
Maintainability of the Linux Kernel
ABSTRACT

We have examined 365 versions of Linux. For every version, we counted the number of

instances of common (global) coupling between each of the 17 kernel modules and all the other

modules in that version of Linux. We found that the number of instances of common coupling

grows exponentially with version number. This result is significant at the 99.99% level, and no

additional variables are needed to explain this increase. On the other hand, the number of lines

of code in each kernel modules grows only linearly with version number. We conclude that,

unless Linux is restructured with a bare minimum of common coupling, the dependencies

induced by common coupling will, at some future date, make Linux exceedingly hard to

maintain without inducing regression faults.

KEY WORDS: open-source software, Linux, coupling, dependencies, common coupling,

maintenance

1. INTRODUCTION

Numerous articles in newspapers and popular magazines point out the many strengths of Linux,

the open-source operating system [1]. Linux is also increasingly featured on television news

programs. Typically, such items include an interview with a former user of Microsoft Windows

who proudly asserts that Linux fails far less frequently on his or her PC than Windows did.

Occasionally a magazine article might mention that it is important for one to install a version of

Linux that is appropriate for one’s PC or that it is helpful to know a Linux guru, but most media

coverage is largely uncritical of Linux.

Maintainability of Linux Kernel. July 27, 2001 Page 2

A cynic might claim that these articles are just a manifestation of a worldwide campaign

of “Microsoft bashing.” A statistician would surely point out that the articles are anecdotal in

nature and can hardly be considered to constitute scientific evidence. Nevertheless, the sheer

volume of material praising Linux in the popular press and on television is difficult to ignore.

Turning now to software experts, their adulation of Linux is somewhat more muted. For

example, in the May 1999 issue of IEEE Computer, Ken Thompson (co-creator of UNIX) wrote:

“I don’t think [Linux] will be very successful in the long run. I’ve looked at the source and there

are pieces that are good and pieces that are not. A whole bunch of random people have

contributed to this source, and the quality varies drastically. My experience and some of my

friends’ experience is that Linux is quite unreliable. Microsoft is really unreliable but Linux is

worse. In a non-PC environment, it just won’t hold up. If you’re using it on a single box, that’s

one thing. But if you want to use Linux in firewalls, gateways, embedded systems, and so on, it

has a long way to go” [2].

A key phrase in Thompson’s remarks is “I’ve looked into the source.” That is, a critical

difference between Linux and Windows is that Linux is open-source software—anyone can

study the source code and comment on (say) its quality.

It has been claimed that open-source software is superior to proprietary software. One

reason given for this assertion is that open-source software can be improved by anyone who has

a copy of the program. A second reason frequently put forward is the fact that the name of the

author of a module is usually incorporated into the source code; public knowledge of who wrote

the software is viewed as an inducement for writing quality code. Finally, in the case of products

like Linux, yet another reason given is that most of the code has been written by volunteers

working on their own time, as opposed to employees battling against management-imposed

Maintainability of Linux Kernel. July 27, 2001 Page 3

deadlines. On the other hand, Thompson’s statements that “there are pieces [of Linux] that are

good and pieces that are not” and “the quality varies drastically” cannot be disregarded.

Notwithstanding Ken Thompson’s stature within the software engineering community, in

a certain sense his opinion of the quality of Linux is as anecdotal as the views expressed by

Linux users in press interviews. After all, Thompson apparently did not use a metric (such as

number of faults detected) to measure quality. Furthermore, it is not clear whether his opinion is

based on an exhaustive study of all of Linux, or on a sample of the code.

This paper presents results from an examination of available subversions of versions 1.0

through 2.3 of Linux, a total of 391 subversions. Table I summarizes this data set. In Table I

and the throughout this paper, the term “module” refers to a file containing executable C code

(that is, a file with the suffix .c, as opposed to, say, header file with suffix .h).

Table I. Summary of Linux versions and subversions.

Version # # of Subversions LOC (Modules) # of Modules Total # of Files
Ver. 1.0 1 141,255 282 572
Ver. 1.1 36 141,068 282 561
Ver. 1.2 14 234,704 400 909
Ver. 1.3 100 258,621 431 991
Ver. 2.0 40 563,104 779 2,018
Ver. 2.1 130 580,698 785 2,059
Ver. 2.2 18 1,310,807 1,891 4,599
Ver. 2.3 52 1,385,026 1,946 4,721
Total 391

We have examined one aspect of the maintainability of the Linux kernel. Specifically,

we have measured the common coupling in successive versions of the Linux kernel, and

observed that the common coupling increases exponentially. We conclude that if this trend

continues, the maintainability of Linux will degrade in the future.

