VirtuE: Virtual Enterprises for Information Markets *

Alessandro D’Atri Amihai Motro
CeRSI Information & Software Fng. Dept.

LUISS “Guido Carli” University George Mason University
Rome, Italy Fairfax, VA, 22030, USA

datri@luiss.it ami@gmu.edu

1 June 2001
ISE-TR-01-02
Abstract

An essential part of a modern economy is an information market. In this market,
information products are being traded in countless ways. Information is bought, mod-
ified, integrated, incorporated into other products and then sold again. Usually, the
manufacturing of an information product requires the collaboration of several partic-
ipants. A virtual enterprise is a community of business entities that collaborate on
the manufacturing of new products. This collaboration is often ad hoc, for a specific
product only, after which the virtual enterprise may dismantle. The virtual enter-
prise paradigm is particularly appealing for modeling collaborations for manufacturing
information products, and in this paper we present a new model, called VirtuE, for
modeling such activities.

1 Information Markets and Virtual Enterprises

An essential part of a modern economy is an information market. In this market, information
products are being traded in countless ways. Information is bought, modified, integrated,
incorporated into other products and then sold again.

Some information products are elementary. An elementary information product is created
out of nothing; for example, a reading off an instrument, a photograph taken by a camera, or a

*This work was partially supported by the European Commission under the FATRWIS project no. IST-
1999-12641 within the Key Action “New Methods of Work and Electronic Commerce” of the Information
Society Technologies Program.

new customer record added to a database. Often, however, information products are derived
from other products. A weather report is assembled from multiple instrument readings,
a news report requires the analysis of several sources, and even a photograph may be an
enhancement of another photograph.

It is possible that an information product is manufactured in its entirely by the same
individual or business entity. More often, however, the production of an information product
requires collaboration among several different participants.

A particular form of business cooperation that has attracted attention recently is that of
a virtual enterprise. A virtual enterprise is a community of business entities that collaborate
on the manufacturing of new products. The collaboration is often ad hoc, for a specific
product only, after which the virtual enterprise may dismantle (indeed, former collaborators
may become competitors). The members of a virtual enterprise often possess complementary
skills and technologies whose combination is deemed necessary for the target product at hand.

The virtual enterprise paradigm appears to be suitable for collaborative productions of
information products. In this paper we describe the VirtuE model for virtual enterprises
whose core business is information products.

Such a virtual enterprise may be set up to produce an electronic publication, with indi-
vidual members providing services such as photo archives, news, layout, and proofing. A
market research enterprise may be a collaboration among a credit bureau, a mailing list con-
solidator, an archive of retail transactions, and a data-mining service. An on-line library may
be a collaboration among many different information archives and a variety of information
processors, providing specialized services such as document indexing, document retrieval and
document ranking. In these examples, each of the members could, in turn, enlist the services
of other members; for example, the mailing list consolidator could procure individual lists
and then enlist the help of another service to integrate the lists while removing replications
and resolving inconsistencies.

The main features of VirtuE fall into four areas:

1. Products: VirtuE features two types of information products: content, which is an
item of information, and process, which is an operation that modifies existing contents
to produce new content. Enterprise members may offer both types of service. A simple
global resource, called dictionary, is defined for coordinating knowledge about products
among the participants.

2. Manufacturing. The set of products used or created by each enterprise member
is stored in a local resource called inventory. For complex products (products that
are created from more elementary products), production plans must be provided. A
production plan specifies how contents and processes are combined to derive the new
product.

3. Transactions. Since component products are often obtained from other enterprise
members, a procurement mechanism is necessary. A catalog exchange process among

the enterprise members establishes the infrastructure on which products are exchanged.
Exchanges are executed in two-phase transactions: an inquiry followed by an order.
Since production plans may branch into multiple alternatives, each requiring different
transactions to import different components from different members, an optimization
process selects the optimal plan.

4. Customization. VirtuE allows the definition of performance indicators, which are
formulas that capture various quantitative characterizations of the virtual enterprise;
for example, enterprise assets or interdependence level . Another feature of VirtuE are
constitutional rules which are constraints that express behavior that must be adhered
to. Such rules enable the creation of virtual organizations with different style or flavor;
for example, an organization in which all participants must be of comparable magnitude
(i.e., assets), an organization which is without any competition (similar products are
not available from different members), or an organization that resembles a free market.

While we are not aware of any work on virtual enterprises for information markets, our
work is at a junction of several active research areas, and we discuss here the most relevant
five areas: (1) information marketplaces, (2) information brokering, (3) virtual enterprises,
(4) workflow management in virtual enterprises, and (5) federated databases.

