
Establishing Pair-wise Keys For Secure Communication in Ad Hoc
Networks: A Probabilistic Approach

Sencun Zhu1?, Shouhuai Xu2, Sanjeev Setia1??, and Sushil Jajodia1

1Center for Secure Information Systems, George Mason University, Fairfax, VA 22030
2Dept. of Information and Computer Science, Univ. of California at Irvine, Irvine, CA 92697

Email: {szhu1,setia,jajodia}@gmu.edu, shxu@ics.uci.edu

Abstract. We present a scalable distributed protocol that enables two mobile nodes in an ad hoc network to es-
tablish a pairwise shared key on the fly, without requiring the use of a on-line key distribution center. The design
of our protocol is based on a novel combination of two techniques – probabilistic key sharing and threshold secret
sharing. Our protocol is scalable since every node only needs to possess a small number of keys, independent of
the network size, and it is computationally efficient because it only relies on symmetric key operations. We show
that a pairwise key established between two nodes using our protocol is secure against a collusive attack by a cer-
tain number of compromised nodes, and that our protocol can be parameterized to meet the appropriate levels of
performance, security and storage for the application under consideration.

1 Introduction

For secure communication between two mobile nodes in an ad hoc network, i.e., secure peer-to-peer com-
munication, it is necessary for the two nodes to share a secret key. This can be easily achieved if we assume
the existence of a public key infrastructure. However, many mobile ad hoc network cannot afford the de-
ployment of public key cryptosystems due to their high computational and communication overheads and
storage constraints. For instance, Brown et al [1] have reported that a 512-bit RSA signature generation
takes 2-6 seconds on a RIM Pager and a Palm Pilot, and Perrig et al [12] report that a current generation
sensor node has just 4500 bytes for security and the application. Consequently, it is necessary to explore
approaches that are based on the use of symmetric key cryptography.

The problem of facilitating secure communication based only on symmetric key cryptography has been
investigated extensively. The seminal idea due to Needham and Schroeder [9] is to deploy a server that acts
as a key distribution center(KDC) and pre-distributes a single key to an individual participant. To commu-
nicate securely, a pair of participants have to obtain fresh session keys from the on-line server. Although
this scheme and other KDC based schemes such as Kerberos [7] and Otway-Rees [10] have been widely
deployed in wired networks, the requirement of an on-line key server poses a problem for ad hoc networks
that are characterized by dynamic topology changes and node failures, e.g., due to battery exhaustion.

To avoid the use of such an on-line server, Mitchell and Piper [8] proposed a solution based on proba-
bilistic key sharing that ensures that the keys known to a pair of participants (i.e., the intersection of their
own keys) is not covered by a certain threshold number of other participants. (Clearly, the trivial solution that
lets each pair of participants hold a different key is sufficient for this purpose but not scalable.) Although
this approach directly enables secure communication between any two participants, the storage complex-
ity imposed on each participant is unaffordable in the context of the present work (cf. [13] for the lower
bounds). A similar scenario has happened in the context of multicast authentication: a natural application
of [3] would ensure multicast authentication against a threshold number of colluding participants, but a
much more light-weight solution was obtained in [2] which provides some practically affordable security
guarantee.

? contact author
?? also with Dept. of Computer Science, George Mason University

1

In this paper, we present a scalable and distributed protocol that enables two mobile nodes in an ad hoc
network to establish a pairwise shared key on the fly, without requiring the use of a on-line key distribution
center. The design of our protocol is based on a novel combination of two techniques – probabilistic key
sharing and threshold secret sharing. In our protocol, the storage requirements per node depend only on
the level of security desired and are independent of the size of the network. Our protocol relies only on
symmetric key operations and is thus computationally efficient.

A pairwise key established between two nodes using our protocol is exclusively known to the peers with
overwhelming probability, and it is secure against a collusive attack by a certain number of compromised
mobile nodes. We study the performance and the security aspects of our protocols through both analysis
and detailed simulation, and show that the protocol can be parameterized to meet the appropriate levels of
security, performance and storage for the application under consideration.

The rest of this paper is organized as follows. We first present our pairwise key establishment protocol
in Section 2. In Section 3, we analyze the performance and security of the protocol. Finally, we conclude
this work in Section 4.

2 The Pairwise Key Establishment Protocol

In this section, we first describe our assumptions and present the basic ideas underlying our protocol, and
then present our protocol in detail.

