
Large Constraint Joins and Disjoint

Decompositions

Alexander Brodsky Victor E. Segal

Department of Information and Software Engineering

George Mason University, Fairfax, VA 22030

March 2001

Abstract

This paper is devoted to the problem of evaluation of a conjunction

of N disjunctions of linear constraints in Rd (constraint join), which

is a common constraint database operation. Existing methods are ex-

ponential in N . Here combinatorial geometry methods are applied to

establish conditions for a polynomial size of the join output. A poly-

nomial method to compute a join for an arbitrary input is then given.

As part of the solution, a new algorithm for convex decomposition

of an arbitrary non-convex polyhedron is developed. The H-tree is

proposed - a new data structure combining constraint storage and in-
dexing. H-tree and R-tree implementations of the algorithm are given,

and analytical considerations regarding the performance are provided.

1 Introduction

To implement a (sub-)query, it is often desirable to use an external eÆcient
algorithm that cannot be matched in terms of performance by the standard
evaluation algorithms present in the framework. Algorithms, therefore, play
an important role in any extensible database system, and, speci�cally, con-
straint algorithms are very important for constraint databases.

In this paper we consider the problem of evaluating a conjunction of N
disjunctive constraints R1 ^ : : : ^ RN , where each Rk is represented by a

1

disjunction of the form _i ^j Cij, and each Cij is a linear arithmetic con-
straint. Adhering to the constraint database terminology, we say that we
want to compute a constraint join of N constraint relations. The spatial
interpretation of the constraint join is the spatial intersection R1 \ : : :\RN .

We consider the case where the space dimension d is bounded, while the
number of relations N , and the number of tuples in each relation can grow.
Within the CQL framework of [KKR90] this problem is considered for the
case when the query size is �xed (i.e. when N is bounded), which guarantees
a polynomial CPU evaluation. A similar problem has been examined in
spatial databases, where it is referred to as the multiway spatial join. It is
interesting that, while the binary (i.e. N = 2) spatial join has been studied
considerably ([BKS93, Ore86, KS97, BJM93]), the multiway join received
much less attention. The work [MP99] considers processing the multiway
join by integration of pairwise join algorithms. The work [PM99] exploits
similarity between multiway joins and binary constraint satisfaction problems
(CSP-s). Both works assume that R-tree indices are available for the input
relations. Still, both methods assume thatN is small. The situation where N
can grow, however, typically arises in more complex applications ([BSCE97]).
Consider a situation when a large number of disjunctive constraint objects
are processed, and a resulting object is computed using the conjunction (and
possibly other operations) over the input objects. Here the overall constrain
expression representing the result (the constraint query) is proportional to
the number of input objects, and so is allowed to grow. Computing a negation
of a disjunction : _ ^C = ^ _ :C is another example that results in an
expression containing a conjunction of a large number of disjunctions. The
evaluation methods from the CQL framework, as well as the multiway join
methods do not guarantee polynomiality in the general case. All of the
existing methods compute the result as a union of the N -combinations of
tuples (i.e. one tuple from each relation) that have a non-empty conjunction.
However, in certain cases the number of all the non-empty N -combinations
is exponential in N , which would result in an exponential time evaluation.

The contributions of this paper are as follows. First, we apply methods
from combinatorial geometry to estimate the size of the constraint join out-
put. This is done in order to understand when the output is polynomial. We
examine speci�c sets of tuples from the input relations, which we term bun-
dles. A bundle is a set of mutually consistent tuples containing at least one
tuple from each and every relation. We show that the behavior of bundles
determines whether the size of the constraint join output is polynomial or

2

exponential. Speci�cally, we formulate a condition that states that, for any
bundle, there is a global bound on the number of relations supplying at least
two tuples into the bundle. We prove that this condition is not only necessary,
but also suÆcient for the polynomial size of the constraint join output (un-
der the assumption that space dimension is limited). Consequently, when the
existence of such a bound is known from the application, it follows that the
time to compute the join using the existing methods is polynomial. However,
testing for the boundness appears to be very expensive, and so, if the bound-
ness is not known from the application, the condition has little practical use
as stated. Therefore, we then derive a simpler suÆcient condition for a poly-
nomial number of the non-empty N -combinations, which can be tested in a
polynomial number of linear problems. Speci�cally, the condition requires
that every constraint relation in the input contain only pairwise disjoint tu-
ples. Next, we use this condition to develop a polynomial constraint join
algorithm that works on arbitrary input relations. To achieve that, we shift
our focus to a problem of decomposing an arbitrary relation into a spatially
equivalent one with pairwise disjoint tuples. While convex decompositions
in low dimensions have been studied in computational geometry ([CD85]),
our algorithm focuses on the general situation when the input is an arbitrary
disjunction, i.e. a non-convex, possibly unbounded polyhedron represented
by linear constraints in Rd. We also present a new data structure, which
we call the H-tree, which serves as the main processing mechanism of the
algorithm. An H-tree represents a hyperplane-driven space decomposition,
and, if coupled with an incremental linear constraint solver, acts like a spatial
index which facilitates spatial overlap queries. We give the core version of
the decomposition algorithm �rst, and then present its implementation that
utilizes the H-tree-based space indexing. While the experimental veri�cation
of the H-tree performance is beyond the scope of this work, we give analyti-
cal considerations regarding its behavior. In particular, we explain that the
H-tree is expected to perform well when the average number of hyperplanes
comprising each individual tuple is small, or when the degree of mutual over-
lap between the tuples is high. The H-tree is examined in the context of
in-memory processing, which is applicable in situations with a large number
of small disjunctions. When the relations do not �t into main memory, we
also present an implementation of the decomposition algorithm that utilizes
the R-tree indexing. Furthermore, we present a heuristic for optimization
of both the H-tree and R-tree based decomposition algorithms. Finally, we
outline ways to compute the constraint join itself when the input relations

3

are represented via H-trees or R-trees.

1.1 De�nitions

A constraint tuple of arity d is a �nite conjunction of linear arithmetic con-
straints T = C1 ^ : : : ^ CK over variables x1; : : : ; xd. The spatial interpre-
tation of a constraint tuple is a convex polyhedron in Rd (not necessarily
fully-dimensional).

A constraint relation of arity d is a �nite set R = (T1; : : : ; TK), where each
Ti is a constraint tuple of arity d. The logical formula that corresponds to a
constraint relation is a DNF formula T1_ : : :_TK . The spatial interpretation
of a constraint relation is a union of polyhedra T1 [: : : [TK.

1

In the sequel we use terms relation and tuple to denote a constraint
relation and tuple of �xed arity d over the variables x1; : : : ; xd.

Given input relations R1; : : : ; RN , a constraint join is a formula R1 ^
: : : ^ RN evaluated in the DNF form, i.e. in the form of a relation again.
The spatial interpretation of the constraint join is the spatial intersection
R1 \ : : : \RN .