Maintainability of Linux Kernel. July 27, 2001 Page 4

Section 2 discusses dependencies, and common coupling and its effect on

maintainability. Section 3 describes how we counted instances of common coupling, and our

results are presented in Section 4. Our conclusions appear in Section 5.

2. DEPENDENCIES

The coupling between two units of a software product is a measure of the degree of interaction

between those units [3] and, hence, of the dependency between the units. In their 1974 paper,

Stevens, Myers, and Constantine outlined six levels of coupling. These were presented as an

ordered list by Page-Jones [4], who gave three principal reasons why low coupling between

modules is desirable: (1) fewer interconnections between modules reduce the chance that a fault

in one module will cause a failure in other modules; (2) fewer interconnections between modules

reduce the chance that changes in one module cause problems in other modules, which enhances

reusability; and (3) fewer interconnections between modules reduce programmer time in

understanding the details of other modules. Various modifications and extensions to these levels

of coupling have been proposed over the past 25 years [4–6]. Although all types of coupling are

sometimes useful in design, it has been demonstrated that some types have greater potential for

introducing faults into software [7–10]. Because some types of coupling are more likely to lead

to faults than others, it is widely accepted that some coupling types should be limited in use.

In the 11-level categorization of [5], the two lowest levels of coupling are call coupling

and scalar data coupling. There is call coupling between modules P and Q if P calls Q or Q

calls P, but there are no parameters, common variable references, or common references to

external media between P and Q. There is scalar data coupling if a scalar variable in P is

passed as an actual parameter to Q and it is used for computation purposes (“C-use”), but not for

control purposes (“P-use”) or indirect purposes (“I-use”). This paper considers the classical

Maintainability of Linux Kernel. July 27, 2001 Page 5

coupling category common coupling, which corresponds to level 10, global coupling, in the

categorization of Offutt et al. [5]. Modules P and Q are global coupled if P and Q share

references to the same global variable.

If there were no couplings at all in a software product then that product would consist of

one large module, so some amount of coupling clearly is needed. That is, coupling is a necessary

consequence of modularization. However, where there is coupling between two modules, there is

some degree of dependence between those modules. The resulting degree of dependence

between two modules may be high (“strong coupling”) or low (“weak coupling”). A well-

designed software product makes considerable use of weak coupling and avoids, as far as

possible, strong coupling. For example, a well-designed product utilizes coupling categories

such as call coupling and scalar data coupling, and eschews common coupling as much as is

feasible [3, 11].

It has been shown [12] that coupling is related to fault-proneness. Coupling has not yet

been explicitly shown to be related to maintainability. On the other hand, we do not yet have a

precise definition of maintainability, and therefore there are no generally accepted metrics for

maintainability. Nevertheless, if a module is fault-prone then it will have to undergo repeated

maintenance, and these frequent changes are likely to compromise its maintainability.

Furthermore, these frequent changes will not always be restricted to the fault-prone module

itself; it is not uncommon to have to modify more than one module to fix a single fault. Thus,

the fault-proneness of one module can adversely affect the maintainability of a number of other

modules. In other words, it is easy to believe that strong coupling can have a deleterious effect

on maintainability.

Maintainability of Linux Kernel. July 27, 2001 Page 6

As previously mentioned, in this paper we consider common coupling. There are three

reasons why we did this. First, it was shown in a case study on the maintainability of

multiversion real-time software that the overwhelming preponderance of strong coupling

introduced during the maintenance phase was common coupling [13]. Second, there is

considerable controversy regarding what precisely constitutes weak or strong coupling, let alone

which categorization of coupling should be followed. However, all categorizations we have seen

include a form of coupling that corresponds to classical common coupling, and there seems to be

unanimity that common coupling is undesirable.

The third reason why we concentrated on common coupling is that common coupling

possesses the unfortunate property that the number of instances of common coupling between

module M and the other modules can change drastically, even if module M itself never changes;

this is termed clandestine common coupling [14]. For example, if modules M and N both

reference global variable gv, then there is one instance of common coupling between module M

and the other modules. But if 10 new modules are written, all of which reference global variable

gv, then the number of instances of common coupling between module M and the other modules

increases to 11, even though module M itself is unchanged. Bearing in mind that the size of

Linux has increased nearly 1000% since version 1.0 (see Table I), we suspected that common

coupling between a module in the kernel and the rest of the modules might increase dramatically,

even though the kernel module itself did not change hugely.

There were two reasons why we decided to concentrate our efforts on the Linux kernel.

