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Abstract

We design and develop an extensible model and a deci-
sion guidance system for making actionable recommen-
dations on investments in heterogeneous infrastructure
service networks. The model expresses the cash flows,
as well as performance indicators, such as total cost of
ownership and carbon emissions, as a function of both
investment and operational controls within physical con-
straints of heterogeneous infrastructures and of balanc-
ing resource flows. Uniquely, it is designed to make
Pareto-optimal investment decisions under the assump-
tion of optimal operational controls over the time hori-
zon. We also develop an extensible library of domain-
specific operational analytic models for infrastructure
components, initially for desalination and water systems,
including pumps, renewable energy sources, water and
power storage, and Revers Osmosis desalination units.
Finally, we conduct and report on a feasibility study for
this domain to demonstrate the ability to solve realistic
size problems.

1 Introduction

Investing in interlarded infrastructure services, such as
power grid, gas pipelines and water systems, is essen-
tial to meet the growing demand. However, these types
of investments are associated with high costs and risks
that must be studied carefully. In many cases, however,
investments in infrastructure do not yield the maximum
benefit, which results in a serious waste of resources
that could be avoided with proper planning. Some chal-
lenges in investment planning are due to (1) the com-
plexity of the heterogeneous infrastructure and its com-
ponents that interact with each other during operation

in a non-trivial way; (2) many trade-off choices to con-
sider between objectives and performance measures; (3)
investment performance depends on efficiency of opera-
tion (e.g., over hourly operational intervals) which is typ-
ically not steady-state, but is complex due to stochastic
patterns of supply and demand; and, (4) rapid changes
in infrastructure technologies and the challenge in man-
aging hybrid systems mixing old and new technologies.

There has been extensive work to prioritize and opti-
mize infrastructure investment. One line of this research,
e.g., see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], is the development
of domain-specific models that focus on increasing the
value for money, enhancing system design, or aiding
in protecting the environment. These models are de-
signed to solve domain-specific investment problems
in infrastructure silos, such as water supply [1, 2, 12],
power [7, 8], transportation [6],telecommunications [5]
and supply chain [9, 10, 11]. However, they lack the
flexibility to consider a mix of interrelated infrastruc-
tures holistically, across their silos. This inhibits model
re-usability and, therefore, leads to high complexity and
cost of investment models and systems.

The second line of work, e.g., see [13, 14, 15, 16, 17], fo-
cuses on studying inter-dependencies of a broad range of
infrastructures. However, its focus is around the protec-
tion of these interrelated infrastructures to stand against
any disruption with less emphasis on financial benefits
of infrastructure investment across silos.

There is also a considerable work, such as [18, 19], to
provide a way to optimize the cash flow over the time
horizon by utilizing the network flow and determining the
best time to liquidate. In these works, however, the au-
thors focus only on modeling high-level financial terms,
without modeling the underlying engineering and phys-
ical aspects of infrastructures and their effect on cash
flows. In these works, however, the authors focus only
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on modeling high-level financial terms, without model-
ing the underlying engineering and physical aspects of
infrastructures and their effect on cash flows. Instead,
they assume that the high-level financial input is pro-
vided to their models as input, which is often either
unrealistic or inaccurate.

In our previous work [20], we developed a model
and decision guidance system for investments in inter-
dependent infrastructure service networks. The model
allows for the representation of an arbitrary hierarchi-
cal composition of interrelated infrastructures over the
investment time horizon. The model represents mathe-
matically how these components generated their metrics
of interest (such as cost and CO2) over the investment
periods using an extensible repository of infrastructure-
specific component models. However, the system does
not track the physical infrastructure’s operational con-
trol over the investment periods, but rather assumes
optimal steady-state operation controls over the invest-
ment periods. Therefore, an enhancement can be made
to refine the investment decision.

In[12], we proposed an analytical model that opti-
mizes the operation of complex interconnected infras-
tructures using the service networks and an expandable
library of infrastructure. However, this model only fo-
cuses on the operational part and was limited to desali-
nation system designs.

This paper closes the gaps of [20] and [12] by propos-
ing and developing an extensible model and decision
guidance system for making actionable recommenda-
tions on investments in heterogeneous infrastructure ser-
vice networks. Critically, it makes investment decisions
under the assumption of optimal operational controls of
the extended infrastructure over the time horizon. This
is necessary in order to leverage the operational interac-
tion of interrelated infrastructures (such as smart grids,
renewable energy, power storage, schedulable loads,...)
over short (e.g. 30 minutes) operational intervals.