Our goal is to compute the constraint join, i.e. to produce the output
constraint relation. Our manipulations with constraint entities will be driven
by the corresponding spatial transformations, which aim at computing the
spatial intersection of R1 \ : : : \ RN . We assume each relation is supplied
to us as a collection (disjunction) of tuples, and each tuple is a collection
(conjunction) of linear arithmetic inequalities. We assume that the input
tuples are closed, i.e. the inequality sign in each input constraint is non-
strict. We assume no equalities are present in the input (if there were, we
assume they have been replaced by the two opposite non-strict inequalities).
Unless speci�cally noted, we use the same symbols to denote both constraints
and the corresponding spatial objects, and we often use the ^ and _ symbols
to denote the spatial operations (\ and [), to emphasize that a constraint
representation is used. We occasionally use the words overlap and cross
synonymously with intersection, when it is more natural to say that way.

1Unless a misinterpretation arises, we use the same symbol to denote both the constraint
object and its corresponding spatial counterpart

4

1.2 Arrangements of Hyperplanes

Since our approach in drawing conclusions is based on examining arrange-
ments of hyperplanes that comprise the tuples of the input relations, we
brie
y introduce the basic notation, borrowing from [Ede87].

A hyperplane h is a set of dimension d�1 in Rd which can be represented
as a set of points x = (x1; : : : xd) satisfying h(x) = 0, where h(x) = a0+a1x1+
: : :+adxd. Each hyperplane h also de�nes two half-spaces, h

+ = fxjh(x) > 0g
and h� = fxjh(x) < 0g.

A �nite set H of hyperplanes in Rd de�nes a dissection of Rd into con-
nected pieces of various dimensions. We call this dissection the arrangement
of hyperplanes.

For each hyperplane hi 2 H and for each point p 2 Rd we can specify
the location of the point relative to hyperplane, namely li(p) = +1 if p 2 h+i ,
li(p) = �1 if p 2 h�i , and li(p) = 0 if p 2 hi. If li(p) = li(q) for all i we
call points p and q equivalent, and so the arrangement H de�nes classes of
equivalence which we call faces of the arrangement. A face is called a k-face
if its dimension is k. A 0-face is also called a vertex, a 1-face is called an
edge, and a d-face is called a cell. The bold lines in Figure 1 show a cell
bordered by 3 edges and 3 vertexes.

The key fact that will guarantee us polynomial evaluation comes from
the combinatorial geometry (for the proof we refer to [Ede87]):

Fact. The maximum number of all faces created by an arrangement H
of h hyperplanes in Rd is �(hd) 2 (the maximum is taken among all possible
arrangements).

A constraint de�nes a half-space, and so for each hyperplane there are
two constraints associated with it. Unless a misunderstanding arises, we
will also say that the input tuples are described using the hyperplanes. The
constraints for input relations are all in variables x1; : : : ; xd, and d is assumed
to be a constant.

We denote the number of tuples in each Ri be Ki, and K = maxKi. We
also denote Hi to be the number of hyperplanes used to describe tuples in
Ri. Note, each Ki can be any number in the range from 1 (all hyperplanes
describe just one tuple) to Hi (each tuple is a half-space). This is under the
assumption that the tuples in the input do not share hyperplanes, which is

2following the standard notation for computational bounds �(f(x)) denotes a function
g(x) such that there exist constants C1; C2 and x0 so that C1f(x) � g(x) � C2f(x) when
x � x0

5

+
 -

h
2

h
1

h
3

h
4

+
 -

+
 -

+ -

p
q

(- +
 +

 +
)

F
igu

re
1:

A
rran

gem
en
t
of

h
y
p
erp

lan
es

u
su
ally

th
e
case.

L
et
H

=
P

Ni=
1
H

i .
N
ote

th
at
N

<
H

u
n
d
er

th
e
n
on
-sh

arin
g

assu
m
p
tion

.
3

W
e
w
ill

also
n
eed

th
e
follow

in
g
ob
v
iou

s
fact:

O
b
se
r
v
a
tio

n
1
.
L
et
H

b
e
th
e
set

of
h
y
p
erp

lan
es

d
escrib

in
g
tu
p
les

in
all

relation
s.

T
h
en

R
1
^
:::^

R
N
can

b
e
d
escrib

ed
u
sin

g
th
e
h
y
p
erp

lan
es

from
H
.
In

oth
er

w
ord

s,
R
1
^
:::^

R
N
can

b
e
rep

resen
ted

as
a
u
n
ion

of
som

e
faces

from
th
e
arran

gem
en
t.

In
th
e
gen

eral
case

th
ose

faces
are

a
m
ix

of
faces

of
som

e
su
b
-d
im

en
sion

k
�
d
,
sin

ce
th
e
sp
atial

ob
ject

R
1
^
:::^

R
N
(or

som
e

of
its

p
arts)

is
n
ot

n
ecessarily

fu
lly
-d
im

en
sion

al.

3U
n
d
er

th
e
a
ssu

m
p
tio

n
th
a
t
th
e
tu
p
les

sh
a
re

h
y
p
erp

la
n
es,

K
i
ra
n
g
e
fro

m
1
to
�(H

di
),

a
n
d
N

ca
n
g
o
u
p
to
�(H

d)
in

d
eg
en

era
te

ca
ses

6

2 Towards Polynomial Evaluation

2.1 Bounds on Output Size

In this section we consider R = (R1; : : : ; RN) to be a dynamic collection of
constraint relations, i.e. where N is allowed to grow. We denote by I an
instance of R, and so I determines some �xed values of N and K, where K
is the maximum relation size (among all the relations in I). We will use [
as a set operation, not as spatial intersection in this section; for example,
[Ni=1Ri denotes the set of all the constraint tuples from R.

De�nition. Given an instance I, an N-combination of constraint tuples
over I is a N -tuple (t1; : : : ; tN), where ti 2 Ri for each i = 1; : : : ; N .

If no misinterpretation arises, we will also use the term N -combination
to denote the conjunction t1^ : : :^ tN . We call an N -combination non-empty
if the conjunction is satis�able (i.e. the corresponding spatial intersection is
not empty).

The existing evaluation methods ([KKR90, PM99, MP99]) do not guar-
antee polynomiality in the general case. Those methods compute the result
as a union of all the non-empty N -combinations.

However, situations are possible when the number of all the non-empty
N -combinations is exponential in N . Indeed, consider a set of tuples from
[Ni=1Ri such that (1) it contains at least two tuples from each and every
relation, and (2) the tuples have a non-empty intersection (see Figure 2). In
this case the number of the non-empty N -combinations that can be produced
by that set alone is at least 2N .

An interesting question is what other situations contribute to an expo-
nential number of the non-empty N -combinations. In this section we show
that situations similar to the one depicted in Figure 2 are the only ones that
give rise to exponentiality in the number of the non-empty N -combinations.
We next formally de�ne what we mean by such situations.