The importance of the information market especially in relationship to electronic com-
merce has been recognized for quite some time [13, 10]. It is within this important mar-
ketplace that VirtuE operates, advocating a specific type of collaborative organization to
generate new products for this marketplace. VirtuE’s goal of modeling information exchange
and manufacturing is strongly related to information brokering. Predicting that federations
of large number of information system will be cooperating to support information needs of
users, [12] proposes an architecture consisting of information providers, information brokers
and information consumers.

The concept of virtual enterprise as a cooperative of independent entities that collabo-
rate on the manufacturing of products has been around for decades.! The interest of the
information technology research community in this area dates only to the mid-1990s, with
much of the work focusing on organizational issues, communication processes and informa-
tion systems support [3, 14, 19]. Recently proposed paradigms to support virtual enterprises
include the VEGA software platform [18] and a methodology for fusing the separate business
processes of enterprise members [7].

VirtuE’s concept of production plans (manufacturing formulas for information products)
may be considered a specialized form of workflow management [6, 20, 5]. Within this area,
considerable attention had been given recently to the application of workflow management
techniques to virtual organizations [9, 8]. Finally, in the area of data modeling, federated
database models [11, 17, 16, 15] may be considered as predecessors of VirtuE. A feder-
ated database provides an environment in which information may be exchanged among

1Often the members of such an enterprise reside in the same geographical area. A notable example is the
Saxon region in Germany [4].

autonomous or semi-autonomous participants. Federated databases, however, do not pro-
vide features for manufacturing new information products, and do not attempt to model the
business aspects of information exchange.

A preliminary version of VirtuE is described in three sections. Section 2 describes the
basic structures of the VirtuE model: participants, products, and an infrastructure that
participants use to exchange products. This section also defines the global dictionary for
coordinating knowledge about products. The manufacturing of new information products
from existing products is discussed in Section 3, which introduces inventories and production
plans. This section also discusses performance indicators and constitutional rules. Section 4
is devoted to operational issues. It defines two-phase transactions, and discusses the opti-
mization of production plans. Section 5 concludes this paper with a brief summary and a
list of subjects currently under investigation.

2 Basic Structures

In this section we define the basic concepts of the VirtuE model. Each virtual enterprise
consists of participants, products, and an infrastructure that the participants use for ex-
changing products. A global resource, called dictionary, is used to coordinate knowledge
about products among the participants.

2.1 Participants: Members and Clients

We assume a community of independent members with shared interests. The members are
independent in the sense that they remain autonomous and maintain their own assets. These
assets include human, equipment or financial resources, as well as business expertise, such as
knowledge about their production and delivery processes. Their shared interests are reflected
in that they agree to cooperate with each other to produce joint products that are provided
to common customers. After the community had been established it could evolve because an
existing member departs or a new member joins. This form of evolution provides the virtual
enterprise with flexibility and allows it to adapt to new situations.

The set of members will be denoted M. An individual member will be denoted m;, where
¢ is a unique identifier of the member.

A client is an entity outside the virtual enterprise who approaches the virtual enterprise
to acquire a product.

2.2 Products: Contents and Processes

In practice, virtual enterprises may produce many different kinds of products. In VirtuE, we
shall consider only information products, of the type that can be delivered over computer
networks. Information products are provided by members of the enterprise to their clients.
This provision is the ultimate purpose of an enterprise. Information products are also ex-
changed among the members of the enterprise in the production phase that precedes the
provision of a product to a client.

We distinguish between two basic kinds of information products: content and process.

2.2.1 Content

Content is an information item. Examples include “a database of customers and the products
they purchased in the year 20007, “the codes of all stocks traded in the New York Stock
Exchange and their closing values on March 31, 2001”,“an image of the space shuttle landing
in Kennedy Space Center on May 29, 20007, “a stream of news items on the subject of
sports”, and so on. A request for this kind of product describes the information needed; the
response is information content that answers the description.

To manage the potentially enormous number and variety of contents, we introduce content
types. Each content is associated with one content type. Examples of content types are
Database, Image, Document, and so on.

Each content type C' is associated with a sequence of attributes, att(C). Each attribute
A in att(C) denotes a measurable aspect of all contents of this type, and has an associated
domain of feasible values Dom(A). Let ¢ be a content of type C, then c[A] denotes the value
of the attribute A for this content. wal(c) is the sequence of all attribute values of ¢ (in
correspondence with the sequence of attributes att(C')).