More specifically, the contributions of this paper is as
follows. First, we develop a formal investment analytic
model for optimizing both operational and investment
controls to maximize/minimize the performance metrics
generated as a result of running the general investment
analytical model. This model is unique in its ability to
deal with a huge volume of operational variables by
breaking the investment periods into operational win-
dows that represent similar patterns of operation(e.g.,
weekend vs weekday pattern of operation). Second, we
develop an extensible repository of domain-specific op-
erational analytic models for system components which
initially include pumps, renewable energy sources, wa-
ter and energy storage and Reverse Osmosis (RO) plants.
Third, we developed a decision guidance system that
uses the model above based on Decision Guidance An-
alytics Language (DGAL) [21] and the system architec-
ture proposed in [22]. Finally, we test the feasibility of
applying this proposed system in solving realistic size

problems and we report our findings.
The paper is organized as follows. Section 2 uses an

example to illustrate how the model works to support op-
timal infrastructure investments. Section 3 overviews a
high-level architecture of the Investment Decision Guid-
ance system and methodology. Section 4 formalizes the
investment service network model. Section 5 discusses
the feasibility of the model through experimental study.
Finally, Section 6 presents the conclusion and provides
directions for future work.

2 Investment model by example

The Service Network Investment Model (SNIM) is a gen-
eral but precise model that guides the decision-maker
in making long-term investment decisions. The accu-
racy of the model relies on optimizing domain-specific
performance metrics (e.g., cost, CO2,..) produced by the
operation of interconnected and complex infrastructures
over the time horizon. By utilizing a library of extend-
able analytical models that represent mathematically
how these infrastructures produce their performance
matrices and constraints, the main model can solve a
variety of problems without it being modified.

To explain how the SNIM works, we first explain what
we mean by the Service Network and how it can create a
uniform and comprehensive input form, as in Figure 1,
to represent complex infrastructure configurations and
system flows over time. The SNIM output contains the
decision variables as will as aggregated performance
matrices (e.g.,cost, NPV,...) and constraints resulting
from running the model over every operational window
within each investment period in the time horizon. The
output the can be optimized to determine the optimal
operational controls and investment choices over the
investment periods.

The Service Network is a generic hierarchy of nested
services (such as the one in Figure 2), which express ser-
vices’ activities (e.g., pumping, storing , desalinating,...)
by capturing the inflows and outflows of these activities
over and across these services. The rectangles in Fig-
ure 2 show composite services (e.g., Water Desalination
System, Power Storage,...), while at the bottom of the
hierarchy reside the infrastructures that we refer to as
atomic services (e.g., batteries, grid,...). Also, each arrow
in the figure represents the flow of resources (e.g., water,
power,...) between the services. Whether these atomic
services are already owned or consider to be an invested
opportunity, each atomic service defines some fixed and
controlled parameter (e.g., number of pumps, pump ef-
ficiency,...) to be used by the analytical models of their
type (e.g., pump station analytical model) in the library.
Every atomic analytical model in the library represents
mathematically how this service operates and calculates
the performance matrices and constraints as a result it
been called by the investment analytical model. For ex-
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ample, the pump analytical model balances the right
amount of power needed to push x square feet of water
given some fixed and controlled parameters (e.g., pump
diminution, flow rate,...).

Now, the Service Network concept is used to create the
SNIM input model which contains the system hierarchy
including the services’ fixed and controlled parameters
and the configuration of the time horizon. By running
the SNIM, the model calculates and aggregates the flows
and the constraints bottom-up, according to the invest-
ment choices, for every operational interval over the
time horizon and updates the state of the atomic services
in each iteration. After the model generates all flows,
the model then uses the result to calculate and aggre-
gate bottom-up the performance metrics and constraints
according to the atomic model numerical formula. The
result then can be optimized by setting the objective
function to minimize/maximize the aggregated perfor-

mance metrics while satisfyingly the model-generated
constraints. For example, in Figure 2 the optimizing
problem is set to reduce the cost while satisfying fresh
water demand for every operational interval and ensure
not to exceed a certain level of carbon emission.

To overcome the limitation of handling massive deci-
sion variables of operational setting, the time horizon
is broken down into operation windows (e.g., week-
days, weekend,...) within each investment period (e.g.,
months, session,...). Assuming that the investment deci-
sions can be made at the beginning of each investment
period, each window ,as shown in Figure 3, represents
the operational intervals that specify how the infrastruc-
tures operates, while the cash-Flow sequence intervals
is used to represent the flow of cash over the horizon.
Assuming that the windows can have different lengths
and the decision variables of system setting (e.g., flows
and states) at the beginning and end of each window are
constrained, so that the sequence of the windows can
be ordered (with repetition) to represent the flow over
the period without it being intermittent. In this way, we
reduce a huge number of operational intervals to repre-
sentative windows to account for different operational
patterns.