First, there are only 17 kernel modules and 6,506 versions of those modules; in contrast, the

current version of Linux has nearly 2,000 modules, and there are up to 390 previous versions of

each of those modules. In other words, the research project was manageable because we

Maintainability of Linux Kernel. July 27, 2001 Page 7

restricted our efforts to analyzing “only” 6,506 modules. Second, in the case study on repeated

maintenance we previously referenced [13], the major discriminating factor was differences in

individual programmer abilities. In the case of Linux, the original versions of all the kernel

modules were written by Linus Torvalds, and he has either maintained them himself or in

conjunction with one or two other programmers. There is therefore no need to correct for

individual programmer skills.

3. COUNTING INSTANCES OF COMMON COUPLING

As stated in Section 2, modules P and Q are common (global) coupled if P and Q share

references to the same global variable. We downloaded all the modules of each version of

Linux. For each of the 17 modules that constitute the kernel, we manually determined which

variables are global.

In more detail, we downloaded all the modules of the 391 versions of Linux available on

the Web [1]. We discovered that versions 2.0.30 through 2.0.39 were produced subsequent to

version 2.1.0, so we ignored those 10 versions. Similarly, versions 2.2.2 through 2.2.17 were

produced subsequent to version 2.3, so we ignored those 16 versions, too. That left 365 versions

of Linux. We then determined in how many modules each global variable in a kernel module is

referenced. The counting was done at the module level, so multiple references to the same

common variable within a given module were ignored. We also ignored common coupling of

constants.

We then determined whether the code had been modified from the previous version and,

if so, we noted the number of lines of code in that new version of that kernel module and when it

was released.

Maintainability of Linux Kernel. July 27, 2001 Page 8

Table II. Data for six successive versions of three kernel modules.

Version Panic.c Module.c Ksyms.c
Number CC LOC Date CC LOC Date CC LOC Date

2.1.104 (or 196) 914 79 05/21/98 963 1018 05/21/98 359 397 06/04/98
2.1.105 (or 197) 921 974 1019 06/07/98 360
2.1.106 (or 198) 933 989 368 398 06/13/98
2.1.107 (or 199) 935 992 369
2.1.108 (or 200) 942 992 369
2.1.109 (or 201) 946 999 373

Data are shown in Table II. A blank in the LOC or date column denotes that the code has

not changed between successive versions. Thus, for example, version 2.1.104 of kernel module

Panic.c was released on May 21, 1998. That version had 79 lines of code, and there were 914

instances of common coupling between module Panic.c and all the other modules in version

2.1.104 of Linux. The number of instances of common coupling steadily increased to 946 in

version 2.1.109, even though the code for Panic.c did not change at all, an example of

clandestine common coupling [14].

Finally, for simplicity in the statistical analysis, we renumbered the versions as

consecutive integers between 1 and 365. Thus, version 2.1.104 above became version number

196, as shown in Table II, and similarly for the other versions.

4. RESULTS

We present models for the relationship between LOC and version number; and between

instances of common coupling and version number. A fundamental assumption of normal

regression models is independence of observations; our observations are by their nature

sequential and hence have a temporal dependency. The appropriate statistical tool is therefore a

growth curve [15]. A separate growth curve is needed for each module because the changes in

LOC and in instances of common coupling are module-specific. We found, however, that normal

Maintainability of Linux Kernel. July 27, 2001 Page 9

regression models produce very similar results to the growth curves, and have the advantage that

all modules can be accommodated in a single model. For ease of presentation, therefore, we

present in this paper the results of normal regression models [16].

4.1 Lines of Code

We first considered change in lines of code (LOC) through versions. A linear regression of LOC

versus version number was fitted, allowing different intercepts and slopes for each of the 17

different modules. Version number, module, and a version number–module interaction were all

significant (p < 0.0001), as shown in the analysis of variance (ANOVA) of Table III.

Table III. Data for lines of code.

Effect Degrees of
freedom

F p

Version number 1 4517.3 < 0.0001
Module 16 901.9 < 0.0001
Version number
× Module

16 511.2 < 0.0001

R2 = 0.951

The “Degrees of freedom” column gives the number of parameters to be estimated for

each effect in the model. The effect “Version number × Module” consists of the version number–

module interaction terms. These terms allow for differing gradients of the LOC–Version number

regression line for each module. The parameters for the interaction terms are the differences

between the gradient of one of the modules (we arbitrarily chose Printk.c) and each of the other

modules. Consequently, the number of parameters to be estimated is 16, the number given in the

“Degrees of freedom” column. The effect “Version number” has one parameter, the gradient of

the Printk.c module LOC–Version number regression line, and the effect “Module” has 16

parameters, each of these being the difference between the intercept of the LOC–Version number

Maintainability of Linux Kernel. July 27, 2001 Page 10

regression line for each module, and the intercept for the Printk.c module regression line. The F

statistics are the ratios of the variation explained by each effect, to residual variation or noise. If

this statistic is sufficiently large, we conclude that the effect is statistically significant. We judge

the size of the F ratio for each effect by comparing it against the distribution we would expect it

to have if the effect were in fact not present, namely, the F distribution. If the F ratio falls in the

upper tail of the F distribution, we conclude that the effect is present, or statistically significant.