The attributes att(C) can be partitioned into several groups. One particular attribute,
Product_Code, is associated with every content type. Product_Code is a value that is used
to identify products within the product offerings of a member. Next, a group of attributes
is designated as specificational. These attributes are specific to individual content types
and provide a description for each particular content of that content type. With these
attributes, it should be possible to determine the essence of a product. For example, an
Image type may have the attributes Image_Format and Resolution and a Document type may
have the attributes Document_Format and Author. This group may also include attributes
such as Subject or Title. The remaining attributes form the optional group. Examples
include Quantity, Size, Timestamp, Quality, Cost, Price and Member_Price. A common
optional attribute is Description, for describing products in notation such as natural language
or keywords. Note that for individual content types, these attributes may be measured
differently. We shall use ¢[S] and ¢[O] to denote, respectively, the specificational and optional
attributes of a content c.

Finally, an attribute is mandatory if each content of that type is required to have a valid
value for that attribute. For attributes that are not mandatory null values are used wher-
ever valid values are either unknown or inapplicable. Product_code and the specificational
attributes are mandatory.

2.2.2 Process

The second basic kind of information product is process. A process is an operation that
modifies given content to produce new content. Examples of processes include (1) aggregating
a set of pictures in an album, (2) translating a document from one language to another,
(3) analysis of financial data to produce stock market recommendations, (4) cleansing data
(i.e., removing or correcting errors, resolving inconsistencies, and so on) , (5) filtering data
(i.e., separating the data into two parts: wanted and unwanted), (6) ranking a set of data
items, (7) merging two lists while removing replications, and so forth. A request for this
type of product names the process and provides a set of input contents; the response is the
output content. Usually, processing adds value to the original information.

As with contents, we introduce process types to classify the different processes. For
example, there could be several data compression processes, all belonging to a single process
type Compression. Each process type P is associated with a sequence of input content types
C1,...,C, and with an output content type C. When receiving contents ¢y, ..., ¢,, where ¢;
is of type C; (i =1,...,n), a process p of type P produces content p(cy, ..., ¢,), which is of
type C.

Process types also have their attributes. The attribute sequence of a process type P is
denoted att(P). Let p be a process of type P, then p[A] denotes the value of the attribute A
for this process. val(p) denotes the sequence of all attribute values of p (in correspondence
with att(P)). The attributes att(P) are divided into the same groups: Product_Code, spec-
ificational and optional. Examples of specificational attributes include Mazimal_Error_Rate
or Minimal_Qutput_Quality.

To summarize, the basic concepts of information products are: (1) Content, content type
and content attribute, and (2) Process, process type and process attribute

A simple analogy that illustrates these concepts would be computer files and file trans-
lators. Each file is associated with a specific file type (usually denoted by a suffix to its
name), and has specific attributes (such as size, timestamps, and access permissions). Each
file translator is associated with two file types: the source type and the target type. An
example of a file translator is compression. An attribute for a compression processes would
be average compression rate.

The concepts defined here could be cast in an object-oriented framework of objects,
classes, methods, inheritance, and so forth. However, for simplicity we shall limit our model
to the subset of concepts defined here; i.e., content, content type, content attribute, process,
process type and process attribute.

2.2.3 Special Attribute Values

In addition to the values in their associated domains, optional attributes may assume three
special kinds of values.

e Null value. The null value, already mentioned, is used when an attribute value is
unavailable or inapplicable. For example, the Quality of a particular content may be
unknown.

e Multivalue. A multivalue is a set of possible values. For example, the Size of a
particular content may be {small, medium, large}. The attribute Quantity is often a
multivalue. For numerical attributes, multivalues are often specified as ranges.

e Function. An attribute value may be a function of other attributes: An attribute of
a content may be a function of other attributes of this content, and the attribute of a
process may be a function of other attributes of this process or of attributes of its input
contents. Price is often a function of Quantity; for example, if Quantity < 10 then 30
else 25. As another example, Compression_Rate may be a function of the Density of
the input content.?

2.3 The Global Dictionary

Of the six aforementioned concepts (content, content type, content attribute, process, pro-
cess type and process attribute), all but content and process may be considered intensional
information (content and process are extensional information). We assume that all inten-
sional information is available in an enterprise-wide resource called the global dictionary.
This dictionary assures consistency of naming across the enterprise.

Formally, the global dictionary is a pair (C,P), where C is a set of content types and P
is a set of process types. Each content type C € C is described by a set of attributes att(C)
and each process type P € P is associated with a set of attributes att(P). Each attribute
A € att(C) or A € att(P) is associated with a domain dom(A).

Determining whether two products (content or process) are “the same” is not straight-
forward, and we define two different levels of identification:

1. Identical products: The attribute Product_Code uniquely identifies a product within
offerings of individual members; hence, the combination Member_Identifier: Product_Code
identifies a product across the virtual enterprise.

