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Abstract. The Subset Difference Rekeying (SDR) method [8] is the most efficient stateless group rekeying method
proposed in the literature. We study two important issues related to the SDR method. First, we address the issue
of reliable rekey transport for SDR. We present a key distribution scheme, called FEC-BKR, that enables members
to receive the current group key in a reliable and timely fashion despite packet losses in the network. Through
simulation, we show that in most scenarios, FEC-BKR outperforms previously proposed schemes for reliable rekey
transport. Second, we address the issue of self-healing key distribution for SDR. We present a group key recovery
scheme that adds the self-healing property to SDR, i.e., our scheme enables a member that has missed up to a
certain number m of previous rekey operations to recover the missing group keys without asking the key server for
retransmission. The additional communication overhead imposed by our key recovery scheme is quite small (less
than 3m additional keys).
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1 Introduction

Many multicast based applications, e.g., pay-per-view, online auction, and teleconferencing, require a secure commu-
nication model. However, IP Multicast, the multicast service proposed for the Internet, does not provide any security
mechanisms; indeed, anyone can join a multicast group to receive data from the data sources or send data to the group.
Therefore, cryptographic techniques have to be employed to achieve data confidentiality. One solution is to let all
members in a group share a key that is used for encrypting data. To provide backward and forward confidentiality [14],
this shared key has to be updated on every membership change and redistributed to all authorized members securely.
This is referred to as group rekeying.

A simple approach for rekeying a group is one in which the group key server encrypts and sends the updated group
key individually to each member. This approach is not scalable because its costs increase linearly with the group size.
For large groups with very frequent membership changes, scalable group rekeying becomes an especially challenging
issue.

In recent years, many approaches for scalable group rekeying have been proposed, e.g. LKH [13, 14], OFT [1,
4], MARKS[2], ELK [9], Subset Difference [8] and self-healing [11]. Further, it has been proposed that groups be
re-keyed periodically instead of on every membership change [10, 15]. Periodic or batched rekeying can reduce both
the processing and communication overhead at the key server, and improve the scalability and performance of key
management protocols based on logical key trees.

In addition to the rekeying algorithm, the communication overhead of group rekeying also depends on the proto-
col used for reliably delivering the updated keys to the members of the group. Recently, researchers have proposed
customized reliable multicast protocols for group rekeying, e.g., Proactive-FEC [15] and WKA-BKR [12], which take
advantage of the special properties of the rekey payload for achieving reduced communication overhead in comparison
to conventional reliable multicast protocols.

Among the rekeying protocols proposed in the literature, the Subset Difference Rekeying method (SDR) is one
of the few protocols that have the property of statelessness. In a stateless rekeying protocol, in order to decode the
current group key, a member only needs to receive the keys that are transmitted by the key server during the current
rekey operation. In other words, if a member has missed previous rekey operations, it does not need to contact the key
server to obtain keys that were transmitted in the past to decode the current group key. This property makes SDR very
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attractive for secure multicast applications where members may go off-line frequently. Furthermore, SDR has been
shown to be very efficient in terms of communication overhead.

In this paper, we study two important issues related to the key delivery protocol used for the SDR method. First,
we address the issue of reliable rekey transport for SDR. We present a key distribution scheme, called FEC-BKR,
that enables members to receive the current group key in a reliable and timely fashion despite the presence of packet
losses in the network. FEC-BKR is a hybrid protocol that combines the advantages of two previously proposed rekey
transport protocols – the proactive FEC based key delivery protocol [15] and the WKA-BKR protocol [12]. Through
simulation, we show that in most scenarios, FEC-BKR outperforms the other rekey transport protocols.

Second, we examine the issue of self-healing group key distribution for SDR. We present a key recovery scheme
that adds the self-healing property to SDR, i.e., the scheme enables a member that has missed up to a certain number
m of previous rekey operations to recover the missing group keys without asking the key server for retransmission.
This self-healing key recovery property results in reduced network traffic and also reduces the load on the key server,
and is especially useful for group members that may experience burst packet losses. Through a detailed simulation, we
found that the communication overhead imposed on the key server by our recovery scheme is quite small (less than
3m additional keys).

The reminder of this paper is organized as follows. In Section 2, we discuss related work and introduce the SDR
method in more detail. In Section 3 we present our hybrid reliable key distribution scheme and evaluate its performance
through detailed simulation. Section 4 describes our key recovery schemes and its performance. Finally, we summarize
our work in Section 5.