De�nition. For a given instance I, we call a set of tuples B � [Ni=1Ri a
bundle over I if (1) it contains at least one tuple from each and every relation
from R, and (2) the tuples in B have a non-empty intersection.

For a given bundle B, we will denote by XB the number of relations that
supply at least two tuples into B. Let output(B) denote the set of all the
non-empty N -combinations produced by B. Obviuosly,

2XB � joutput(B)j � KXB (1)

7

R1

[

[

[

R2

...
RN

Figure 2: Exponential Number of N -Combinations

For a given I, let B(I) be the set of all bundles over I. Let

XI = maxB2B(I)XB

We are now ready to formulate the main result of this section.
Theorem 1. Let I be an instance of R, and let output(I) denote the set

of all the non-empty N -combinations produced by I. Then

2XI � joutput(I)j � �(Hd)KXI (2)

Proof.

The lower bound is obvious. Indeed, 9B0 2 B(I) such that XI = XB0

(B0 is the bundle on which the maximum is achieved). Then joutput(I)j �
joutput(B0)j � 2XB0 = 2XI .

The upper bound is the essential point here. First, we will establish
the bound on the number of elements of any set of mutually consistent N -
combinations. Let c1; : : : ; cY be any set of mutually consistent (and, there-
fore, non-empty) N -combinations, i.e. c1 ^ : : : ^ cY 6= ;. Let B = [Yi=1ci

8

be the set of all tuples from them. Note that (1) B contains at least one
tuple from each and every relation, and (2) the tuples from B have a non-
empty intersection. It means that B is a bundle, and now (1) implies that
Y � KXB � KXI .

Now, according to Observation 1, any N -combination can be described
as a union of some faces from the arrangement H of hyperplanes from I.
Intuitively, if all non-empty N -combinations were pairwise disjoint, their
number would be bounded by the number of all the faces �(Hd). It is when
the N -combinations start to overlap that their number can grow out of the
polynomial bounds; to deal with it we will use our bound on the number of
overlapping N -combinations. Formally, for each face f 2 F from the set of
all faces F of the arrangement, let Cf be the set of those N -combinations
that contain f . Clearly, output(I) = [f2FCf . Then

joutput(I)j �
X

f2F

jCf j �
X

f2F

KXI � �(Hd)KXI

Q.E.D.
Corollary 1. A constraint join over R has a polynomial output size if

and only if XI is globally bounded across all instances I of R.
The corollary follows directly from (2). Note that by the unboundness

we mean that XI grows at least linearly with N here.

2.2 Polynomial Output Size with Arbitrary Relations

Corollary 1 states that the behavior of bundles determines whether the
size of the constraint join is polynomial or exponential. It guarantees poly-
nomiality when the boundness of XI is known from the application. 4 How-
ever, testing for the boundness at each instance (such when the boundness
is suspected, and some global constant was chosen for testing) appears to
be expensive, and so if the boundness is not known from the application,
Corollary 1 has little practical use as stated. In this subsection we derive
a simpler suÆcient condition for a polynomial size of the output.

Corollary 2. If the tuples in each Ri are pairwise disjoint, then the size
of the constraint join output is polynomial.

4note that, since the bounds are themselves exponential in XI , if XI � C then the real
savings in output size should be expected for N >> C

9

T1

T2

Figure 3: a DPR for two tuples

Proof. Pairwise disjointness implies that XI = 0 for all I, since no
disjoint relation can supply more than one tuple into a bundle. Q.E.D.

Note that for each instance, disjointness can be tested in a polynomial
number of linear problems. However, we pursue a di�erent direction here.
Speci�cally, we would like to use Corollary 2 to develop a polynomial con-
straint join algorithm which works on arbitrary input relations, i.e. even
when XI is unbounded and the number of the non-empty N -combinations is
exponential.

To achieve that, note that we can reduce the general situation to the
disjoint case by decomposing each relation R into another relation R0, such
that R = R0 (spatial equivalence), and R0 contains pairwise disjoint tuples.
We say that R0 represents a disjoint polyhedral representation (DPR) of R.
For example, Figure 3 shows a DPR for two tuples T1 and T2, which consists
of the faces of the arrangement that are within T1 [T2.

10

3 Decomposing Relation Into Disjoint Poly-

hedra

In this section we present a practical DPR algorithm for a decomposition of
an arbitrary relation into a spatially equal one containing pairwise disjoint
tuples.

For low dimensions, minimal convex decompositions of bounded non-
convex polygons were studied in [CD85]. In contrast, the algorithm that
we present below (1) focuses on the situation when the input is an arbitrary
disjunction, i.e. a multidimensional, non-convex, and possibly unbounded
polyhedron represented by linear constraints, and (2) is simpler to implement,
compared to the elaborate methods of [CD85]. 5

3.1 Algorithm Description

Let R be a relation (disjunction) of tuples T1; : : : ; Tk none of which stands
alone (i.e. if we construct a graph whose nodes represent the tuples, and
edges represent the overlap, then the graph will be connected).

Figure 3 suggests that we can compute a disjoint partition of R as a
union of the faces from the arrangement that are inside R. Since the number
of all faces is polynomial, it is possible to do it in polynomial time. The
most straightforward way is the naive enumeration, where we iterate over all
faces, and then check each face against the relation. 6 However, representing
the output as a union of faces is not compact, since some faces can usually
be combined into bigger convex polyhedra. Also, examining each and every
face of the arrangement is not a good way either, since the actual number of
faces that comprise the relation is typically much smaller. In contrast, the
algorithm that we give below makes a start from the tuples themselves, and
attempts to produce bigger polyhedra in the result.

From now on, given a hyperplane h, we will denote by h+ the half-space
corresponding to the � inequality sign, and by h� the half-space correspond-
ing to the > inequality sign. Note that while the + halfspace is closed, the
� one must be open to ensure a disjoint split.

The algorithm works incrementally, processing tuples one by one. After

5our algorithm does not produce the minimal number of convex pieces
6provided we can iterate over all faces in polynomial time. The H-tree, presented in

the following section, can be used directly to achieve that

11

Ti+1

Dj+1

Dj

Ui

h1
h2

h3

Figure 4: Processing of new tuple

the i-th tuple is processed the algorithm produces a DPR of Ui = T1[: : :[Ti.
Consequently, when the last tuple is processed, the resulting DPR of R is
obtained, R = Uk.

At step i + 1, having a DPR of Ui, the algorithm obtains a DPR of
Ui+1 = Ui [Ti+1 in the form of Ui [(Ti+1 n Ui). To do that, the algorithm
leaves Ui as is while producing a DPR of Ti+1 n Ui. Note that Ti+1 n Ui is
typically non-convex. Figure 4 shows the current set Ui (the dashed region),
and the new tuple Ti+1 (the solid bold lines). Note that, in contrast to what
is shown in the �gure, Ti+1 may not intersect Ui, or Ui may be composed
of more than one piece (depending on the order in which the tuples are
processed). Our subsequent statements hold true for the both cases (see also
section 4).