2.1 Overview

Network, Node and Security Assumptions: First, we assume network links are bidirectional, i.e., if node
A can hear node B, B can also hear A. Second, the resources of a node, such as power, computation
and communication capacity, are relatively constrained. We assume that every node has space for storing
hundreds of bytes or a few kilobytes of keying materials, depending on the security requirements. Third, we
assume all the nodes in a network are equally trusted. No central key server exists in the formed network,
whereas it may exist off-line to initiate the mobile nodes prior to the formation of the network. Fourth, we
assume that if a node is compromised, all the information it holds will also be compromised. Moreover, all
the compromised nodes may collude to launch attacks. Finally, we assume all the nodes are equally likely
to be compromised.

Protocol Operation: Our pairwise key establishment protocol is based on two techniques – probabilistic
key sharing and threshold secret sharing.

Before the deployment of the network, i.e., during a key pre-distribution phase, every node is loaded with
a (small) fraction of keys out of a large pool of keys from a key server. Note that this phase occurs before the
deployment of the network, and the key server stays off-line after this phase is complete. Keys are allocated
to each node using a probabilistic scheme that enables every pair of nodes to share one or more keys with a
certain probability. The keys directly shared between any two nodes can thus be used to encrypt messages
exchanged by the nodes. Even if two nodes do not share any keys directly, our probabilistic key sharing
scheme enables them to communicate securely using logical secure channels that can be established using
the keys pre-allocated to nodes in the key pre-distribution phase (the logical path establishment process is
discussed in more detail in Section 2.2).

Now consider two nodes, u and v that wish to communicate privately. Note that u and v may already
share one or more keys from the pool of keys after the key pre-distribution phase. However, these keys are
not known exclusively to u and v because every key in our key pool may be allocated to multiple nodes;
hence, they cannot be used for encrypting any message that is private to u and v. Thus the goal of our
algorithm is to establish a key, sk, that is known exclusively to u and v.

2

To establish sk, a sender node (say u) splits sk into multiple shares using a threshold secret sharing
scheme. It then transmits to the recipient (v) all these shares, using a separate secure logical channel (es-
tablished using the logical path establishment process) for each share. The recipient node then reconstructs
sk after it receives all (or a certain number of) the shares.

2.2 Detailed Protocol Description

We now discuss key pre-distribution, logical path establishment, and pairwise key establishment in detail.

Notation In this discussion, we use the following notations.

– u, v are principals such as communicating nodes.
– Ru is the set of keys that node u possesses.
– Iu is the set of key ids corresponding to the keys in Ru.
– |Iu| is the size of the set Iu and |sk| is the size of the key sk.

Key Pre-distribution In the key pre-distribution phase, the off-line key server loads each node u with m
distinct keys from the key pool P of l keys {k1, k2, . . . , kl} prior to the formation of the ad hoc network.
A deterministic algorithm is used to decide the subset of keys Ru allocated to node u. Specifically, for each
node with a unique node id, the key server generates m distinct integers between 1 and l using a pseudo-
random number generator upon the input of a node id. As a result, each key in the key pool has a probability
of m/l to be chosen by each node. Note that this construction allows any node that knows another node’s id
u to determine Iu, the ids of the keys held by node u.

Logical Path Establishment The path establishment procedure is executed when a node wants to securely
exchange messages with other nodes in the network.

We say there are logical paths between two nodes when (i) the two nodes share one or more keys. We
call such paths direct paths. (ii) the two nodes do not share any keys, but through other intermediate nodes
they can exchange messages securely. We call such paths indirect paths and call the involved intermediate
nodes proxies.

In our design, it is straightforward to find logical paths between two nodes. Since the key pre-distribution
algorithm is public and deterministic, a node u can independently compute Iv, the set of key ids correspond-
ing to a node v’s key set. Therefore, without proactively exchanging the set of its key ids with others, a node
knowing the ids of its neighbors1 can determine not only which neighbors share or do not share keys with
it, but also which two neighbors share which keys. The latter knowledge is very valuable when node u does
not share any keys with a neighbor node v, because node u can use a neighbor (say x) which shares keys
with both of them as a proxy. For example, suppose node u shares a key kux with node x, node v shares a
key kvx with node x, but no shared key exists between node u and node v. To transmit a message M to node
v securely, node u executes the following steps.

u −→ x : {M}kux

x −→ u : {M}kxv

u −→ v : {M}kxv

From this example, we can see that a proxy node acts as a translator between nodes.