2. Comparable products: Two products (possibly from two different members) are
comparable if they are of the same type and have the same specification; i.e., products
e; and ey of type C are comparable if e;[S] = ey[S]. Intuitively, when two products
are comparable, one could possibly substitute for another.

2A concept related to functional values, derived attributes, will be introduced in Section 3.3.3.

7

3 Manufacturing New Products

The basic VirtuE paradigm is that members obtain information components from other
members to manufacture new information products. This section explains how manufactur-
ing is accomplished, using two new concepts: inventories and production plans. This section
also explains how to create virtual enterprises possessing different characteristics by using
constitutional rules and how to monitor their performance with performance indicators.

3.1 Inventories and Catalogs
3.1.1 Inventory

Products (contents or processes) are exchanged by the members of the virtual enterprise.
The method of exchange shall be explained later; at this point we note that the products
used by each member can be classified according to two parameters.

1. Native or Imported: A native product is produced locally, whereas an imported
product is outsourced from another member of the enterprise.

2. Internal or Exported: An exported product is provided by this member to others,
whereas an internal product is an interim product used only by this member in the
manufacturing of other products.

These parameters form four categories of products: native-internal, imported-internal, native-
exported, and imported-exported. Figure 1 illustrates these four categories. The box rep-
resents the products of an individual member. Product a is native-internal, product b is
imported-internal, product c is native-exported, and product d is imported-exported.

Products (contents or processes) can also be classified as basic or complex. A content is
complex if it is derived from other contents by some process; otherwise it is basic. A process
is complex if it is a combination of other, more elementary, processes; otherwise it is basic.

Figure 1: Product classification as native or imported and internal or exported.

Note that imported products are always classified as basic; that is, a complex product is
always considered native.

The set products used by a member m are enumerated in an inventory, Inv(m). Each
inventory entry e is described as follows:

1. Kind: an indication whether the product is content or process.

2. Type: for a content, the content type, for a process, the process type. These types are
taken from the global dictionary.

3. Source: an indication whether the product is native or imported.
4. Target: an indication whether the product is internal or exported.
5. Composition: an indication whether the product is basic or complex.

6. Attribute values: a sequence of values, corresponding to the attributes listed in the
global dictionary for this content or process type.?

The notation for the first five fields is similar to the notation for attribute values: e[Kind],
e[Typel, e[Source], e[Target], and e[Composition).

3.1.2 Catalog

A service is an offering of an information product by a member of the virtual enterprise for
a price. Each member of the virtual enterprise advertises the services that it offers by means
of a catalog. The catalog is simply the inventory items for which the target indication is
“export”.

Note that a catalog may include services that require the offering member to obtain
assistance from other members of the enterprise. This is referred to as subcontracting (out-
sourcing). Consequently, a change in a catalog (such as a price increase) may propagate to
other catalogs.

Each member distributes its catalog to a subset of the members of the enterprise, and
receives catalogs from other members. A member must either send its catalog to or receive
a catalog from at least one other member (otherwise this member would not be able to par-
ticipate in any activity of the virtual enterprise). This distribution creates the infrastructure
of the virtual enterprise, as it describes the various channels of procurement. Any change
to a catalog, such as a price increase, requires the redistribution of the catalog. The set
of members to which a member m; € M distributes its catalog is a subset D; of M. The
infrastructure is a subset D of M x M.

3These values include Product_Code (or, for imported product, the combination Member_Identifier :
Product_Code).

3.2 Production Plans

For each complex content or process in the member’s inventory there must be a production
plan (a manufacturing formula). These production plans are expressed in terms of other con-
tents and processes. In addition to describing the structure of complex products, production
plans also assign their output the appropriate attribute values.

In describing production plans, we use the following notation. ¢ and p identify a content
and a process, respectively. If the product is native, then ¢ and p are product codes from this
member’s inventory. If the product is imported, then ¢ and p are external product codes;
i.e., each is a combination of a member identifier and a product code from that member’s
catalog.

3.2.1 Content Manufacturing

Production plans must be provided for each native complex content. Native basic contents
and imported contents are simply referenced by their product codes. The production plan
for native complex content c¢ is a combination of a process p and attribute assignments ¢4,
as follows.

c + pler, ..., cn)
c[A] « ¢a(val(p),val(cy),...,val(c,)) for every attribute A in att(C)

The meaning of the first line is that applying the process p to a sequence of contents ¢y, ..., ¢,
produces the content ¢. The second line describes a set of assignments ¢4, one for each
attribute A of ¢. Fach ¢, assigns a value for the attribute A based on the attributes of the
input contents ¢y, ..., c, and the process p.

Note that each input content ¢; may be either native or imported. If an input content
¢; is native and complex, then another production plan must be provided for ¢;. Hence, the
production plan for ¢ may recursively involve other production plans (it must be, of course,
free of cycles).