In turn, to produce a DPR of Ti+1 nUi, we keep track of the complement
of Ui, i.e. U

c
i = Rd n Ui. We keep it represented as a union of (convex) poly-

12

hedra D = [Dj (U
c
i itself is typically non-convex). We call them dormant

regions, because at this point they are outside the current set Ui, but can
be 'awakened' if Ti+1 intersects them. In Figure 4, Dj (densely dotted) and
Dj+1 (sparsely dotted) are some of the dormant regions.

Then a DPR of Ti+1 nUi can be computed as all non-empty intersections
of the form Dj \ Ti+1, for all j. We also need to update the set of dormant
regions D with respect to Ti+1. Let D1; : : : ; Da be the dormant regions
that intersect Ti+1. Then D1; : : : ; Da must be deleted from D since they
are not within U c

i+1 (they were awakened). At the same time, new dormant
regions appear. Let h1; : : : ; hm; : : : ; hq be the hyperplanes that comprise
Ti+1. To simplify the exposition, we assume that h+m always corresponds to
the half-space looking inward the tuple, and h�m always corresponds to the
halfspace looking outward the tuple. (i.e. the inequality signs in the input
tuples are �; if not, we can multiply by �1). To compute the new dormant

regions, we construct q areas T
(s)
i+1 = (^s�1m=1h

+
m) ^ h�s , s = 1; : : : ; q, which

we call slices. Note that Figure 4 shows the hyperplanes traversed in the
clockwise direction (in 2D), but the conclusions remain the same for any order
of hyperplane traversal in Rd. The new dormant regions are then computed
as all non-empty intersections of the form T

(s)
i+1 \Dj, for all s = 1; : : : ; q and

j = 1; : : : ; a. The core algorithm is listed in Figure 5, where U stands for
the current set Ui at each iteration.

CORE-DPR is likely to perform signi�cantly better than the naive enumer-
ation for the following reasons. The naive enumeration piles up the hyper-
planes from all tuples of the relation into the arrangement, and then checks
each face against the relation. CORE-DPR, on the other hand, examines each
tuple individually. The current tuple Ti+1 is interposed with the existing set
Ui = T1 [: : : [Ti, and the portion of the tuple Ti+1 \ Ui gets "swallowed"
by Ui, and so the hyperplanes that comprise that part of the tuple (and only
that part) do not contribute to the arrangement. Moreover, when the rest of
hyperplanes of Ti+1 is then examined, CORE-DPR does not produce all faces
created by them; rather, the slices are constructed. Each slice is typically a
union of some faces, and so the number of slices is much smaller than the
number of faces.

3.2 Using H-tree for Decomposition Algorithm

We next introduce the H-tree, which we use as the main data structure to
implement the algorithm. The purpose of the H-tree is twofold. Note that in

13

CORE-DPR(Relation: R)

1. foreach tuple T 2 R do

2. foreach D 2 D do

3. if D \ T then

4. U .Add (D ^ T)
5. D.Delete (D)
6. foreach s = 1 to q do

7. T (s) = (^s�1m=1h
+
m) ^ h

�
s

8. if T (s) \D then

9. D.Add (T (s) ^D)
10. end if

11. end do

12. end if

13. end do

14.end do

Figure 5: Procedure CORE-DPR

CORE-DPR, Ui gets augmented with all intersections of the form D^T , for all
D (line 4). If conjunctive constraints are implemented simply as collections
of linear constraints, each of the resulting conjunctions D ^ T will contain
identical subsets of constraints from D. The same happens with the new
dormant regions D ^ T (s) (line 9), and each slice T (s) also contains the same
constraints as T (s�1), plus one more (line 7). As the number of iterations in-
creases, same constraints become stored multiple times (removing redundant
constraints at each step somewhat improves on that; see the R-tree imple-
mentation in section 3.5). Consequently, the �rst purpose of the H-tree is to
provide a compact constraint storage structure by signi�cantly reducing the
number of constraints that are stored more than once. 7 The second purpose
of the H-tree is to provide space indexing capabilities which facilitate spatial
overlap queries (see section 3.4).

We explain the structure of the H-tree below. An H-tree is a binary
tree and its nodes represent polyhedra. A node of the H-tree has either no

7but not completely eliminating them; the H-tree, as presented below, does not present
the optimal storage solution, but improves signi�cantly compared to the collection-based
implementation

14

children, or both left and right sons. If a node does have children, they
represent a split of the node (polyhedron) performed by a hyperplane h. The
two children are marked with the hyperplane that performed the split, plus
the sign '+' or '-', to distinguish between the two children polyhedra. The
'+' and '-' signs correspond to the two half-spaces de�nes by the hyperplane.
When it is clear from the context, we will also use h+ to denote the node
of the tree corresponding to the the +-side split of the parent node, or,
interchangeably, the constraint corresponding to the + halfspace, or, �nally,
the polyhedron corresponding to that node. When it is necessary to avoid a
misunderstanding, we will use C(h+) or P (h+) to clarify that the constraint
or polyhedron is meant, respectively. The actual constraints describing the
polyhedron corresponding to a node are collected by going up the tree from
this node towards the root, and collecting all the constraints, i.e. pairs
(hyperplane,sign), along the way. The root of the tree represents the entire
space Rd.

Both the polyhedra that constitute Ui and the dormant polyhedra are
kept as leaves of the H-tree. We mark each leaf of the H-tree either as
dormant, �nished, or active. A dormant node represents a dormant region
which is part of U c

i . A �nished node represents a polyhedron that is a part
of Ui. The use of an active node will be explained in a moment.

Procedure CORE-DPR now translates to the following. For an incoming
tuple, Ti+1, we �rst check Ti+1 on intersection with all dormant leaves. We
awaken those dormant leaves that intersect Ti+1, thus marking them active.
Next, we compute the actual intersections of Ti+1 with all the active nodes.
Those intersections will become the newly added �nished nodes. To do that,
we traverse the hyperplanes of Ti+1. For each hyperplane hm we check if it
crosses any of the active nodes. If it crosses an active node (a polyhedron)
, we span two new nodes corresponding to the split performed by hm. The
child node that corresponds to the side of hm (i.e halfspace) that looks
inward Ti+1 is marked as active, while the child node that corresponds to the
side that looks outward of Ti+1 is marked as dormant. So h+m becomes active,
while h�m becomes dormant. We proceed in this manner until all hyperplanes
of Ti+1 are exhausted. In the next section we formally prove that at this point
all active leaves represent a DPR of Ti+1nUi. We then mark the active leaves
as �nished, thus making them part of Ui, and then proceed on to the next
tuple. Finally, when all tuples are exhausted, all �nished leaves represent the
�nal set Uk, which is the resulting DPR of the original relation.