1 A node can obtain its neighborhood information from lower layers. Many ad hoc routing protocols [11] provide neighborhood
knowledge.

3

We call node x in the above example node u’s one-hop proxy to v. More generally, node x is said to
be node u’s i-hop proxy if x is i hops away from u and x shares a key with both u and v respectively. If
u and v do not have any direct paths or one-hop proxies to each other, they can resort to a proxy node of
multiple-hop away. Note that it is also possible to establish a logical path with multiple proxies involved.
For example, if there is a shared key between u and x, between x and y, between y and v respectively, u and
v can establish a logical path as well.

There could be zero, one or many logical paths between two nodes. Our protocol always uses any
direct paths that exist between nodes in preference to indirect paths, since the use of an indirect path incurs
additional computational and communication overhead. Note that we do not consider using multi-proxy
paths in this work because a multi-proxy path incurs much higher performance overhead but weaker security
than a direct path or a one-proxy path (more keys are involved in the path and hence compromising any one
of them will compromise the delivered message).

Pairwise Key Establishment We now describe an approach whereby two nodes can establish a pairwise key
that is exclusively known to the two nodes with overwhelming probability. We note the common keys, if any,
between any two nodes after the key pre-distribution phase, are not exclusively held by them, because every
key in the key pool is statistically allocated to m·N

l
nodes, given l, m, and the network size N . Therefore,

the keys in the key pool cannot be used directly for private communications between two nodes.
Our scheme is adapted from the distributed authentication scheme by Gong [5], which utilizes a set of

key distribution centers (KDCs) [9] to achieve better security and availability. However, the setting we have
in this paper is very different from that in [5]. We do assume the existence of a key server, but this server is
not involved after the key pre-distribution phase. In contrast, the set of servers in [5] are involved whenever
a pair of principals need to establish a session key.

The key observation underlying our key establishment scheme is that a sender node can split the to-be-
established pairwise secret key into multiple shares, and then secure them with the multiple logical paths
between itself and a recipient node. More specifically, the scheme involves five steps:

1. The sender node u first randomly generates the secret key ks, then derives n shares sk1, sk2, ..., skn

from ks using the following simple algorithm: it generates n − 1 random strings sk1, sk2, ..., skn−1,
|sk| = |sk1| = ... = |skn−1|, and then computes skn = ks ⊕ sk1 ⊕ ... ⊕ skn−1, where ⊕ is an XOR
operation. This scheme requires a recipient node to receive all these n shares to recover ks using simple
XOR operations, while no information about ks can be determined with less than n shares. We shall
discuss the choice of n in Section 2.2 and the alternative schemes that can increase the availability of
this scheme in Section 2.3.

2. Node u secures each share with a separate logical path (or multiple logical paths) and sends all the shares
to the recipient node v.

3. Node v computes the secret key ks from the n received shares.
4. Node v sends back to node u a HELLO message, authenticated with ks as the MAC key2.
5. Node u verifies the HELLO message. The key establishment process is done if the HELLO message is

correct; otherwise, node u aborts the process or tries again with a different set of logical paths after a
certain time period.

Two types of logical paths, i.e., direct paths and indirect paths, are potentially used in the above process.
The proxy nodes involved in the indirect logical paths in step 2 act in a manner similar to the on-the-fly
(KDC) servers in [5].

2 More precisely, node v uses km = Fks(0) as the MAC key, and kp = Fks(1) as the pairwise key, where F is a pseudo random
function [4]

4

Determining The Number of Secret Shares Clearly, the more the secret shares used in the key estab-
lishment scheme, the more secure the secret key will be. However, using a larger number of secret shares
requires a larger number of logical paths to be established between two peers, leading to higher bandwidth
and computational overhead. This is because any key that is used in establishing logical paths may be used
for securing at most one secret share for the two peers; otherwise, compromising one key would compromise
multiple secret shares.