In the next section, we introduce the architecture of
the decision guidance system within which the proposed
model operates.
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3 The Decision Guidance System
Architecture

Figure 4 shows the Decision Guidance System (DGS)
architecture within which our proposed model operates.
The middle tier of the architecture represents the deci-
sion guidance management system (DGMS), which was
proposed in [23] and developed in [22]. The main ideas
of the the middle tier are (1) to allow the user to perform
different analytical tasks (e.g., optimizing, predicting,
learning,...); (2) to manage the repository that includes
reusable, modular and composable models; and, (3) to
enable different external tools (bottom tier) to be used
without hard wiring the model to a specific tool using
the Decision Guidance Analytics Language (DGAL)[24].

The graphical user interface (GUI) at the top of the fig-
ure allows the user to construct the layout of the service
networks and to select the atomic models that represent
each atomic service from the library. The user can com-
bine predefined composite services and modify existing
models. After constructing the service networks, the
user can then set temporal and financial parameters and
leave the operational control and investment choices to
be determined by the optimization tool. After the in-
vestment model constructed the problem, DGAL sends
the constructed problem to the optimization tool and
retrieves the result in the same form of the input, but
with instantiated decision variables to its optimal values.

4 Formalization of Service Network
Investment Model

4.1 High-level Optimization Problem

To obtain the best long-term investment plan, the invest-
ment optimization problem is formed as a result of the
investment analytic performance model (AM), which
computes performance metrics, such as cost and carbon
emissions, as well as feasibility constraints, as a func-
tion of fixed and controlled operational and investment
parameters of the service network over the investment
time horizon. More formally, the analytic performance
model AM is a function:

AM : IN → OUT (1)

which forms a valid output instance out ∈ OUT of
performance metrics, such as cost or waste, from a valid
input in ∈ IN of fixed and controlled operational and
investment parameters. Therefore, the investment opti-
mization problem is:

min
in∈IN

obj(AM(in))

s.t. C(AM(in))
(2)

where

• Obj : OUT → R is an objective function, which
gives the real objective value in R given a valid
output instance of the AM.

• C : OUT → {T, F} is a constraint function C, which
gives True or False given a valid output instance of
the AM.

This representation expresses the objectives and con-
straints as a function of analytical model AM output,
which helps to formulate multiple investment optimiza-
tion problems using different infrastructure configura-
tions, objective functions and operation windows using
the same AM. The re-usability of the investment model
reduces the development life cycle, cost and allows the
developer to use a library of domain-specific models,
which reduce the dependence on subject matter experts
by mathematically representing the mechanism and con-
straints of different operation units and infrastructures.

In the following, we will use the following notation to
represent a set of key-value pairs:

m={key1:value1,key2:value2, ...,keyn:valuen}

where the keys are unique identifiers. Note that this set
represents a mapping

m : {key1, . . . , keyn} −→ ∪n
i=1Di

from the set {key1, . . . , keyn} of keys to union of the do-
mains ∪n

i=1Di, where Di is the domain of values associ-
ated with keyi, so that m(keyi) ∈ Di for all i = 1, . . . , n.
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We will use the notation keys(m) = {key1, . . . , keyn} to
denote the set of all keys associated with the set m of
key-value pairs. We will also use the list notation of
the form l = [a1, . . . , an], which will be interpreted as a
function l : {1, . . . , n} → D, where D is the domain of
values in the list; thus l(i) = ai is the i’s element of the
list.

Now using the above notations we can describe all of
the components above; starting with a valid service net-
work investment model output instance out in section
4.2, followed by the input instance in in section 4.3, and
finally, we describe the analytic model which is a func-
tion that computes an output instance from the input
instance.