The tree building process for 3 simple tuples is illustrated in Figure 6.

15

T1

h1
h2

- + + -

h1 h2

h4

+ _
- ++ -

- +

h3h5

h6

T2T3

h1
- h1

+

h2
+

h2
-h2

-

h1
- h1

+

h2
+

h3
- h3

+

h4
+

h4
-

h2
-

h1
+

h2
+

h3
- h3

+

h4
+

h4
-

h5
- h5

+

h6
+

h6
-

h1
-

- active

- dormant

- awakened

- finished

T1 T1 v T2 T1 v T2 v T3

T1
+ -

- +

Figure 6: Example of building H-tree

The �rst tree corresponds to the state when the �rst tuple has been processed.
There are total of 3 regions at this moment: two dormant (h+1 and h�1 ^ h

�

2)
and one �nished (h�1 ^ h+2) (remember that the � conjuncts correspond to
the open boundaries). Consequently, the tree contains the corresponding 3
leaves. Note that the �nished leaf represents the tuple itself. The second tree
represents T1[T2, and the last tree represents the �nal DPR of T1[T2[T3 (the
bold lines border the dashed areas that correspond to the �nished regions).

The pseudo-code of the algorithm is shown in Figure 7. Note that the
intersection predicate in lines 4 and 10 tests if the two polyhedra intersect
(note, in the second loop this procedure accepts a hyperplane as one of the
input polyhedra). The intersection procedure requires the actual constraints
for the input leaf, which are collected by going up the tree from this leaf
towards the root and collecting all constraints along the way.

Note that, when we collect the constraints for the given leaf, we will

16

H-DPR(Relation: R)

1. H-Tree = root node
2. foreach tuple T 2 R do // awaken dormant leaves
3. foreach dormant leaf D do

4. if D \ T then

5. mark D as active
6. end if

7. end do

8. foreach hyperplane h 2 T do // traverse hp-s
9. foreach active leaf L do

10. if h \ L then

11. span h+ (active) and h� (dormant) from L

12. end if

13. and do

14. end do

15. foreach active leaf L do //mark active leaves �nished
16. mark L as �nished
17. end do

18.end do

Figure 7: Procedure H-DPR

17

typically have some redundant constraints. For example, in Figure 6 the
node h�4 will be represented by the following conjunction of constraints: h�4 ^
h�3 ^ h�2 ^ h�1 , out of which the last conjunct is redundant. Another typical
situation that guarantees to produce a redundant constraint is when the tuple
has parallel hyperplanes.

If during the processing of the current tuple there is an awakened leaf
that does not get crossed by any hyperplane from the tuple, that means that
the leaf lies entirely inside the tuple. Consequently, it gets marked as �nished
at the end of tuple processing.

We do not give any more implementation details here, since an improved
version of this procedure immediately follows after we prove the correctness.

3.3 Correctness of the Decomposition Algorithm

We next prove that the procedure H-DPR indeed produces a DPR of the input
relation R.

The following lemma is obvious, and we will need it later:
Lemma 2. Given two overlapping polyhedra P and Q, let q1; :::; qk be

constraints of Q corresponding to those hyperplanes of Q that cross P . Then,
P ^Q = P ^ q1 ^ ::: ^ qk (spatial equality)

Theorem 2. The algorithm H-DPR is correct, i.e. after the last tuple
has been processed, the �nished leaves of the H-tree represent a DPR of
T1 [::: [Tk.

Proof.

To prove the theorem, we will validate the following (even more general)
proposition:

Proposition. After tuple Ti has been processed,

1. the �nished leaves of the tree form a DPR of Ui = T1 [::: [Ti, and

2. the dormant leaves form a DPR of Rd n Ui.

We will validate the proposition by induction on the number of tuples.
Base. There are no tuples. Then there are no �nished leaves, but there

is just the root of the tree which is one and only dormant leaf representing
Rd.

Induction step. We assume the �nished leaves represent a DPR of Ui, and
the dormant leaves represent a DPR of RdnUi. To validate the induction step
we need to show that when we add tuple Ti+1, in the end of its processing

18

I1: all the �nished leaves will represent a DPR of Ui+1

I2: all the dormant leaves will represent a DPR of Rd n Ui+1.

In turn, to show that I1 holds, we will prove the following statement:
Statement A. The newly added �nished leaves, i.e the �nished leaves

that are added to the tree after Ti+1 has been processed, will form a DPR of
Ti+1 n Ui.

Indeed, if we show that A holds, I1 will follow immediately from the
following fact:

Ui+1 = Ui [(Ti+1 n Ui)

. We will also get the proof of I2 while we will be validating A.
Let D1; : : : ; Dj; : : : be the dormant nodes of the current tree. We will

need the following statement:
Statement B. If Dj is a dormant node that was awakened by Ti+1, then:

B1: the �nished leaf of the subtree that grows out of Dj (as the result of
processing of the current tuple Ti+1) represents Ti+1 \Dj (note there
is only one �nished leaf in this subtree)

B2: the dormant nodes of that subtree represent a DPR of Dj n Ti+1.

Then if B holds, B1 will imply that all the newly added �nished leaves
for the current tuple will represent [j(Ti+1 \Dj). Recall now that according
to the induction hypothesis all Dj-s form a DPR of Rd n Ui. Then

Ti+1 n Ui = (Rd n Ui) \ Ti+1 = ([jDj) \ Ti+1 = [j(Ti+1 \Dj)

which proves A. Also, since by the induction hypothesis the existing
dormant leaves represent Rd n Ui, B2 will immediately imply I2.

So, all is left is to prove B1 and B2. For that, lets focus our attention
on one awakened dormant leaf Dj. Let h1; : : : ; hq be the hyperplanes that
participate in building the subtree growing from Dj as we process Ti+1 (see
Figure 4) When we get h1, it splits Dj into two pieces, which amounts to
spanning two child nodes from Dj. Then leaf h�1 becomes dormant, while
leaf h+1 remains active. Note that the two leaves are disjoint due to the way
we assign inequality signs. Clearly, the active leaf h+1 represents the polyhe-
dra P (h+1) = Dj ^C(h

+
1), and the dormant leaf h�1 represents the polyhedra

19

P (h�1) = D ^ C(h�1). We then proceed in the same manner taking leaf h+1
as the new root until the tree stops growing, i.e. all h1; : : : hq have been pro-
cessed. Figure 4 shows the hyperplanes traversed in the clockwise direction
(in 2D), but the conclusions remain the same for any order of hyperplane
traversal in Rd. At this moment the last active leaf(which becomes the
�nished leaf) represent P (h+q) = Dj ^ \jC(h

+
j). It follows from Lemma 2

that P (h+q) = Ti+1 ^Dj, which completes the proof of B1. Also all the new
dormant leaves correspond to the disjuncts in the following expression:

(Dj^C(h
�

1))_(Dj^C(h
+
1)^C(h

�

2))_: : :_(Dj^C(h
+
1)^: : :^C(h

+
q�1)^C(h

�

q))

. Note now that the disjuncts of the last expression are (1) disjoint (since
the + signs are not strict, while the � ones are) (2) convex (3) outside of
P (h+q) = Ti+1^Dj (4) inside Dj, since Dj is the root of the subtree. It means
that this expression represents a DPR of Dj nTi+1, which completes the proof
of B2. Note that the formal proof of both B1 and B2 is again by (nested)
induction on q, but we omit the formal induction steps here. Q.E.D.