Note also that a content ¢ may have several production plans, allowing for alternative
manufacturing processes. There is a special production plan called substitution that involves
no processing:

c+c

Substitution allows one content to substitute for another. For example, using different
substitution formulas with the same left-hand-side, one may specify alternative imports for
the same content.

Finally, note also that the process p may be native or imported. When p is imported
from member m, then after ¢y, ..., ¢, are materialized, they are sent to m, who subsequently
sends back the content c. Note that attribute values are included with the input and output
contents.

10

3.2.2 Process Manufacturing

As with contents, production plans must be provided for each native complex process. Native
basic processes and imported processes are simply referenced by their product codes. The
production plan for a native complex process p is specified as follows.

P,y m0) < PO Y)s s Pty oY)

plA] <~ oalval(p'),val(pr),...,val(p,)) for every attribute A in att(P)
In the first line, each y variable in the right-hand side is taken from the set of x variables
in the left-hand side, and each x variable appears at least once among the y variables. The
meaning of the first line is that the process p is a combination of n more elementary processes
Pi,...,DPn, Whose intermediate products are combined with a process p’. The second line
describes a set of assignments ¢4, one for each attribute A of p. Each ¢, assigns a value
for the attribute A based on the attributes of the component processes pi,...,p, and the
combining process p'.

As a simple example, consider this production plan in which n = 1:

p(z) < p'(p1(2))

In this case p is simply a “pipe” comprising the processes p; and p'.

Again, production plans must be specified for the component processes p; that are native
and complex. Finally, the production plan

pp

allows to substitute the process p’ for the process p.

Using such production plans, it is possible to establish the cost of every content or process.
It is the price paid for externally procured contents and processes, plus the cost of internally
procured products and processes. The price of this content (as advertised in this member’s
catalog) would usually be higher. The difference is profit. The new cost would be determined
by the assignment ¢cos;.

Consider a process ¢ < p(cy, ..., ¢,) and assume that p is a native process. In this case,
the assignment ¢¢,s would be
c[Cost] = p[Cost] + > c;[Cost] + > ci[Price]

cg cg
c;[Source]="native’ c;[Source]="import!

3.3 Performance Indicators and Constitutional Rules

Using the notation that has been developed in earlier sections we may express various indi-
cators and rules. The indicators are quantitative characterizations of the enterprise, whereas
the rules express behavior that must be adhered at any point in time.*

“In the following we use generic mathematical notation to express indicators and rules. We intend to
develop a more specialized language in which these will be defined.

11

3.3.1 Performance Indicators

Performance indicators may be structured in a three-level hierarchy:

1. Product-specific
2. Member-specific

3. Enterprise-wide

Product-specific indicators characterize individual products. Member-specific indicators
characterize the performance of a member; often, they are defined by summarizing prod-
uct specific-indicators. Similarly, enterprise-wide indicators characterize the performance of
the entire enterprise; often, they are defined by summarizing member-specific indicators.

Product-specific indicators could be considered derived attributes. A simple example is
profit, the difference between the price and the cost of a product:

Profit(e) = e[Price] —e[Cost]

Another example is ezclusivity: the number of comparable products available throughout
the enterprise. Let e € Inv(m),e[Target] =" export'

Ezxclusivity(e) = |{e' | € € Inv(m') Am' #m A e [Target] =" export’ A €'[S] = e[S]} |

A product e is exclusive if Exclusivity(e) = 0. The purpose of the restriction to export
products is to avoid interim products, which are unavailable to outsiders. A third example
is external-dependence (import-dependence), which measures the ratio of the cost of imports
used in the manufacturing of a product to the price of the product. Let Imp(e, q) be the set
of imported products used in a production plan ¢ for product e. Then

Ze’elmp(e,q) e'[Cost]
e[Price]

Dependence(e) = min,

Additional product-specific indicators could be defined similarly: The robustness of produc-
tion could be measured by the number of alternative production plans for a product, the
complezity of a product could be measured by the (average) depth of its production plans or
the (average) number of components used, and so on.

An example of a member-specific indicator is the breadth of a member, which measures
the number of (export) products in its inventory (i.e., the size of its catalog):

Breadth(m) = |{e|e € Inv(m) A Targetle] =" export'} |

Using product exclusivity, one could measure member exclusivity as the average exclusivity
indicator of this member’s products. The assets of a member can be defined as the total

12

price of all the items in its inventory marked “export” less the total cost of the items marked
“import”. The difference represents the total value added by this member.