4.2 Service Network Instance: The Model
Output

A valid SN output instance out is a set of key:value pairs
of following form:

{config :<set of configurations >,

rootServiceID :<root service ID >,

services :<set of services >}

Form 1: out

where config value (copied from the input) is a set
key:value pairs of the form:

{financial:{financialInterval:<value >,
intRate:<value >,...},

intervalsRatio:<value >,

horizon: [p1, p2, . . .]}

Form 2: config value

where intRate is the interest rate (e.g., 0.1%) per finan-
cialInterval (e.g., day); intervalsRatio (e.g., 24) represents
the number of operation intervals (e.g., of 1 hour each)
within the financial interval (e.g., 1 day). The underlying
assumption is that the time is split into operational inter-
vals per which operational controls (e.g., of equipment)
are actuated. The horizon describes the list [p1, p2, . . .] of
investment periods, each of the form:

{windows:{w1:{length:l1}, w2:{length:l2} ,...},
winSeq:<sequence of window IDs >}

Form 3: period value

where each period is represented by a set {w1, w2, . . . } of
windows (e.g., summer week) with varied lengths (e.g.,
24*7 hourly intervals). The window sequence winSeq is
the sequence of window IDs in the order in which these
windows occur within a given investment period in the
time horizon.

In Form 1, the rootServiceID represents the ID for the
root service (e.g., desalination system). The knowledge
about the service network structure and the parame-
ters of each service are found under services. The ser-
vices compose of a set of key:value pairs where each key

uniquely identifies a service, while value represents the
details of the corresponding service as described below.
In addition, each service in the services is either a com-
posite or an atomic service. The composite service, such
as powerService, contains at least one subservice, which
includes the IDs of these services under subService. So,
each composite service has the following form:

{type:"composite",
inFlow:{ f1 : [v1, v2, ..., vP], f2 : [v1, v2, ..., , vP], ...},
outFlow:{ f1 : [v1, v2, ..., vP], f2 : [v1, v2, ..., , vP] ,...},
metrics:{NPV:<value as in form 6>,

cashFlow:<value as in form 6>,

m1:<value as in form 6>,

m2:<value as in form 6>,...},
constraints:True or False ,

subServices:<set of service ids >}

Form 4: composite service

where each inFlow and outFlow contains a set of flow
{f1,f2,...} that represent the flow IDs going in and out
each service, respectively. The value of each flow is a list
of period flows[v1, ..., vp], each of the form:

{ w1:{qty: [q1,q2 ,...],total:<value >},
w2:{qty: [q1,q2 ,...],total:<value >} ,...}

Form 5: period flow value

where the qty is a list [q1, q2, ...] that shows the quantities
of operational flow at each window {w1, w2, . . . } of a
given investment period p, while the total shows the
total flow for the whole window within a given period.

In the same manner, the metrics value contains as set
of additive metrics {m1, m2, . . . }, such as operational
cost or emissions. Each metric value list the quantities of
a given metric for every investment period in the time
horizon. Therefore, each metric value is of the form:

{perPeriod:[v1,v2 ,...],total:<numerical value > }

Form 6: metric value

The metrics also contain a special key cashFlow and
other financial metrics which depend on the cashFlow,
such as NPV. In the cashFlow, the value is a list of pay-
ments of the form in 7. Thus, each payment pair has the
following form:

[{interval: i1,amount: m1},
{interval: i2,amount: m2} ,...]

Form 7: payment value

where each interval i refers to payment interval over the
entire time horizon appears at most once in the list. Note
that negative (positive) amount m means cash inflow
(outflow) occurred during the same time interval i. Neg-
ative interval means the number of intervals the amount
has flowed before the beginning of the first period. The
constraints value, in Form 4, indicates whether the com-
posite service satisfies its constraints.
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The atomic service has similar form, as in Form 4,
except that:

• There is no subServices key:value pair.

• The type refers to one of the atomic analytical model
in the library.

• Additional set of key:value pair:

numUnitInvested:[v1 ,...,vp],

avaliable:[v1 ,...,vp],

initAvaliable:<value >,

capacityPerUnit:<value >,

numUnitON:<value as in form 9>

Form 8: additional pairs

where each value in numUnitInvested and avali-
able indicate the number of invested and available
units of a given service, respectively, in each period
∈ {1 . . . P} in the time horizon. While the initAvali-
able value represent the number of unit available at
the beginning of the first period and the capacityPe-
rUnit value represent the capacity per unit. The
numUnitON represent the number of unit running
(ON) in each interval within each window within
each period in the time horizon. Thus, the value of
numUnitON has the following form:

{[w1:[v1 ,...,vP],w2:[v1 ,...,vP] ,...},
w1:[v1 ,...,vP],w2:[v1 ,...,vP] ,...} ,...]}

Form 9: numUnitOn value

• An optional set of key:value pairs:

{state:<value as in form 9>}

Form 10: state key:value pair

where each value vi, in Form 9, capture the state of
the service in each operational interval within the
periods’ windows.