3.4 Using H-Tree Indexing

An H-tree presents a hyperplane-driven space decomposition of Rd. Conse-
quently, it can serve as an index facilitating retrieval of polyhedral regions
which overlap a given one. The corresponding procedure H-SEARCH is given
in Figure 8. For each node it checks if it overlaps with the input polyhedra.
If the answer is positive, H-SEARCH calls itself recursively for both the '+'
and '-' sons. When a leaf is encountered, it is output into the result.

A very important feature of the procedure is its use of an incremental
constraint solver ([MS98]). An incremental solver is able to determine the
satisfaction of a set of constraints incrementally, as the constraints are fed to
it one by one. It does so by maintaining an implicit constraint store where
the current constraints are stored in some partially solved form. Incremental
constraint solvers have been studied in the CLP framework ([MS98]), as they
are essential for CLP top-down evaluation.

To illustrate the bene�ts of using an incremental solver, consider the �nal
H-tree depicted in Figure 6, and suppose the �nished node h+4 is the only
node that overlaps the input. If we used a regular simplex solver, we would
solve 9 linear problems before getting to the node. Each problem would
involve the same set of constraints as the previous one, plus one more, thus

20

introducing a redundancy. In this case a simple linear scan of the leaf nodes
would be even superior to the tree search.

An incremental real arithmetic solver is described in [MS98], and can be
used here. In our procedure the variable ISolv represents the solver. Note
also that, just like in CLP, when processing of the subtree corresponding to
a son of the current node is done, the solver must be restored to its previous
state before processing of the other son begins. Consequently, we assume the
following methods are available from the solver: Save Store remembers the
current store state by putting a checkmark, and Restore Store restores the
store to the state before the checkmark. The methods usually take use of a
stack, and their eÆcient implementation is also studied in the CLP context
([MS98]).

Note also that the implementation shown in Figure 8 uses the variable
Result (of type DC LIN) to hold the result of the search. In practice, a pipe-
line solution should be used instead. A pipe-line solution can be viewed as a
CCUBE monoid, and should be implemented as a co-procedure which uses
a stack to emulate recursion.

H-SEARCH (Ht,CLIN) procedure can now be used to facilitate H-DPR. We
replace the �rst loop with procedure H-ACTIVATE (Ht,CLIN), the second
loop with H-SEARCH-ACTIVE (Ht,hp), and the third loop with H-DEACTIVATE
(Ht). H-ACTIVATE (Ht,CLIN) marks the leaves that intersect the input area
as active, H-SEARCH-ACTIVE (Ht,hp) performs search of the active nodes
that cross the input hyperplane and outputs them in a pipe-lined mode, and
H-DEACTIVATE (Ht) marks the active nodes as �nished. All three procedures
perform searches of the tree, and so they are accordingly modi�ed versions of
H-SEARCH (Ht,CLIN). Speci�cally, H-ACTIVATE has the following modi�ca-
tions: (1) it ignores the �nished leaves (2) it marks the leaves that intersect
CLIN as active, and doesn't produce any output. (3) it specially
ags all
those non-leaf nodes that belong to the paths that terminate at active nodes.
The latter
agging is done so that H-SEARCH-ACTIVE (Ht,hp) would later
search only along such paths, thus avoiding unnecessary traversals of the
whole tree. To implement the
agging, the recursive part of H-ACTIVATE can
be made to return TRUE if the current node belongs to such a path, i.e.
if at least one of its recursive calls for the sub-trees returns TRUE. Conse-
quently, H-SEARCH-ACTIVE (Ht,hp) has the following modi�cation: it only
searches along the
agged nodes. Finally, H-DEACTIVATE (Ht) traverses the
tree along the
agged nodes, un-
ags them, and marks the leaves as �nished.

The �nal procedure is called H-DPR+, and its pseudo-code is in Figure 9.

21

H-SEARCH (Htree: Ht, C LIN: area)

1. ISolve.Initialize-Store
2. ISolve.Add (area)
3. H-SEARCH-RECURSIVE(Ht.Root)
4. return Result

H-SEARCH-RECURSIVE (HtreeNode: Node)

1. ISolve.Add (Node.constraint)
2. if not ISolve.Sat then return

3. else
4. if Node.isLeaf then
5. Result.Insert (Node)
6. return

7. else

8. ISolve.Save-Store //right son
9. H-SEARCH-RECURSIVE (Node.Right)
10. ISolve.Restore-Store
11. ISolve.Save-Store //left son
12. H-SEARCH-RECURSIVE (Node.Left)
13. ISolve.Restore-Store
14. end if

15.end if

Figure 8: Procedure H-SEARCH

22

H-DPR+ (Relation: R)

1. H-Tree = root node
2. foreach tuple T 2 R do

3. H-ACTIVATE (Htree, T) // awaken dormant leaves
4. foreach hyperplane h 2 T do // traverse hp-s
5. foreach active leaf L from H-SEARCH-ACTIVE(Htree, h) do
6. span h+ (active) and h� (dormant) from L

7. end do

8. end do

9. H-DEACTIVATE (Htree) // mark active leaves �nished
10.end do

Figure 9: Procedure H-DPR+

While an experimental evaluation of H-DPR+'s performance is beyond the
scope of this work, we give some analytical considerations regarding its per-
formance here. Note that during processing of the current tuple Ti+1 the H-
tree grows as follows: each active leaf becomes the root for a linear subtree,
and the number of nodes in the subtree is equal to the number of hyperplanes
of Ti+1 that intersect that active leaf. Consequently, if the average number
of hyperplanes comprising each individual tuple of R is relatively small, it
will result in a smaller H-tree, smaller number of the �nished leaves, and
therefore, faster H-tree searches.

Also, we say that the degree of mutual overlap between T1; : : : ; Tk is high
if, intuitively, the tuples are crowded all over each other (we do not de�ne
it formally here; one possible de�nition is the ratio of the volume of \Ti to
the volume of [Ti). In this case, a large portion of Ti+1 gets "swallowed"
by Ui. Consequently, less hyperplanes of Ti+1 will participate in further tree
expansion (and further space decomposition), and so searches over the H-tree
will be faster as well.