The model explains 95.1% of the variation in LOC. That is, the two variables and their

interaction account for 95.1% of the observed behavior of LOC. This result is deduced from the

value of R2 in Table III, which is the ratio
 variationtotal

modelby explainedvariation
, that is, the proportion

of total variation in LOC explained by the model.

4.2 Common Coupling

Figure 1 shows how common coupling varies with version number. Nine of the Linux kernel

modules appear in the first graph, and eight in the second. Both graphs show both the measured

value of the common coupling and the values predicted by our model. Figure 1 reveals an

extremely clear exponential trend, which is again module-specific.

Maintainability of Linux Kernel. July 27, 2001 Page 11

Figure 1. Graphs of measured and predicted common coupling versus version number.

The measured common coupling is represented by discrete points, the predicted

common coupling by a line.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350 400

Sysctl.c

pred Sysctl.c

Sched.c

pred Sched.c

Fork.c

pred Fork.c

Module.c

pred Module.c

Exec_domain.c

pred Exec_

Resource.c

pred Resou

Dma.c

pred Dma.c

Info.c

pred Info.c

Softirq.c

pred Softirq.c

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350 400

Sys.c

pred Sys.c

Panic.c

pred Panic.c

Printk.c

pred Printk.c

Itimer.c

pred Itimer.c

Signal.c

pred Signal.c

Exit.c

pred Exit.c

Ksyms.c

pred Ksyms.c

Time.c

pred Time.c

Maintainability of Linux Kernel. July 27, 2001 Page 12

Because of the exponential nature of the relationship, a linear model was used, with the

natural logarithm of the number of instances of common coupling as the response variable. (The

constant 0.1 was added before taking logarithms, because eight of the common coupling values

were zero.) Because of the strong linear dependency between LOC and version number, the

inclusion of LOC in this model would have resulted in severe numerical instability, and LOC

was therefore not included in this model. Version number, module, and version number–module

interaction were all found to be significant. The analysis of variance table is given in Table IV.

Table IV. Data for common coupling.

Effect Degrees of
freedom

F P

Version number 1 2.1E+04 < 0.0001
Module 16 824.44 < 0.0001
Version number
× Module

16 163.50 < 0.0001

R2 = 0.946

The model has R2 = 0.946, meaning that 94.6% of the variation in the number of

instances of common coupling can be explained by the effects.

5. CONCLUSIONS

As described in Section 3, we downloaded 365 versions of Linux. For each version in turn, we

looked at the 17 kernel modules and counted the number of lines of code in each module. Then

we counted the number of instances of common (global) coupling between each of the kernel

modules and all the other modules in that version of Linux. We also recorded the version

number as an integer between 1 and 365. We obtained two primary results.

Maintainability of Linux Kernel. July 27, 2001 Page 13

First, we found a module-specific linear dependency between lines of code and version

number that is significant at the 99.99% level; 95.1% of that dependency can be explained by the

three effects: version number, module, and their interaction. In other words, the number of lines

of code in each kernel module increases linearly with version number, and no additional

variables are needed to explain this increase; it is an inherent feature of successive versions of

Linux. This result is not surprising. After all, successive versions of Linux provide additional

functionality. One would expect this increase of functionality to be achieved by both inserting

additional code into existing modules and adding new modules. The fact that the size of the

kernel grows only linearly could be an indication that the kernel modules are well designed; only

a small amount of additional code needs to be inserted to interface the kernel with modified

existing modules and new modules that provide the additional functionality.

Second, we found that the number of instances of common coupling grows exponentially

with version number. This result, too, is significant at the 99.99% level. In this case, 94.6% of

the observed growth can be explained by the three effects: version number, module, and their

interaction. That is, the exponential growth in common coupling is again an inherent feature of

successive versions of Linux.

In Section 2 we related common coupling to fault-proneness. Consequently, combining

our two results reveals a disturbing trend. Even though the number of lines of code in the kernel

grows only linearly, the number of instances of common coupling between each kernel module

and all the other Linux modules grows exponentially. Suppose that every statement added to a

kernel module were a call to another module. Because the number of lines of code grows only

linearly, the number of new instances of coupling induced by these calls even in this extreme

case can grow only linearly. However, as explained in Section 2, common coupling can increase

Maintainability of Linux Kernel. July 27, 2001 Page 14

even when a module does not change. That is how the common coupling increases exponentially

even though the number of lines of code increases only linearly.