We consider the use of three classes of logical paths between two peers. The first class, denoted as
C1, includes the direct paths based on the common keys between the two peers. In our scheme, a sender
node u knowing the id of the recipient node v can independently determine their common key set. Let

Ruv
def
= Ru ∩ Rv, and let there be z1 keys in Ruv. Let the share generated by node u be sk1. To securely

deliver sk1, node u computes the XORed key kenc = XOR δi, ∀δi ∈ Ruv, then encrypts sk1 with kenc.
The second class, denoted as C2, includes the indirect logical paths based on the intermediate nodes on

the path between the two peers. In an ad hoc network, before a node u sends a message to another node v, it
establishes a route using an algorithm that typically involves network-wide flooding [6, 11]. For example, in
the dynamic source routing (DSR) [6] protocol, the ids of all the intermediate nodes between the source and
the destination are returned to the source in the ROUTING REPLY message. The source node can therefore
choose the intermediate nodes that can act as proxies to forward some secret shares.

We employ the following forwarding algorithm. Let node x be a proxy node for node u and node v, and

let Rux
def
= Ru ∩ Rx and Rxv

def
= Rx ∩ Rv. Since node x is a proxy for u and v, Rux 6= ∅ and Rxv 6= ∅.

Suppose there are s1 and s2 keys in Rux and Rxv respectively and zs = min(s1, s2), then the number of
keys in Rux and Rxv that are used to encrypt a share is zs. More specifically, node u (i) generates a new
secret skx (ii) it then (randomly) selects zs keys in Rux to compute the XORed keys k1

ux (iii) it encrypts skx

with k1
ux (iv) it sends the encrypted share to node x. Node x decrypts skx, re-encrypts it with the XORed

key k2
xv computed using any zs keys in Rxv and sends the result to node v. Since node x is in the path from

u to v, no extra message overhead is incurred in the use of such proxies. The number of such proxies is
mainly determined by the topological distance between u and v. We denote the set of such proxies as Px2.

The third class, denoted as C3, includes the indirect logical paths based on nodes that do not belong to the
second class, i.e., nodes that are potentially not on the path from u to v. In a DSR-like routing protocol, when
the destination node receives the ROUTING REQUEST message from the source node, it can piggyback the
ids of its neighbors that can act as proxies in the ROUTING REPLY message. Similarly, the intermediate
nodes can also add their neighbors to the ROUTING REPLY message if the neighbors can be proxies for the
source and the destination. Of course, the source node can also utilize its own neighbors as proxies. With all
this information, the source node can determine how many proxies and how many secret shares it can deliver
through them. Basically, the source node can run a forwarding algorithm similar to that used for class C2.
The main difference is that it incurs some additional communication overhead because the proxy nodes are
not in the path from the source to the destination. The number of such proxies is mainly determined by node
density of the network and the distance between the source and the destination. For a sparse network, a node
may use its multiple-hop proxies. We denote the set of such proxies as Px3.

For a source node u and a destination node v, every key in their key sets may be used at most once for
delivering one secret share. Therefore, node u selects only one of the proxies that contribute the same keys.
The source should select proxies with the goal of minimizing the performance overhead. In Fig. 1 we show
the complete algorithm that a source node runs to determine the total number of secret shares n, given all
the candidate proxy sets Px2, Px3 and the desired security level p0

w. The algorithm evaluates the security
level pw in each round of the loop. If pw ≤ p0

w, the algorithm terminates and returns n. If the algorithm uses
up all the proxies known to a node and pw is larger than p0

w, the algorithm reports a failure. In this case,
the (sender) peer can either find more proxy nodes from nodes that are multiple hops away and re-run the
algorithm, or it can re-run the algorithm at a later time when network conditions change, e.g., when it has

5

Algorithm
Input: u, v, Px2, Px3, p

0

w

Output: n – the number of secret shares
Method:

// z1 – the number of direct paths, z2 – the number of indirect one-proxy paths.

1. n← 0, z1 ← 0, z2 ← 0, I ′

u ← Iu, I ′

v ← Iv .
2. Node u computes Iuv = Iu ∩ Iv , and updates

I ′

u ← I ′

u − Iuv, I ′

v ← I ′

v − Iuv , z1 ← |Iuv|. If z1 ≥ 1, then n← 1.
3. From all the candidate proxy nodes in Px2, node u randomly chooses a node, say x.