In the next section, we describe a valid input model
needed to compute the output instance.

4.3 Service Network Instance: The Model
input

The model input (in) follow the same structure as in the
output, but with some modification:

• No metrics and constraints key:value pairs.

• Instead of having a list to describe the qty and total
for each flow in the composite service, we replace it
with a list of lower bounds (LB).

• For an atomic service:

– An optional set of key value pair:

typeSpecific:{<set of key:value pairs >}

Form 11: type specific key:value pair

where typeSpecific value represents, using a
key:value pairs , the parameters that are needed
by the atomic analytic model type to calculate
its metrics and constraints.

– Instead of having a list to depict the state, we
replace it with a single value that depicts the
state at the beginning of the first operational
window:

state:<initial value >

Form 12: initial state

– Additional set of key:value pair:

payments:{invPayments:<value >,
opPayments:<value >}

Form 13: payments

where the invPayments 〈value〉 represent a list
of investment payments associated with each
period, using the following form:

{1:{{due:<value >,amt:<value >},
{due:<value >,amt:<value >} ,...},

...,

P:{{due:<value >,amt:<value >},
{due:<value >,amt:<value >} ,...}}

Form 14: invPayment

where each due determine the intervals in rela-
tive to the beginning of period p in which the
amount amt must be paid, if the investment
accrue at period p. On the other hand, the op-
Payments represents a list of operational pay-
ments and their relative billing intervals. Thus,
the opPayments 〈value〉 is expressed using the
following form:

[op1:{billAt:<list of intervals >,

due:<value >},
op2:{billAt:<list of intervals >,

due:<value >} ,...]

Form 15: opPayments value

where the billAt value is a list of financial in-
tervals that represents the beginning of every
billing cycle and the due represent the number
of financial intervals before these bills become
due.

4.4 Analytic Model (AM)

Here we describe the investment analytic model (AM),
i.e., the function that computes a valid output (out)
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from a valid input (in). Notes that parts of out, in-
cluding config and rootServiceID are identical to those
in in. In the following we describe the computation
of all parts of out that are computed (and not identi-
cal to the input.) To compute out(services), let ID =
keys(in(services)) be the set of all services id’s. Also,
out(rootServiceID) = in(rootServiceID. The services part
of the output, out(services), is computed in two steps:

out(services) =⋃
id∈ID

mOut
(

periodsOut(in(services)(id))
)

where periodsOut is a recursive function that take a ser-
vice input form and return the same service after it com-
putes its inFlow, outFlow, constraints and updates the
state for every interval in the time horizon. Whereas the
mOut is a recursive function that takes a service, in the
form returned by periodsOut, and computes the metrics
for every period in the time horizon to construct the
out(services) form. We describe the computation of peri-
odsOut in Section 4.4.1 and mOut in Section 4.4.2 below.

4.4.1 periodOut

In this section, we show how periodsOut function cal-
culates the inFlow and outFlow quantities for each win-
dow’s interval over the investment periods as well as
some other constraints depend on the type of the service.
The composite service(cs): Let CS be a set of
all composite service IDs. Also, let the expres-
sion wLength(p, w) denotes to the length of win-
dow w at period p, which is the short form of
in(con f ig)(horizon)(p)(windows)(w)(length). The ex-
pression qtyIn(id, x, p, w, i) denotes to the quantity
of inFlow ID x of the service id at period p, win-
dow w and interval i, which is the short form of
out(services)(id)(inFlow)( fx)(p)(w)(qty)(i). In the same
way, we express the qtyOut(id, x, p, w, i).

Therefore, for every composite service cs ∈ CS, and
every flow i ∈ keys(in(services)(cs)(inFlow)) and j ∈
keys(in(services)(cs)(outFlow)) at period p ∈ {1, . . . , P},
window w ∈ keys(in(con f ig)(horizon)(p)(windows)) and
interval k ∈ {1, . . . , wLength(p, w)}, the inFlow quantity
(qty), as in Form 4, is expressed recursively as:

(3)

cs(inFlow)( f i)(p)(w)(qty)(k)

= ∑
sub∈cs(subService)

(
qtyIn(sub, i, p, w, k)

− qtyOut(sub, j, p, w, k)
)

Therefore, the (total) for every inFlow is expressed as:

cs(inFlow)( fi)(p)(w)(total)

=
wLength(p,w)

∑
k=1

services(cs)(inFlow)( fi)(p)(w)(qty)(k)

(4)

As with the inFlow above, the outFlow is expressed in
a similar way.

