services
under subService. So, each composite service has the
following form:

{type : ”composite”
inFlow :{inF1 : hf-value i,

inF2 : hf-value i, . . .}
outFlow :{OutF1 : hf-value i,

OutF2 : hf-value i, . . .}
metrics :{cost : hm-value i,

CO2 : hm-value i, . . .}
constraints :”True”or”False”

subServices :{set of service ids }}

(6)

where each inFlow and outFlow contains a set of fi
and h f-value i pairs that represent the flows going in
and out each service. The form of each hf-valuei can
be express as follow:

{ qty: [num1 . . .numw],
total: numeric value}

where the qty is a sequence that shows the quan-
tities of flow at each operational interval while
the total shows the total flow for the whole opera-
tional window.

In the same manner, the metrics value contains as set
of metrics (such as cost or CO2) with their correspond-
ing hm� valuei in the form of:

{perInt: [num1 . . .numw],
total : numeric value}}

(7)

where the perInt is a sequence that shows the met-
ric per interval while the total shows the summa-
tion for all intervals.

The constraints value indicates whether the service
satisfies its constraints.

• The metrics it shows the metrics for the rootService.

• The constraints indicates whether all the constraints of
the rootservice are satisfied.

The atomic service has the similar form except that:

• There is no subServices key:value pair.

• The type refers to one of the atomic analytical model in
the library.

• Additional set of key:value pair:

onFlag : [Boolean1, . . . ,Booleanw ]

where each boolean value in the list indicate if the ser-
vice is running ”1” or not ”0” at each interval of the
operational window (w).

• An optional set of key value pair:
{ . . .
typeSpecific:{ set of key:value pairs },
. . .}
where typeSpecific value represents, using a
key:value pairs , the parameters that are needed by
the atomic analytic model type to calculate its met-
rics and constraints.

• An optional set of key:value pairs:

state : {st1 : [num1 . . .numw],
st2 : [num1 . . .numw],
. . .}

where the set keys (state) represent the temporal
elements inside the service. So, each sti, i maps to
a list of numeric values that capture the state of the
service in each interval.

In the next section, we describe a valid input model needed to
compute the output instance.

4.3 Service Network desalination Instance:
The Model input

The model input (in) follow the same structure as the output,
but with some modification:

• No metrics and constraints objects.

• Instead of having a list to describe qty for each flow in
the composite service, we replace it with a list of lower
bound (LB).

• For an atomic service:

– Instead of having a list to depict the state, we re-
place it with a single value that depicts the state at
the beginning of the operational window:

state : {st1 : numinitial,
st2 : numinitial,
. . .}
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4.4 Analytic Model (AM)
To describe how analytical model forms the valid output (out)
from a valid input (in), we indicate how the differences be-
tween the out (in form 4) and the in are computed:

let

x = out(rootServiceID) = in(rootServiceID)

then

out(constraints) = out(services)(x)(constraints)
out(metrics) = out(services)(x)(metrics)
out(services) =

[

id2ID
mOut

⇣
opOut

�
in(services)(id)

�⌘

Below, we describe how the (opOut) and (mOut) functions
construct the out(services) form from the input composite and
atomic services in(services). In section 4.4.1, we show how
the operationOut (opOut) calculates out(services) without the
metrics. Then, the result is used, by mertricOut (mOut), to
calculate the metrics in section 4.4.2.

4.4.1 operationOut (opOut)

In this section, we show how the operationOut (opOut) calcu-
lates the inFLow and outFlow quantities over the operational
window as well as some flow constraints.
The composite service: As in form 6, for every composite
service the quantity (qty) of every inFlow and outFlow is ex-
pressed recursively as:

let

SUB = cs(subService)
qtyIn(id,x,y) =

out(services)(id)(inFlow)( f x)(qty)[y]
qtyOut(id,x,y) =

out(services)(id)(outFlow)( f x)(qty)[y]

then

8cs 2CS, i 2 keys(inFlow),
j 2 keys(outFlow),k 2 {1, . . . ,w}
cs(inFlow)( f i)(qty)[k] =

Â
sub2SUB

qtyIn(sub, i,k)�qtyOut(sub, j,k)

cs(outFlow)( f j)(qty)[k] =

Â
sub2SUB

qtyOut(sub, j,k)�qtyIn(sub, i,k)

Therefore, the (total) for every inFlow and outFlow are:

cs(inFlow)( f i)(total) =
w

Â
k=1

services(cs)(inFlow)( f i)(qty)[k]

cs(outFLow)( f j)(total) =
w

Â
k=1

services(cs)(outFlow)( f j)(qty)[k]