3.5 Using R-tree Indexing

In the previous section we explained that the H-tree is expected to perform
better when the average number of hyperplanes comprising each individual
tuple is small, and/or when the degree of mutual overlap between the tuples

23

is high. When none of these holds, employing R-tree indexing could be a
more eÆcient solution. Besides, the H-tree has been examined in the context
of in- memory processing only, such as when we have a large number of small
disjunctions. The R-tree, on the other hand, provides good I/O performance,
which is something the H-tree is not yet capable of doing due to the open
questions of how to pack its nodes and keep it balanced.

Consequently, we next give an implementation of the core decomposition
algorithm utilizing R-trees. Procedure R-DPR is shown in Figure 10 and its
code follows closely that of procedure CORE-DPR. We use two R-trees: FRt

is maintained over the current set Ui, and DRt is maintained over the set of
dormant regions D. Consequently, the operations of insertion and deletion
over both Ui and D translate to the corresponding operations over the R-
trees. All the variables that hold the spatial objects are of CCUBE type
C LIN. We also use method Get MBR, which computes the MBR of the object
by solving 2d linear problems.

Apart from the di�erences in how H-DPR+ and R-DPR index both the dor-
mant and the �nished regions, the two procedures present two aspects of
the following trade-o�: in H-DPR we choose to keep redundant constraints
at the expense of having them in the linear problems (using an incremental
constraint solver somewhat compensates for the redundancy); in R-DPR, on
the other hand, the redundancy can be easily eliminated ([LHM89]) since the
conjunctions are implemented via collections (calls to a redundancy elimina-
tion procedure should be inserted after lines 6 and 13).

Interestingly, a third solution is possible, which is a combination of the
previous two. The H-tree is used for storing constraints, just like in H-DPR,
while the two R-trees of R-DPR are built over the leaves of the H-tree. Thus,
we can combine a compact constraint storage with an I/O eÆcient R-tree
indexing.

3.6 Improving Space Decomposition

For a given relation the H-tree is not unique and depends on the order in
which tuples are inserted, as well as on the order in which hyperplanes are
read from each tuple. Consequently, di�erent H-trees present di�erent space
decompositions. In this subsection we outline one heuristic that is expected
to produce H-trees with better space decompositions, i.e. decompositions
that result in faster H-tree searches. The heuristic deals with the order in
which the hyperplanes are read from tuples, and it works for bounded tuples

24

R-DPR(Relation: R)

1. DRt.Insert (Rd)
2. foreach tuple T 2 R do

3. Tmbr = T .Get MBR
4. foreach D from DRt.Search(Tmbr) do
5. if D \ T then

6. F = D ^ T
7. Fmbr = F .Get MBR
8. FRt.Insert(Fmbr, F)
9. DRt.Delete (D)
10. foreach s = 1 to q do

11. T (s) = (^s�1m=1h
+
m) ^ h

�
s

12. if T (s) \D then

13. D(s) = T (s) ^D

14. D
(s)
mbr = D(s).Get MBR

15. DRt.Insert (D(s), D
(s)
mbr)

16. end if

17. end do

18. end if

19. end do

20.end do

Figure 10: Procedure R-DPR

25

h1

hx

hy

h1

h2

h3

...

Figure 11: Order of Hyperplanes

only.
Consider a tuple which is described using a large number of hyperplanes,

and suppose during the insertion of that tuple into H-tree the hyperplanes
were taken in the clockwise direction h1; h2; h3; : : : (see Figure 11(a)). One
can see that this situation will produce a space decomposition consisting
of a large number of 'narrow' chunks each of which spans across the space
(unbounded). Consequently, each tuple that follows is more likely to intersect
a larger number of the chunks, thus being dissected into a larger number of
�ner pieces and fueling faster growth of the H-tree.

In contrast, suppose the hyperplanes were read in the following order:
h1; hx; hy; : : : (the rest in any order) (see Figure 11(b)). One can see that
in this case the decomposition consists of a smaller number of larger chunks
which span across the space, and a large number of smaller chunks which are
spatially bounded. Consequently, for a tuple that follows, the likelihood that
it will lie inside one of the bigger chunks is greater, and so is the likelihood
that the tuple will 'swallow' some of the smaller chunks entirely. In other

26

words, the tuple is expected to be dissected in a lesser extent than in the
previous situation, and the tree is expected to grow slower as well. This is
expected to speed-up the H-tree search procedure.

Intuitively, in the second situation the hyperplanes were selected in a 'bal-
anced' way - each next hyperplane was chosen in attempt to maximize the
distance from the corresponding face to any other face with already selected
hyperplane. Therefore, the following heuristic is suggested: enclose the tu-
ple into its MBR and then select 'opposite' hyperplanes for each dimension.
Speci�cally, for tuple T in variables x1; : : : ; xd choose variable x1, then min-
imize x1 subject to T obtaining the corresponding solution point xmin

1 on
T , and then select a hyperplane of T that intersects xmin

1 . Note that inter-
section of a hyperplane with point xmin

1 is tested by simply checking if the
substitution of the points' coordinates for the variables in the hyperplane ex-
pression zeroes the result. After that, maximize x1 subject to T , and, again,
select a hyperplane that intersects the solution. This way the second hyper-
plane will be 'opposite' to the �rst one with respect to the chosen dimension.
Proceed in the same manner with the second dimension (i.e. x2), until all
d dimensions are exhausted. After that, select the remaining hyperplanes
in any order. Note that the heuristic assumes that the tuple is bounded.
Figure 12 lists the pseudo-code of the procedure H-REORDER which accepts a
tuple (represented as a collection of hyperplanes) and outputs the same tu-
ple with the hyperplanes re-ordered according to the heuristics. H-REORDER
should be called for each tuple iteration in H-DPR+ or R-DPR.

4 Computing Constraint Join

Note that, to avoid dealing with stand-alone tuples in the decomposition
algorithm, we assumed that all the tuples of the relation form a connected
graph with respect to overlap. However, it is easy to observe that the as-
sumption is not actually used, and the algorithm can accept stand-alone
tuples as well. Those tuples will be processed exactly the same way as the
overlapping ones, and integrated within the resulting H-tree (or R-tree, in
R-DPR). Consequently, we can assume that both H-DPR+ and R-DPR take an
arbitrary relation in their input. Of course, it only makes sense to do so
when there are only a few stand-alone tuples. Assuming this is the case,
we can perform H-DPR+ over each and every relation, so that each output
relation becomes represented in the form of an H-tree. We can now imme-

27

H-REORDER-HP (T) //***T is bounded

1. Tnew = new tuple
2. for i = 1 to d do

3. xmin = MIN-POINT (xi, T)
4. xmax = MAX-POINT (xi, T)
5. foreach h 2 T do

6. if h(xmin) = 0 or h(xmax) = 0 then
7. Tnew.Insert(h)
8. T .Delete(h)
9. end if