Also, for every composite service cs ∈ CS, the
(constraints) is expressed as a conjunction of constraints:
to insure that the demand is satisfy (demandConstraint);
to verify that the lower bound flows are met (boundCon-
straint) and to guarantee all sub services constraints
are satisfied (subServiceConstraints). To expression
each constraint, let the inKeys(id) and outKeys(id)
denote to the keys in keys(in(services)(id)(inFlow))
and keys(in(services)(id)(outFlow)), respectively.
Also, the seq(p, x) denotes to xth window at pe-
riod p according to the window sequence at
in(con f ig)(horizon)(p)winSeq(x).

Therefore, for every subservice sub ∈
in(services)(cs)(subService), and flow key in
i ∈

{
[outKeys(sub) ∪ inKeys(sub)] − [inKeys(cs) ∪

outKeys(cs)]
}

, in period p ∈ {1, . . . , P}, at window
w ∈ keys(in(con f ig)(horizon)(p)(windows)), and interval
k ∈ {1, . . . , wLength(p, w)}, the domandConstraint(cs) is
expressed as:

qtyIn(sub, i, p, w, k) ≥ qtyOut(sub, i, p, w, k)

The boundConstraint for every cs ∈ CS and flow
key i ∈ {inKeys(cs)}j ∈ outKeys(cs)} for every in-
terval k ∈ {1, . . . , wLength(p, w)} in window w ∈
keys(in(con f ig)(horizon)(p)(windows)) at period p ∈
{1, . . . , P} is expressed:

in(services)(cs)(inFlow)(i)(p)(w)(LB)(k)
≤ qtyIn(cs, i, p, w, k)

in(services)(cs)(outFlow)(j)(p)(w)(LB)(k)
≤ qtyOut(cs, j, p, w, k)

Similar to the lower bound (LB) constraint above, we
can add the upper bound (UB) constrains.

Finally, the subServiceConstraints is expressed for ev-
ery cs ∈ CS as follow:

∀sub ∈ in(services)(cs)(subService)
out(services)(sub)(constraints)

The atomic service (as): Let AS be a set of all
atomic services IDs. For every atomic service as ∈
AS, the state is expressed for every interval k ∈
{1, . . . , wLength(p, w)} within every window w ∈
keys

(
in(con f ig)(horizon)(p)(windows)

)
at period p ∈

{1, . . . , P}:

(5)
out(as)(state)(p)(w)(k)

=

{
in(as)(state) ,if k = 1
newState(as, out(as)(state)(p)(w)(k − 1)), else

where newState is a function that returns the new state
from a given previous state for a given atomic service.
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For every atomic service the quantity (qty) of every in-
Flow and outFlow is calculated by calling the analyti-
cal model of its type (see the appendix-Atomic Model
Library). Additionally, every atomic constraints is ex-
pressed as a conjunction of constraints to:

• set a lower(upper) bound for every flow, using
similar expression as in the composite service sec-
tion 4.4.1 .

• guaranty that the number of (ON) units for every
interval does not exceed the number of invested
units:

in(services)(as)(numUnitON)(p)(w)(k) 6
in(services)(as)(initAvaliable)
+ ∑

x ∈{1,...,p}
in(services)(as)(numUnitInvested)(x)

• guaranty that the flows quantities do not ex-
ceed the capacity of (ON) units for every as ∈
AS, i ∈ {outKeys(as), p ∈ {1, . . . , P}, w ∈
keys

(
in(con f ig)(horizon)(p)(windows)

)
, and k ∈

{1, . . . , wLength(p, w)}:

qtyOut(as, i, p, w, k)

≤
(

in(services)(as)(numUnitON)(p)(w)(k)

∗ in(services)(as)(capacityPerUnit)
)

• maintain the assumption that ensures uniform
flow quantities and atomic services’ states at the
beginning and at the end of each window, so that
the windows’ order within the same period and
between the periods do not cause the flows or
the states to be inconsistent. Therefore, for every
inFlow key i ∈ {keys(in(services)(as)(inFlow))} and
outFlow key j ∈ {keys(in(services)(as)(outFlow))}
and at each window w ∈
keys

(
in(con f ig)(horizon)(p)(windows)

)
at pe-

riod p ∈ {1, . . . , P}, The following assumption
must be fulfilled:

qtyIn(as, i, p, w, 1)
= qtyIn(as, i, p, wLength(p, w))

qtyOut(as, j, p, w, 1)
= qtyOut(as, j, p, w, wLength(p, w))

out(as)(state)(p)(w)(1)
= out(as)(state)(p)(w)(wLength(p, w))