Import(m) = Y cervm €[Cost]
e[Source]="import’

Ezport(m) = Y cctmm €[Price]
e[Target)='export’

Assets(m) = Export(m) — Import(m)

An important indicator is the level of interdependence (cooperation) among the members of
a virtual enterprise. This may be measured as the ratio of imports to assets: the higher the
ratio the more dependent is the member on other members:

Depend(m) = ‘REEEH

An enterprise-wide indication of interdependence may be obtained by averaging the in-
dividual interdependence indicators:

Depend = =3,y Depend(m)

If this indicator falls below a threshold, it may be advisable to reorganize the enterprise or
possibly dismantle it altogether.

3.3.2 Constitutional Rules

The global behavior of a virtual enterprise is governed by a set of enterprise rules. These rules
reflect the constitution of the enterprise and must be satisfied at any time. This constitution
gives specific enterprises their individual characteristics. Some examples that illustrate this
concept follow.

We already mentioned that each member of the virtual enterprise must be involved in at
least one catalog exchange. This rule may be specified as follows:

Vm e M
| {m' |m' e MA((m,m') e D Vv (m',m)e D)} |>1

There may be a rule that requires all members to give fellow members preferred treatment
over clients; that is, a member cannot offer the same products to clients at prices lower than
those it offers to members:

Vm € M Ve € Inv(m)
e[Price] > e[Member_Price]

A rule may be defined to disallow “dumping”, the practice of selling items below their cost;
that is, the price charged for must exceed the cost incurred in producing the item (an example
of cost calculation was given earlier).

13

As a final example, consider a rule that establishes product exclusivity; i.e., there are no
comparable products in the virtual enterprise.

Vmy,my € M Yey € Inv(my) Yey € Inv(ms) :
e1[S] = ea[S] = my = my A e1[Product_Code] = es[Product_Code]

Recall that identical products are comparable; in effect, this rule states that comparable
products are identical.

4 Transactions

The infrastructure defined by the distribution of catalogs supports the operations of a virtual
enterprise. The basic unit of operation in a virtual enterprise is a transaction. A transac-
tion begins when a request for an advertised service (content or process) is sent from one
participant to another, and terminates when the request is satisfied.

There are two types of transactions in a virtual enterprise.

e External transaction. An external transaction is a request for a service which is
submitted from a client to one of the members of the virtual enterprise. The member
processes the request and provides a solution. A member of the virtual enterprise who
processes an external transaction acts in a role of a service provider.

e Internal transaction. To satisfy an external transaction, a service provider may
decide to purchase a service from another member. Such transactions are called internal
transactions or subcontracts. A member of the virtual enterprise who processes an
internal transaction acts in a role of a subcontractor. Sub-contracting is related to
information brokering.

The execution of external transactions is the ultimate purpose of the virtual enterprise. Each
member of a virtual enterprise may act as a service provider on some transactions and as a
subcontractor on other transactions.

To initiate a transaction, the requester must provide the exact specifications of the ser-
vice required. Because products may have attributes that are multivalues or functions, a
preliminary exchange of information may be necessary. Such exchanges are called inquiries.
Actual requests for service are called orders. Hence, in general, products are traded with
two-phase transactions.

4.1 Inquiry

An inquiry is a request for additional information, and is necessary when some of the at-
tributes of the product are multivalued and other attributes are functionally dependent on

14

them. For example, the Price of a product may depend on a multivalued attribute Quantity.
As another example, Quality may depend on Size, e.g., low quality for large size, or high
quality for small size, with the same Price for either combination.

In an inquiry, the requester specifies values for some attributes. In response, the service
provider specifies values for all other attributes. There are two types of inquiries.

e Simple. In a simple inquiry, the inquirer provides specific values for each of the
multivalued attributes. For numerical attributes, a fixed value may also be min or
maz, indicating the lowest or highest in the set. In response, the provider returns the
corresponding values for the functional attributes.

e Optimum. In an optimum inquiry, the inquirer selects one attribute as a target (it
may be a multivalued attribute or a functional attribute, but its domain must be totally
ordered) and provides an optimization instruction (min or maz) for this attribute. For
each of the other multivalued or functional attributes the inquirer has the option of
either (1) leaving it unchanged (i.e., a don’t-care declaration), (2) restricting it (e.g.,
an attribute originally in the range (10,100) may be restricted to the narrower range
(40,60)), or (3) fixing it with a single value. In response, the provider returns the
values for the multivalued attributes (and the corresponding values for the functional
attributes) that optimize the target attribute.

Note that to determine its responses, it may be necessary for the provider to initiate inquiries
of its own to its subcontractors.