Also, for every composite service cs 2CS, the (constraints)
expressed as a conjunction of demandConstraint(cs), bound-
Constraint(cs), and subServiceConstraints(cs). Each constraint
is expressed recursively as follows:

let SUB = cs(subService)
inKeys(id) = keys(id(inFlow))
outKeys(id) = keys(id(outFlow))

• domandConstraint(cs) ⌘

8sub 2 SUB,k 2 {1, . . . ,w}

8i 2
n
[outKeys(sub)[ inKeys(sub)]

� [inKeys(cs)[outKeys(cs)]
o

qtyIn(sub, i,k) � qtyOut(sub, i,k)

• boundConstraint(cs) ⌘

8i 2 {outKeys(sub)[ inKeys(sub)},k 2 {1, . . . ,w}
in(cs)(services)(inFlow)(i)(LB)[k] � qtyIn(cs, i,k)

• subServiceConstraints(cs) ⌘

8sub 2SUB
sub(constraints)

The atomic service (as): For every atomic service the quantity
(qty) of every inFlow and outFlow is calculated by calling the
analytical model of its type (see appendix). Additionally, every
atomic constraints is expressed as a conjunction of bound
Constraint, on Flag Constraint. The boundConstraint(as) is
expressed as in the composite service boundConstraint(cs),
while onFlagConstraint(as) is expressed as follows:
boundConstraint(as) ⌘

8i 2 {outKeys(as)[ inKeys(as)},k 2 {1, . . . ,w}
�
as(onFlog) = 0

�
! qtyOut(as, i,k)

The state(as,i) for 8s 2 AS and 8k 2 {1, . . . ,w} is expressed
as:

state(as, i) =

(
newState(as,k,state(as,k�1)) if k > 1
as(state) if k = 1

where newState is a function that returns the new state from
a given state for a service with id 2 AS, and interval i 2
{1, . . . ,w}. Further, the atomic analytical model updates the
serviceSpecific key:value pairs by adding some information
that are needed later on to calculate the metrics which need
larger intervals. For example, the desalination system operate
per hour, while calculating some metrics like the cost for ener-
gyContract need the knowledge of average consumption for
the last two months.
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Table 1: The optimization time and objective value for the four desalination designs

Design High
Reservoir

Hydro
generator

Power
Storage

Water
Storage

CPU
time
(s)

Objective
Value

Peak
demand
bound
(k)

Average
power
consumption
(KW)

A Yes Yes Yes Yes 3.4 426.54 44.5 9.43
B No No Yes Yes 1.52 472.51 41.71 9.43
C Yes No No No 0.46 436.42 21.00 11.23
D No No No Yes 0.84 472.51 41.71 9.43

4.4.2 metricOut (mOut)

In this section, we show how the metricOut (mOut) calculates
the metrics over the operational window as in form 7.
The composite service: For every composite service every
metric (such as cost and CO2) are expressed recursively as:

let

mIn(id) = opOut(in(services)(id))
mPerInt(id,x) =

mOut(mIn(id)(metrics)(cost)(perInt)[x])
mTotal(id) =

mOut(mIn(id)(metrics)(cost)(total))

then

8cs 2CS,k 2 {1, . . . ,w}
mPerIn(cs,k) = Â

sub2SUB
mPerIn(sub,k)

mTotal(cs) = Â
sub2SUB

mTotal(sub)

The atomic service (as): The metrics and constraints for the
atomic services are calculated by calling the analytical model
of its type (see appendix).

5 Experimentation
In this section, we show how the proposed desalination AM
can support diverse desalination systems. We run an exper-
imentation that aim to asses the capability of the model in
solving realistic problems using a machine with a 1.8 GHz
Intel Core i5 processor and 8 GB of DDR3 memory executed
at 1600 MHz. We used CPLEX 12 as an optimization tool.

We implement the system using the architecture proposed in
3. Then, we create a design that includes low reservoir, pump,
RO plant and power source which in turn includes renewable
source (solar panels) and the grid. We assume a time horizon
of 24 hours and generate a random supply of renewable energy
source (solar panels), that follow the normal bell shape curve
during the first 12 hours and 0 otherwise. We also use a power
contract agreement which charges extra fee over its fixed fee
using the following formula:

Extra = (k�Avg) ⇤ r (8)

where:
Avg:the average of power consumption over the time horizon
k: The peak demand bound
r: is the rate of extra KWH.