• Any domain specific constraints (see the appendix-
Atomic Model Library)

4.4.2 metricOut (mOut)

In this section, we show how the metricOut (mOut)
calculates the metrics for all services given the result
of the periodOut function over all periods to form the
out(service), as in form 1.
The composite service: Let pOut(cs) be the short form
for periodsOut(in(services)(cs)) and windows(p) denote
to the windows ids for a given period p, which is the
short form for keys(in(config)(horizon)(p)(windows)).
Then, for every composite service cs ∈ CS and at every
period p ∈ {1, . . . , P}, every metric mi (such as cost and
CO2) is expressed recursively as:

out(services)(cs)(metrics)(mi)(perPeriod)(p)
= ∑

sub∈in(services)
(cs)(subServices)

mOut(pOut(sub)(perPeriod)(p))

while the total metric value at a given composite service
is expressed as:

out(services)(cs)(metrics)(mi)(total)
= ∑

p∈{1,...,P}
out(services)(cs)(metrics)(mi)(perPeriod)(p)

Note that the cashFlow value is a list, as in Form 7, that
needs to be aggregated by combining the amounts that
accrued within the same interval. The result is a list of
the same form.
Other financial metrics that depend on the cashFlow (e.g.,
NPV) use the result of the cashFlow and some financial
parameter located in in(con f ig) (e.g., intRate) to calculate
its value.
The atomic service (as): For atomic services, the metric
perPeriod is calculated by multiplying the metric value of
a given window’ intervals w with the number of times
the window is repeated in the given period:

out(services)(as)(metrics)(mi)(perPeriod)(p)

= ∑
w∈windows(p)

(
count(p, w)

∗ ∑
k∈{1,...,

wLength(p,w)}

mOut(services)(as)(mi)(p)(w)(k)
)

where count(p,w) is a function that counts the number of
windows of type w at period p, which can be found at
con f ig(horizon)(p)(winSeq).

The total metric value is calculated by aggregating the
value of a given metric over all periods as follow:

out(services)(as)(metrics)(mi)(total)
= ∑

p∈
{1...P}

out(services)(as)(metrics)(mi)(perPeriod)(p)

To calculate the cashFlow, we need to append all the
investment expenses as well as the operational expenses.
Therefore, we need to calculate the financial intervals
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and the amounts (e.g., the days in which the investment
amounts are due). Thus, for every p ∈ {1, . . . , P} and
payment i ∈ in(services)(as)(payments)(invPayments)(p)
, the intervals, as in Form 7, are calculated as follow:

in(services)(as)(payments)(invPayments)(p)(i)(due)

+
[

∑
i∈{1,...,p−1}

w∈windows(p)

wLength(p, w) ∗ count(p, w)
]

÷ in(con f ig)(intervalsRatio)

while the amounts associated with the above intervals
are multiplied by the number of units invested at period
p as follow:

in(services)(as)(payments)(invPayments)(p)(i)(amt)∗
in(services)(as)(numUnitInvested)(p)

On the other hand, the operational expenses use
billing periods (e.g., at the beginning of every month)
to calculate the expenses at that period (e.g., main-
tains expenses). Not that this expenses might be
variable or fixed depend on the type of operation
op and atomic service analytical model(AM). Thus,
for every period p ∈ {1, . . . , P}, payment op ∈
in(services)(as)(payments)(opPayments)(op), and billing
cycle start at b ∈ in(payments)(opPayments)(op)(billAt) ,
the interval for every cashFlow appended is as follow:

in(services)(as)(payments)(opPayments)(op)(b)
+ in(services)(as)(payments)(opPayments)(op)(due)

Whereas the amount associated with the above interval
are type specific and are calculated using the analytical
model for its specific service type in the library. (see
Section 4.4.3)

4.4.3 Atomic Model Library

Due to page limitation we select two atomic analytic
models (AMs) from the library, to describe how they
calculate the flows, constraints and the domain specific
metrics.