Common coupling was introduced into Linux from the very beginning, and the nature of

common coupling led to an exponential growth in the number of instances in successive versions

of Linux. There is no reason to suppose that this growth will be slowed in the future unless

Linux is completely restructured with a bare minimum of common coupling. It could be argued

that this restructuring of a huge product will mean that the development of Linux will have to be

put on hold for many months until the restructuring is complete. On the other hand, if this

restructuring is not performed, it seems inevitable that, at some future date, the dependencies

between modules induced by common coupling will render Linux extremely hard to maintain. It

will then be exceedingly hard to change one part of Linux without inducing a regression fault (an

apparently unrelated fault) elsewhere in the product. The only alternative will then be to

restructure what by that time will be an even larger software product.

In conclusion, our analysis of the growth of common coupling within successive versions

of Linux tends to support Ken Thompson’s remark quoted in Section 1: “I don’t think [Linux]

will be very successful in the long run” [2]. However, the future problems we have identified

can be averted if Linux is restructured with common coupling reduced to a bare minimum, and if

a careful watch is kept to ensure that virtually no additional instances are introduced after the

restructuring has been performed.

REFERENCES

[1] 'What is Linux?' Linux Online, Inc., http://www.linux.org/info/index.html, March 6,

2000.

Maintainability of Linux Kernel. July 27, 2001 Page 15

 [2] COOKE, D., URBAN, J., HAMILTON, S.: ’Unix and beyond: An interview with Ken

Thompson’, IEEE Computer, 1999, 32 (5) pp. 58–64

[3] STEVENS, W. P, MYERS, G.J., CONSTANTINE, L. L.: 'Structured design', IBM

Systems J., 1974, 13 (2) pp. 115–139

[4] PAGE-JONES, M.: 'The practical guide to structured systems design' (Yourdon Press,

New York, 1980)

[5] OFFUTT, J., HARROLD M. J., KOLTE, P.: 'A software metric system for module

coupling', J. Syst. and Softw., 1993, 20 (3) pp. 295–308

[6] BINKLEY A. B., SCHACH S. R.: 'Validation of the coupling dependency metric as a

predictor of run-time failures and maintenance measures'. International Conference on

Software Engineering, ICSE'98, April 1998, Kyoto, Japan, pp. 452–455

[7] WULF, W., SHAW, M.: 'Global variables considered harmful', ACM SIGPLAN Notices,

1973, 8 (2) pp. 28–34

 [8] KAFURA, D., S. HENRY, S.: 'Software quality metrics based on interconnectivity', J.

Syst. and Softw., 1981, 2 (2) pp. 121–131

[9] TROY, D. A., ZWEBEN, S. H.: 'Measuring the quality of structured designs', J. Syst. and

Softw., 1981, 2 (2) pp.112–120

[10] SELBY, R. W., BASILI, V. R.: 'Analyzing error-prone system structure', IEEE Trans. on

Softw. Eng., 1991, 17 (2) pp. 141–152

[11] SCHACH, S. R.: 'Object-oriented and classical software engineering' (WCB/McGraw-

Hill, Boston, 2002 5th edn. pp. 181–189, 426) [Published in July 2001].

Maintainability of Linux Kernel. July 27, 2001 Page 16

[12] BRIAND, L. C., DALY, J., PORTER, V., WÜST, J.: 'A comprehensive empirical

validation of design measures for object-oriented systems'. 5th International Software

Metrics Symposium, November 1998, Bethesda, MD, pp. 246-257

[13] WANG, S., SCHACH, S. R., HELLER, G. Z.: 'A case study in repeated maintenance', J.

Softw. Maint. and Evol.: Res. and Pract. 2001, 13 (2) pp. 127–141.

[14] SCHACH, S. R., JIN, B., WRIGHT, D. R., HELLER, G. Z., OFFUTT, A. J.:

'Clandestine common coupling', Computer Science Technical Report 01–02, Vanderbilt

University, Nashville, TN, June 2001.

[15] GEISSER, S.: 'Growth curve analysis'. In: KRISHNAIAH, P. R. (Ed). 'Handbook of

statistics', Vol. 1. (North Holland, Amsterdam, 1980, pp. 89–115)

[16] KLEINBAUM, D.G., KUPPER L. L., MULLER K. E., NIZAM, A.: 'Applied regression

analysis and other multivariable methods' (Duxbury Press, Pacific Grove, CA, 1998 3rd

edn.)