Assume a product whose Price depends on the multivalued attributes Quantity and
Quality. Specifically, assume that Quantity is in the range [1,100] and Quality is in the
range [1, 3] and the dependency of Price on Quantity and Quality is according to this table:

Quality | Quantity | Price
1 1-10 50
1 11-50 45
1 51-100 40
2 1-50 80
2 51-100 70
3 1-100 120

In a simple inquiry the inquirer specifies the quantity and quality and the provider returns the
price. For example, for Quality = 2 and Quantity = 40 the provider would return Price =
80, and for Quality = max and Quantity = 10 the provider would return Price = 120. In
an optimum inquiry, the inquirer can restrict the quality or the quantity to narrower ranges
and ask for the best price. For example, for Quality > 2, Quantity < 80 and Price = min,
the provider would return Quality = 2, 51 < Quantity < 80 and Price = 70. Alternatively,
the inquirer may ask for the best quality that may be obtained below a particular price. For
example, for Quality = max, Quantity < 60 and Price < 100, the provider would return
Quality = 2, 51 < Quantity < 60 and Price = 70.

15

4.2 Order

After making the necessary inquiries, a participant may issue an order. Each order must
include these parameters:

1. The code of the product ordered.
2. Specific values for its multivalued attributes, if any.

3. The input contents (and their attributes), if the product is a process.

Once a member receives an order (either external or internal), it must put together a
plan that will deliver the product as specified.

4.3 Optimization

If every product (content or process) had only one set of specifications (i.e., without multival-
ued attributes such as Quality or Size), and if every product had a unique production plan,
then the fulfillment of orders would be a straightforward process. By allowing a product to
have different specifications and alternative production plans (including multiple options for
importing component products), the fulfillment of orders becomes a process that requires
optimization.

Note that we assume that when a service provider advertises a product with multivalued
attributes, there must be appropriate production plans to manufacture products that will
meet any of the advertised attributes. Some issues involved in such optimization are discussed
below.

The resources necessary for putting together an execution plan may be available from
multiple sources, thus suggesting various alternatives that must be considered. We illustrate
this with two examples.

e Content may be available from multiple sources with different attributes. For example,
a member m who needs content ¢ in quantity ¢ may have the options of

1. Buying ¢ with in quantity ¢ at price p.
2. Buying ¢ in higher than needed quantity ¢’ but at a lower price p'.

e Content may be derived in different ways. For example, a member m who needs content
¢ may have the options of

1. Buying ¢ from member m;.

2. Buying content ¢ from member my and using the services of member mj3 to
transform ¢ to c.

16

In general, each service provider adopts an attribute (or a weighted combination of at-
tributes) that would serve as its optimization target. Given an inquiry or an order, the
service provider would derive all the possible production plans, calculate the value of the
optimization target for each plan, and choose the optimal plan. While optimization is de-
fined through an exhaustive process that considers every possible plan, in practice, when

this approach is infeasible due to a large number of plans, heuristic optimization methods
should be developed.

Typically, a service provider would attempt to optimize the cost of production, while
satisfying all the product specifications. That is, among the production plans that answer
the specifications, the provider would choose the plan whose cost is minimal.

5 Conclusion

We presented a preliminary version of VirtuE, a model for virtual enterprises that collaborate
on the manufacturing of information products. Some of the features of VirtuE that make it
suitable for this purpose are

1. Two types of information products, content and process, and a global dictionary for
knowledge coordination.

2. Inventories and production plans for expressing the manufacturing processes of infor-
mation products.

3. Catalog exchanges and two-phase transactions (inquiry and order) for enabling the
exchange of information products.

4. Constitutional rules and performance indicators for creating virtual enterprises with
different characteristics and for monitoring their behavior.

There are many possible research directions to follow up the preliminary results presented
in this paper, and we mention here briefly four such directions.

1. Enduring products and transactions. The model we described considered “one-
time” products and transactions; that is, each transaction traded a single, already
available commodity. Many information products are manufactured continuously from
streams of information. Accordingly, transactions are contracts for the continuous
supply of services. The proper extension of VirtuE to model continuous services is
currently under investigation.

2. Tracking performance over time. The current model does not track the actual
performance of a virtual enterprise over time. Such tracking would permit new perfor-
mance indicators, such as demand or profit.

17

3. Dynamic reorganization. An important advantage of virtual enterprises is their

ability to adapt quickly to changing markets. By monitoring the actual performance of
an enterprise, including changes in the types or quantities of products ordered, it would
be possible to prescribe changes in membership, production plans and infrastructure
that would improve the overall performance of the enterprise. A simple analogy from
the area of databases is the reorganization of distributed databases, to accommodate
dynamically changing patterns of transactions.

Extended cost modeling. Through the use of performance indicators and constitu-
tional rules, VirtuE attempts to model the business aspects of information exchange
and manufacturing. A possible extension is to consider cost models such as [1, 2].