Figure 4 shows the four desalination architectures we design.
In architecture A, we add the high reservoir connected with
hydro generator and power and water storage to produce the
variable demand. In architecture B, we add power and water
storage. while in architecture C, we only add the high reservoir
and in architecture D we did not add any extra component. We
then specify for each component we added its type specific
parameter (like the maximum capacity for the water storage).
Then, we optimize the the flows of power and water as well
as the peak demand bound against the following objective
function:
Total cost of operation + 0.2 * Total carbon emission

Table 1 shows the objective values for the four designs.
These architectures use different storage technologies to store
excess supplies during intervals of low demand to satisfy the
fluctuations in demand. We can see that architecture A and
C achieve better results than C and D under the same input
assumption. These comparison can lead to useful insight in
knowing which component can contribute to the system the
most.

For the purposes of evaluating the model in solving realis-
tic size problems, we generate four different instances from
architecture A by varying two dimensions:(1) The number
of atomic services (AS) and (2) The number of intervals in
the time horizon (w). Table 2 shows the number of atomic
services and the number of intervals used in each instance.
Figure 5 show the progress of the solver in solving the four
instances. We can see that when we set the time horizon (w)
to 24 hour, we reach the optimal solution in 16 seconds and 3
minutes when the number of atomic services are 78 and 306,
respectively. Whereas, when we use 168 intervals we converge
to near optimal solution within 0.43% gap in 25 seconds and
1.29% gap in 45 seconds when the number of atomic services
are 42 and 78, respectively. As an initial step, the solution
time to optimality is practical to operate on an interval (e.g., 1
hour).
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Figure 5: CPLEX solution progress

Table 2: shows different variation of problem sizes

Intervals
(w)

Atomic
Services
(AS)

Gap
(%)

Time
(s)

24 78 0 16
24 306 0 183

168 42 0.03 105
168 78 0.03 693

6 Conclusions and Future Work

We reported on the development of a formal analytic model
and a decision guidance system for desalination service net-
works that can be applied to a broad range of desalination
designs and architectures. The model and the system are based
on an extensible repository of atomic component models, ini-
tially including models for pumps, renewable energy sources,
water and power storage, and reverse osmosis units. We con-
ducted an experimental study to demonstrate the applicability
of the model and the system to a range of desalination designs,
using four examples, and the scalability of the solution to
realistic size problem.

As future work, we plan to expand the experimentation to
study a realistic water supply chain using our proposed model.
Additionally, we plan to develop a modular investment model
based on the accurate operational model developed in this
paper.
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APPENDIX

Atomic Models formulation
So far we have created the analytic models (AMs) for water
storage, Lithium Ion Batteries, pump, RO desalination unit,
solar panels and power contract. Due to page limitation we
omit the formalization of the atomic analytic models(AMs).
We briefly describe how each atomic services that belong to
these AM types produces for every interval its inFlow and
outFlow quantities, performance metrics, and constraints
using these atomic AMs.
For all atomic models, we calculate the total cost using
operation and maintenance (O&M) cost for each type and the
CO2 emission is calculated by multiplying the emission factor
to the amount of power consumed.

WATER STORAGE
High and low reservoir and water storage use the WATER
STORAGE AM to calculate the total operation cost as well as
the constraints that insure:(1) water is balanced between the
inFlow,outFlow and the current state of the water in storage at
any given interval. (2) The water in the storage should not
exceed a given capacity which is listed under type specific.

PUMP The PUMP AM use an equitation to calculate the
amount of outFlows given the efficiency of the pump. The
constraints insure: (1) the amount of power is sufficient
to push the outFlow quantities of water given the pump
specification (such as height,. . . ) under the typeSpecific.

ENERGY CONTRACT The energy contract charges
different rates depend on the amount of power consumed (see
section 5). The CO2 emission is calculated using the amount

of power consumed. The constraint insure that the outFlow
power cannot exceed the maximum capacity.

SOLAR PANELS The outFLow power from solar is
calculated by multiplying the area per panel, number of
panels, panel efficiency, and the amount of solar energy given
each interval.

REVERSE OSMOSIS (RO) The RO use similar formula as
in the PUMP, but the RO require different specifications (such
as the number of membrane,. . . ), which can be found in the
typeSpecific.

LITHIUM ION BATTERIES Calculating the new state of
the battery (the battery state) is depending on the efficiency
factor which decrees at low rate. The constraint insure that the
outFlow power is balanced with the power in the batteries and
the outFlow power at any given interval.
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