Let I1

def
= Iux ∩ I ′

u and I2

def
= Ixv ∩ I ′

v .
If I1 6= ∅ and I2 6= ∅, then

Select x as a proxy node. Let zs ← min(|I1|, |I2|),
then node u deletes zs ids in I1 from I ′

u and deletes zs ids in I2 from I ′

v .
n← n + 1, z2 ← z2 + zs

Px2 ← Px2 − x.
Evaluate the security level pw based on z1 and z2 using the formulae in Section 3.1. If pw ≤ p0

w, return n.
4. Repeat Step 3 until Px2 becomes empty.
5. Px2 ← Px3, repeat Step 3 and Step 4.
6. return FAILURE

Fig. 1. The algorithm for determining the number of secret shares used in pairwise key establishment.

more neighbors. We describe the metrics for evaluating the security level of a to-be-established pairwise key
in Section 3.1. Note that we can simply modify this algorithm to return the selected proxy sets and key sets
as well.

2.3 Discussion

In the basic scheme presented above, a recipient node needs to receive all the secret shares to recover the
secret key, which might be too strong a requirement. For example, if a proxy node that is a neighbor of the
destination node becomes unavailable due to node mobility or power failure when a secret share that requires
its translation arrives at the destination node, the source and the destination will fail in establishing the secret
key, despite the efforts they have already made. To increase the availability of the basic scheme, a (k,n)
(k < n) threshold secret sharing scheme [14] can be deployed. Moreover, we note that if a compromised
node (that is yet undetected) is selected as a proxy, it might disrupt the pairwise key establishment by
modifying the secret share(s) through it. To detect the compromised node and further increase the robustness
of the basic scheme, we can apply the cross-checksum scheme proposed by Gong [5]. Using these alternative
schemes instead of the basic scheme does not affect our design very much; indeed, these schemes only
require more secret shares than the basic scheme does under the same security requirement.

3 Security and Performance Analysis

3.1 Security Analysis

For the sake of simplicity and clarifying the presentation, we assume that the underlying encryption scheme
is secure and define the security of our scheme as the probability pw that a coalition of up to w nodes can
compromise the established pairwise key. Suppose there are w compromised nodes, r1, · · ·, rw, that collude
by sharing their key sets. Therefore, they have the set of keys Σ = ∪w

i=1
Rri

, which allow them to obtain the
secret shares via the logical paths secured by K ⊆ Σ.

6

Let us assume node u and node v have z1 direct paths that are used for forwarding one secret share.
For every key in the key pool and any coalition of w nodes, the probability pc that the key is contained in
the union of the key sets of the w nodes is pc = (1 − (1 − m

l
)w). Therefore, the probability pw1 that the

coalition of w nodes cover all these z1 paths (i.e., keys) is

pw1 = pz1

c = (1 − (1 −
m

l
)
w
)
z1

. (1)

Let z2 be the number of indirect one-proxy paths which we compute in the Step 3 of the algorithm in
Fig 1. A secret share is compromised when the compromised nodes have keys to decode either the trans-
mission between the source node and the proxy node or the transmission between the proxy node and the
destination node. Therefore, the probability pw2 that the coalition of w nodes are able to decode all these z2

secret shares is

pw2 = (1 − (1 −
m

l
)
2w

)
z2

. (2)

Thus, the security of the pairwise key is
pw = pw1 · pw2 (3)

We note there is an upper bound on the security of the pairwise key, which occurs when a peer uses all
the keys in its key set for securing secret shares. Let pc(w) be the probability that the key set of a legitimate
node is completely covered by that of w colluding revoked nodes. We have

pc(w) = (1 − (1 −
m

l
)
w
)
m

. (4)

Given the desired security level p0
w and w, we should select m and l so that pc(w) ≤ p0

w.

3.2 Performance Analysis

Computational Costs The metrics used to evaluate the performance of our protocol are the computational
and communication costs of key establishment. The main computational cost is the cost of encrypting and
decrypting the n secret shares during the pairwise key establishment phase. For a secret share that is trans-
mitted using a direct logical path between the two peers, there is a single encryption at the source and a
single decryption at the destination. For a secret share that is delivered via a one-proxy (indirect) logical
path, there are two encryptions (one at the source and one at the proxy) and two decryptions (one at the
proxy and one at the destination). In the worst case, all the n secret shares are delivered through one-proxy
paths. Consequently, the total number of encryptions and decryptions is 4n. Note that the encryptions and
decryptions involved are inexpensive symmetric key operations.