Energy Contract (ec)

The Energy Contract AM takes no inFlow, but gen-
erate power, in the outFlow, for every service it sup-
ports. The amount of power for every outFlow ser-
vice can be represented as a decision variables for ev-
ery windows’ interval over the investment periods
in the input. Therefore, for every outFlow key f j ∈
{keys(out(services)(ec)(outFlow))} and for every inter-
val k ∈ {1, . . . , wLength(p, w)} within every window
w ∈ keys

(
in(con f ig)(horizon)(p)(windows)

)
at period

p ∈ {1, . . . , P} the outFlow qty is expressed as:

ec(outFlow)( f j)(p)(w)(qty)(k)
= in(services)(ec)(typeSpeci f ic)( f j)(w)(qty)(k)

For every billing period (bp) (e.g., every month), de-
fined under the opPayments, the AM calculate the power
consumption rate (pcr) by tracking the inFlow of power
within the given billing period. Then, the average KWH
can be used to control the power inflow to minimize the
peak demand bound, which then reduces the fluctuation
of power and reduces the power cost, as follow:

avgKWH = pcr/bp
extraCost = (pdb− avgKWH)
∗ peakPricePerExtraKWH

totalCost = (pcr ∗ costKWH) + extraCost

The AM also calculate the actual emissions by multiply-
ing the emission factor by the actual consumption, as
follow:

emission = f actor ∗ pcr

The above cost is updated in the cashFlow using the struc-
ture in Form 7.
Some constraints are added to insure that pdb in the
problem is bounded ,as follow:

pdb ≥ avgKWH

Water Storage (ws)

The water storage AM use the quantities of water inFlow
and outFlow at every operational interval k and the state
of the water at the beginning of the time horizon to cal-
culate new state as in Equation 5. The newState function
can be expressed as follow:

out(ws)(state)(water)(p)(w)(k)
= out(ws)(state)(water)(p)(w)(k − 1)

+ out(ws)(inFlow)(water)(p)(w)(k)
− out(ws)(outFlow)(water)(p)(w)(k)

The AM also calculate a constraint that balance the level
of water over all interval:

out(ws)(state)(water)(p)(w)(k)
+ out(ws)(inFlow)(water)(p)(w)(k)
≥ out(ws)(outFlow)(water)(p)(w)(k)

Note that the ”state” of water and water inFlow and
outFlow have to be greater than zero.

5 Experimentation

In this section we evaluate the system capability in opti-
mizing the investment of real size problem. The experi-
mentation was performed on a batch-processing cluster
using a single core of AMD Opteron Processor 6276. We
used CPLEX 12 as an optimization tool.
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Figure 5: CPLEX solution progress

We created four different cases using the desalination
system architecture shown in Figure 2 to set up the op-
timal operational control and to determine the optimal
expansion in the number of infrastructures’ units to meet
the increasing demand rate of 1.8 over the years. The
problem is constrained by balancing the flows within
and across the desalination system components as well
as unique business constraints such as lowering the peak
power consumption each billing period to reduce the
billing cost of power.

In the first case, we run the model to optimize 10
years of operation over two investment periods. Each
period includes eight different windows of operations to
represent the change in the daily demand of fresh water
over the four seasons (spring, summer, fall, and winter).
The first feasible solution for this problem was found
after 7 minutes with gap of 78%, as shown in Figure 5
between the best known solution and the best possible
one. The problem then gradually converge to reach the
optimal solution after 43 minutes.

By increasing the time horizon to 14 years, the first fea-
sible solution was found after 24 minutes. Then slowly
converged to a gap of 71% after 3 hours. After that
the gap dropped with a distance around 1% from the
optimal solution. In the third case, we adjust the time
horizon to 20 years and found the first solution at 5 min-
utes with a gap of of 99.87%, then drop to reach the
optimal solution after 9 minutes.

In the last case, we increase the number of years to
30 and the number of investment period to 3 periods,
which increase the number of decision variables. The
first optimal solution was found after 18 minutes with
a gap of 99.97%, then the solution sharply drop to the
optimal solution at 29 minutes.

Our experiment represents an initial step to study
the visibility of applying the model in solving realistic
investment problems as most of the cases converge to
the optimal solution within a reasonable time.

Years Periods Binary
vari-
ables

Total
decision
variables

Total
constraints

10 2 347,5 176,83 277,652,47
14 2 347,5 176,83 336,098,18
20 2 347,5 176,83 416,481,96
30 3 521,2 265,24 469,585,22

Table 1: data set

6 Conclusion

This paper is an enhancement for a previously proposed
general investment model. We explained the moving
parts of the model using the desalination system exam-
ple, and we showed the architecture of our proposed
decision guidance system. The initial experimentation
showed encouraging results in employing the model to
solve real problems. Further work is needed to expand-
ing the repository. Moreover, we plan conduct a case
study to explore the capability of implementing a pre-
processing algorithm to decompose the problem resulted
form the analytical model into pre-solved operational
problems to reduce time complexity of the optimization
problem.
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