Once the VirtuE model has been finalized, the next steps would be to develop a functional
specification for a software environment based on this model that will support the activities
of a virtual enterprise for information markets, and subsequently to develop a prototype
system in accordance with these specifications.

References

1]

2]

7]

W. Appel and R. Behr. Towards the theory of virtual organisations: A description of
their formation and figure. Virtual-Organization.Net Newsletter, 2(2):15-36, June 1998.

B. Belgradek, K. Kalpakis, and Y. Yesha. Maximizing seller’s profits for electronic
commerce. In Proceedings of International IFIP/GI Working Conference on Trends in
Distributed Systems for Electronic Commerce (W. Lamersdorf and M. Mertz, Editors),
Lecture Notes in Computer Science No. 1402, pages 26-38. Springer-Verlag, Berlin,
Germany, 1998.

A. Mowshowitz (Editor). Special section on virtual organizations. Communications of
the ACM, 40(9):30-64, September 1997.

K. Erben and K. Gersten. Cooperation networks towards virtual enterprises. Virtual-
Organization.Net Newsletter, 1(5):12-22, December 1997.

A. Gal and D. Montesi. Inter-enterprise workflow management systems. In Proceed-
ings of the 10th International Workshop on Database and Ezxpert Systems Applications
(Florence, Italy, 1-3 September), pages 623-627, 1999.

D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow management:

from process modeling to workflow automation infrastructure. Distributed and Parallel
Databases, 3(2):119-153, April 1995.

D. Georgakopoulos, H. Schuster, A. Cichocki, and D. Baker. Managing process and
service fusion in virtual enterprises. Information Systems: Special Issue on Information
Systems Support for Electronic Commerce, 24(6):429-456, September 1999.

18

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

C. Godart, O. Perrin, and H. Skaf. Coo: a workflow operator to improve cooperation
modeling in virtual processes. In Proceedings of the Ninth International Workshop on
Research Issues on Data Engineering (Sydney, Australia, March 23-24), pages 126-131,
1999.

P. Grefen and Y. Hoffner. Crossflow: Cross-organizational workflow support for virtual
organizations. In Proceedings of the Ninth International Workshop on Research Issues
on Data Engineering (Sydney, Australia, March 23-24), pages 90-91, 1999.

V. Grover and T. C. Teng. E-commerce and the information market. Communications
of the ACM, 44(4):79-86, April 2001.

D. Heimbigner and D. McLeod. A federated architecture for information management.
ACM Transactions on Office Information Systems, 3(3):253-278, July 1985.

V. Kashyap and A. P. Sheth. Semantics-based information brokering. In Proceedings of
the Third International Conference on Information and Knowledge Management, pages
363-370, 1994.

S. Laufmann. The information marketplace: The challenge of information commerce. In
Proceedings of the Second International Conference on Cooperative Information Systems
(M. L. Brodie, M. Jarke and M. P. Papazoglou, Editors), pages 147-157, 1994.

P. Monge and G. DeSanctis (Editors). Special issue on virtual organizations. Organi-
zation Science, 10(6), November-December 1999.

S. Prabhakar, J. Huang, J. Richardson, J. Srivastava, L. EePeng, S.-Y. Hwang, S. B. Na-
vathe, A. Savasere, and M. Foresti. Federated autonomous databases: Project overview.
In Proceedings of the Third International Workshop on Research Issues on Data Engi-
neering: Interoperability in Multidatabase Systems (H.-J. Schek, A. P. Sheth, B. D.
Czejdo, Editors), pages 216-219, 1993.

L. J. Seligman and L. Kerschberg. Knowledge-base/database consistency in a federated
multidatabase environment. In Proceedings of the Third International Workshop on
Research Issues on Data Engineering: Interoperability in Multidatabase Systems (H.-J.
Schek, A. P. Sheth, B. D. Czejdo, Editors), pages 18-25, 1993.

A. P. Sheth and J. A. Larson. Federated database systems for managing distributed,
heterogeneous and autonomous databases. Computing Surveys, 22(3):183-236, Septem-
ber 1990.

B. Suter. A cooperation platform for virtual enterprises. In Proceedings of the VoNet
Workshop on Organizational Virtualness (P. Sieber and J. Griese, Editors), pages 155—
164, 1998.

Virtual Organization Net. Electronic Journal of Organizational Virtualness (ISSN 1422-
9331). http://www.virtual-organization.net.

19

[20] D. Worah and A. P. Sheth. Transactions in transactional workflows. In Advanced
Transaction Models and Architectures (S. Jajodia and L. Kerschberg, Editors), pages
3-34. Kluwer Academic Publishers, 1997.

20