Communication Costs The communication cost, Cs, of our protocol is the total number of hops traversed
by the n secret shares in a pairwise key establishment operation. Clearly, Cs increases with n and d, the
topological distance in hops between two peers, because all the secret shares are delivered hop-by-hop
along the route between the two peers. Let n1 be the number of secret shares corresponding to C1, n2

corresponding to C2, and n3 corresponding to C3 (when only considering one-hop proxies), then Cs =
d · (n1 + n2 + n3) + 2n3 = dn + 2n3.

Below, we use n as the indication of the communication cost, and study the factors that affect the
communication through detailed simulations. Note we only consider the one-hop proxies for C3 in this
performance study.

In our simulations, we consider a network space of 2000m × 2000m, and a default network size of 200
nodes (unless otherwise mentioned) that are randomly distributed in the space3. The transmission range of

3 In our simulations, we used a static network instead of a mobile network because a pairwise key establishment usually takes a
very short time relative to mobile node velocities; therefore, we considered a static network corresponding to a snapshot of the
ad hoc network at the time of the event.

7

a node is 250m. We generate a route for each pair of connected peers based on the shortest path routing
algorithm. All the results have 95% confidence intervals that are within 5% of the reported values.

The Composition of the Number of Secret Shares To evaluate the communication costs of our protocol, we
ran the algorithm in Fig. 1 to determine the number of each type of proxy used for achieving the target
security level pw = 10−6 and w = 10 (Canetti et al [2] suggest that a covering probability of 2−20(≈ 10−6)
is suitable for some applications.). Fig. 2 shows the number of secret shares n used for key establishment
for any two peers at a distance of d hops. The figure also shows the composition of n, i.e., the number of
shares that can be attributed to the different classes of proxies (C1, C2, and C3) used by our algorithm.

From Fig. 2, we can make the following observations. First, the number of shares corresponding to C1 is
one, since at most one secret share is delivered through C1. Second, the communication cost corresponding
to proxies in C2 increases with d because more intermediate nodes can act as proxies and hence more secret
shares are delivered via proxies in C2. Third, the communication cost corresponding to C3 first increases
and then decreases with d. For two peers that are neighbors (d = 1), their one-hop neighbor sets overlap;
therefore, the number of distinct proxy nodes available for them is smaller than in the case when the peers
are two or three hops away from each other4. However, since logical paths in C2 are selected in preference to
those in C3, using a larger number of logical paths from C2 as d increases results in fewer logical paths from
C3 because the algorithm in Fig. 1 terminates once it reaches the desired security level. Fourth, we observe
that the total number of secret shares required to achieve the security level is almost constant, independent
of the physical distance between two peers.

0 3 6 9 12 15 18
0

5

10

15

20

Distance of Two Peers (Number of Hops)

 N
um

be
r

of
 S

ec
re

t S
ha

re
s

C1
C2
C3(one−hop)
Total

Fig. 2. The number of secret shares as a function of distance
(in hops) between two peers and its composition

80 120 160
4

5

6

7

8

9

10

m (the number of keys each node holds)

N
um

be
r

of
 S

ec
re

t S
ha

re
s

l=2000
l=4000

(N=200, pw0=1e−6, w=10)

Fig. 3. The impact of varying m and l on the number of
secret shares generated

Impact of Node Density In our simulations, we also evaluated the impact of node density on n by varying
N , the number of nodes in our fixed space. Our results show the impact of changing the node density is very
small. However, we noticed in our simulations that some pairs in a network with a very low node density
cannot establish a pairwise key that satisfies the required security level. This is because the peers cannot find
enough proxies in the network due to network partition.

4 Actually in this figure when d = 1 or d = 2, a few 2-hop proxies of a source node serve one or more secret shares.

8

Impact of Probabilistic Key Sharing Parameters In Fig. 3 we show the impact of l and m on n, the number
of secret shares used for key establishment. We observe that (1) for a fixed l, n decreases with m; (2) for a
fixed m, n decreases with l; (3) m has a larger impact on n than l has.