10. end do

11.end do

12.Tnew.Insert (the rest of hyperplanes from T)
13.return Tnew

Figure 12: Procedure H-REORDER-HP

diately use the H-trees to compute the join. The most straightforward way
is a pairwise join integration using the left-deep plan. At each step, having
computed R1 ^ : : : ^ Ri, we join it with Ri+1, and eliminate inconsistent
pairs of tuples. An indexed nested loop can be used, where the inner loop
(over Ri+1) is replaced to a call to H-SEARCH-FINISHED. H-SEARCH-FINISHED
works the same way as H-SEARCH (section 3.4), but has the following mod-
i�cations: (1) it is only interested in the �nished leaves (2) it treats each
linear tree segment as one big node. To clarify the last point, recall that
with each new tuple an H-tree grows by means of linear segments growing
out of the active leaves. After the entire relation is processed, some of the
segments still remain linear, if none of their nodes became the root to a sub-
tree. When H-SEARCH-FINISHED moves along a linear segment, no branching
occurs, and, therefore, it does not make sense to check the satisfaction of the
constraint store at each node; rather, H-SEARCH-FINISHED should advance
along the segment, collect the constraints, and resume satisfaction checks at
the end of the segment. Further CPU and I/O optimization of the H-tree-
based constraint join is beyond the scope of this work. Approaches similar
to those used to boost the R-tree-based multiway join ([MP99, PM99]) may
be considered in the future, including an examination of di�erent pairwise

28

integration plans, or a synchronous traversal of the H-trees.
When the R-tree is a better candidate to perform the decomposition

(section 3.5), we can use R-DPR to decompose each relation, and so each
output relation becomes indexed by an R-tree. Next, the existing techniques
for the multiway spatial join ([MP99, PM99]) can be applied to compute the
constraint join. Note however, that the above works consider spatial join
queries represented using a graph whose nodes are relations, and edges are
binary predicates between relations (the overlap, etc.), and concentrate on
speci�c cases of query graphs, such as clique and acyclic graphs. The entire
intersection, on the other hand, is an N -ary predicate. One direct way to
overcome this discrepancy is to employ the algorithms of [MP99, PM99] over
the clique graph, and to augment the code with an actual intersection test
for each found N -combination. With this modi�cation, the pairwise join
integration of [MP99] can be applied directly. The CSP-based synchronous
traversal of R-trees of [PM99] (which is superior to the pairwise integration)
still requires more changes, since it relies on the assumption that N is small
and stores certain data in main memory (O(N2) space is required).

Finally, if the input relations consist mostly of stand-alone tuples, per-
forming H-DPR+ or R-DPR over the entire relations may not be eÆcient. In
this situation, we can split each relation into groups of connected tuples (con-
nected sub-graphs), perform H-DPR+ or R-DPR within each group separately,
and then re-index the entire relation with a new R-tree.

5 Conclusions

we showed how to compute a constraint join of N constraint relations poly-
nomially in N . We contributed to a better understanding of the nature of the
constraint join by applying results from combinatorial geometry to estimate
the size of the constraint join output. As one of the consequences, we proved
that, under the assumption that the space dimension is bounded, the output
is polynomial if the input relations contain pairwise disjoint tuples. Since
relations in existing spatial databases typically satisfy this condition (e.g.
cities, forests, rivers), we can conclude that the multiway spatial join is typi-
cally polynomial. We also examined the problem of the convex decomposition
of an arbitrary d-dimensional polyhedron represented by a disjunction of lin-
ear constraints. Beside its use for a polynomial evaluation of the constraint
join, the convex decomposition is a separate problem by itself; for example,

29

it has another direct application of computing the volume of a non-convex
bounded polyhedron, since the formulae for the volume of a convex polyhe-
dron are known. As part of the decomposition algorithm, we also introduced
the H-tree - a new data structure which combines compact constraint storage
with spatial indexing capabilities, and we used the H-tree representation of
constraint relations to compute the constraint join.

We presented analytical considerations regarding the performance of the
proposed techniques. However, as it is the case with most spatial algorithms,
average estimates are very hard to determine precisely, while the worst-case
estimates re
ect very uncommon situations. Consequently, the most impor-
tant future research track is to identify a range of applications that would
provide a test bed for the proposed techniques, and to perform an implemen-
tation to validate the analytical conclusions.

Future work directions for improving the performance of the constraint
join were mentioned in section 4. As far as the H-tree itself is concerned,
the following questions remain open. First, other ways of improving the
space decomposition could be identi�able, for instance, the possibility to
union some of the �nished leaves into even larger convex pieces. Secondly,
the leaves of an H-tree contain redundant constraints (hyperplanes), and so
eÆcient ways of dealing with the redundancy may be considered. Also, the
important questions of how to keep the H-tree balanced, as well as how to
improve its I/O performance, are open.

References

[BJM93] A. Brodsky, J. Ja�ar, and M.J. Maher. Toward practical query
evaluation in constraint databases. CONSTRAINTS, Am Interna-
tional J., to appear. Preliminary version appeared in Proc. 19th In-
ternational Conference on Very Large Data Bases (VLDB) 1993,
Dublin., 1993.

[BKS93] T. Brinkho�, H. Kriegel, and B. Seeger. EÆcient processing of
spatial joins using r-trees. ACM Sigmod, 1993.

[BSCE97] A. Brodsky, V. Segal, J. Chen, and P. Exarkhopoulo. The ccube
constraint object-oriented database system. CONSTRAINTS, An
International J., to appear., 1997.

30

[CD85] B. Chazelle and D. Dobkin. Optimal convex decompositions.
In G. Toussaint, editor, Computational Geometry, pages 63{135,
Amsterdam, 1985. North-Holland.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry.
Springer-Verlag, 1987.

[KKR90] P. Kanellakis, G. Kuper, and P. Revesz. Constraint query lan-
guages. J. Computer and System Sciences, to appear. (A prelim-
inary version appeared in Proc. 9th PODS, pages 299{313, 1990.

[KS97] N. Koudas and K. Sevcik. Size separation spatial join. Proc. ACM
Sigmod, 1997.

[LHM89] J-L. Lassez, T. Huynh, and K. McAloon. Simpli�cation and elim-
ination of redundant linear arithmetic constraints. In Proc. North
American Conference on Logic Programming, pages 35{51, Cleve-
land, 1989.

[MP99] N. Mamoulis and D. Papadias. Integration of spatial join algo-
rithms for processing multiple inputs. In Proc. ACM SIGMOD,
Philadelphia, PA, 1999. ACM.

[MS98] K. Marriott and P. Stuckey. Programming with Constraints: An
Introduction. The MIT Press, 1998.

[Ore86] J. Orenstein. Spatial query processing in an object-oriented
database system. Proc. ACM Sigmod, 1986.

[PM99] D. Papadias and N. Mamoulis. Processing and optimization of
multiway spatial join using r-trees. In Proc. 18th PODS, Philadel-
phia, PA, 1999. ACM.

31