0 3 6 9 12 15 18
10

−40

10
−30

10
−20

10
−10

10
0

Distance of Two Peers (Number of Hops)

P
(w

)

m=80,l=1000
m=80,l=2000
m=80,l=4000
m=160,l=2000
m=160,l=4000

Fig. 4. The security of the pairwise key as a function of m

and l (w = 10)

10
−8

10
−7

10
−6

10
−5

7

8

9

10

11

12

13

14

15

Pw0 (the Desired Security Level)
 N

um
be

r
of

 S
ec

re
t S

ha
re

s

(N=200, m=80, l=2000, w=10)

Fig. 5. The number of secret shares used as a function of
desired security level

Storage Requirements The storage requirements of our approach are determined by the number of keys
held by a node, m. Clearly, the storage requirements are independent of the size of the network. As discussed
in this section, the parameters m and l impact both the security and performance of our protocol and should
be selected based on the application under consideration.

3.3 Security and Performance Tradeoff

In Fig. 4, we plot pw for w = 10 as a function of m and l when the peers use all the proxies in classes
C1, C2, and C3 for establishing the pairwise key. We make the following observations. First, the security of
the pairwise key increases with the distance d between the peers because they can use a larger number of
secret shares. Second, increasing both m and l can improve the security of the pairwise key significantly,
while m has a larger impact than l has. For example, when m = 160 and l = 4000, the probability that 10
colluding nodes can compromise the pairwise key established by the peers at a distance of 5 hops is about
10−27.

In Fig. 5, we further show the impact of security level on the number of secret shares used for key
establishment. We observe that achieving a higher security level requires a larger number of secret shares
to be used and hence will incur a higher performance overhead, under the same simulation setting. The
figure shows that our protocol can be parameterized to trade performance for security, and vice versa, as is
appropriate for the application under consideration.

4 Conclusions

In this paper, we have presented a scalable protocol for pairwise key establishment in ad hoc networks.
The design of our protocol is base on a novel combination of threshold secret sharing and probabilistic key
sharing. Our protocol has the following properties:

9

– It is fully distributed – no on-line key server is required.
– It is computationally efficient – it relies only on symmetric cryptography.
– It is storage scalable – the storage requirements per node are independent of the size of the network.
– It can be shown to be secure to a collusive attack by a certain number of compromised nodes.

As future work, we plan to further study the robustness and availability of our pairwise key establishment
scheme.

References

1. M. Brown, D. Cheung, D. Hankerson, J. Hernandez, M. Kirkup, and A. Menezes. PGP in Constrained Wireless Devices. In
9th USENIX Security Symposium, pages 247261, August 2000.

2. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas, Multicast Security: A Taxonomy and Some Efficient
Constructions. IEEE Infocom’99. Long Beach, CA, USA, Oct. 2001.

3. P. Erdos, P. Frankl, and Z. Furedi. Families of Finite Sets in Which no Set Is Covered by the Union of r Others. Israel J. Math.
51(1985), 75-89.

4. O. Goldreich, S. Goldwasser, and S. Micali, How to Construct Random Functions, Journal of the ACM, vol. 33, no. 4, 1986,
pp 210-217.

5. L. Gong. Increasing Availability and Security of an Authentication Service. IEEE Journal on Selected Areas in Communica-
tions, 11(5):657–662, 1993.

6. D. Johnson, D. Maltz, Y. Hu, J.Jetcheva. The Dynamic Souce Routing Protocol for Mobile Ad Hoc Networks. Internet-Draft,
draft-ietf-manet-dsr-07.txt, February 2002.

7. J. Kohl and B. Neuman, The Kerberos Network Authentication Service (V5). RFC 1510, September 1993.
8. C. Mitchell and F. Piper. Key Storage in Secure Networks. Discrete Applied Mathematics. 21(1988). pp 215-228.
9. R. Needham and M. Schroeder, Using Encryption for Authentication in Large Networks of Computers. In Commuinications

of the ACM 21(12): 993-999, 1978.
10. D. Otway , O. Rees, Efficient and Timely Mutual Authentication, Operating Systems Review, 21 (1987), 8-10.
11. Charles Perkins. Ad hoc On Demand Distance Vector (AODV) Routing, Internet draft, draft-ietf-manet-aodv-00.txt.
12. A. Perrig, R. Szewczyk, V. Wen, D. culler, and J. Tygar. SPINS: Security Protocols for Sensor Networks. In Seventh Annual

ACM International Conference on Mobile Computing and Networks(Mobicom 2001), Rome Italy, July 2001.
13. D. Stinson and R. Wei, Some New Bounds for Cover-Free Families. In J. Combin. Theory A, 90(2000), 224-234.
14. A. Shamir. How to Share a Secret. Comm. ACM, 22(11):612–613, 1979.

10