2 Related Work

The group rekeying protocols proposed in the literature can be divided into stateful and stateless protocols. The stateful
class of protocols includes several protocols based upon the use of logical key trees, e.g., LKH [13, 14], OFT [1] and
ELK [9]. In these protocols, the key server uses key encryption keys that were transmitted to members during previous
rekeying operations to encrypt the keys that are transmitted in the current rekeying operation. Thus, a member must
have received all the key encryption keys of interest1 in all the previous rekey operations; otherwise, it will not be able
to decode the new (group) key and therefore be excluded from the group, unless it asks the key server to retransmit any
keys it is missing. Among these protocols, neither LKH nor OFT includes any mechanisms for reliable key distribution.
To address the issue of reliable key delivery for these group rekeying approaches, researchers have proposed protocols
based on the use of proactive redundancy such as the proactive-FEC based key delivery protocol [15] and WKA-
BKR [12]. However, these protocols only address the issue of reliable key delivery for the current rekeying operation.
When group members that were off-line come on-line, they still need to obtain keys that were transmitted during
previous rekey operations that occurred while they were off-line.

Stateless group rekeying protocols form the second class of rekey protocols. In these protocols, a legitimate user
only needs to receive the keys of interest in the current rekey operation to decode the current group key. In other
words, there is no dependency between the keys used in different rekeying operations. One such protocol is the subset
difference rekeying method (SDR) presented by Naor et al [8]. In this paper, we focus on key delivery protocols for
SDR. Hence, in Section 2.1, we describe SDR in more detail.

Another example of a stateless protocol is the self-healing key delivery protocol proposed by Staddon et al [11]. In
addition to statelessness, this protocol has the property (referred to as self-healing) that a group member that has not
received a group key (due to network packet loss) can recover that group key on its own without contacting the key
server. This property is useful because it reduces network traffic by cutting down on retransmission requests and it also
reduces the load on the key server. A group member is able to recover a missing group key (or keys) by combining
information from key distribution broadcasts preceding the missing group key broadcast with information from a
key distribution broadcast following it. The self-healing protocol uses polynomial-based secret sharing techniques
to achieve broadcast overhead of O(t2m) key sizes, where m is the number of sessions over which self-healing
is possible and t is the maximum allowed number of revoked nodes in the m sessions. We note this scheme has

1 The rekey transport payload has a sparseness property, i.e., each member only needs to obtain a small subset of keys out of the
keys that are transmitted by the key server. Specifically, each member only needs those keys that enable it to recover the group
key.
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several limitations that may discourage its deployment in some applications. First, in this scheme, an application is
pre-divided into m sessions, and the key server initiates a group rekeying at the beginning of each session. Thus, this
scheme cannot be used for applications which demand immediate user revocation due to security requirement. Second,
t, the maximum allowed number of revoked users during these m sessions, has to be pre-determined and must not be
exceeded; otherwise, the security of this scheme is broken. Third, the broadcast size becomes very large even for
reasonable values of t and m. In Section 4, we propose schemes that add the self-healing property to the SDR method
with a very small additional overhead.

We note that periodic batched rekeying has been shown to be reduce both the processing and communication
overhead at the key server, and improve the scalability and performance of group key management protocols [10,
15]. As such, in this paper we discuss our key delivery schemes for SDR in the context of periodic batched rekeying,
although both SDR and our schemes apply to individual immediate rekeying in the same way.

2.1 Subset Difference Rekeying Method

In SDR, during a rekey operation the key server partitions the current members of the group into a minimal number of
subsets, and then encrypts the new group key with the common key of each subset separately. Hence, the number of
encrypted keys to be distributed to the users is the same as the number of subsets the method generates.

Figure. 1 illustrates a subset Sij in SDR. The users are viewed as leaves in a complete binary tree. The subset Sij

can be thought as the set of users in the subtree rooted at node Vi minus the set of users in the subtree rooted at node
Vj . More generally, a valid subset S is represented by two nodes in the tree (Vi, Vj) such that Vi is an ancestor of Vj .
A leaf u is in Si,j iff it is in the subtree rooted at Vi but not in the subtree rooted at Vj . The subset Sij is associated
with a unique key only known by the users in Sij . We refer the reader to [8] for a description of the key assignment
algorithm.

Vi

Vj

leaves

Sij

Fig. 1. The Subset Difference Rekeying Method. The
solid leaf nodes denote the revoked users. Subset Sij

contains the current members.
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Fig. 2. An example of SDR where all the solid nodes form the backbone tree
T .

Let N be the set of all users and R the set of revoked users. Let Cover denote the subset cover, i.e., the collection
of disjoint subsets Si1,j1, Si2,j2, ..., Sim,jm which partitions N \ R. Let T be the backbone tree induced by the set R

of vertices and the root, i.e., the minimal subtree of the full binary tree that connects all the leaves in R. The algorithm
for finding the subset cover is as follows. Consider maximal chains of nodes with outdegree 1 in T . More precisely,
each such chain is of the form [vi1, vi2,... vil] where (i) all of vi1, vi2, ..., vil−1 have outdegree 1 in T (ii) vil is either
a leaf or a node with outdegree 2 and (iii) the parent of vi1 is either a node of outdegree 2 or the root. For each such
chain where l ≥ 2 add a subset Si1,il to Cover. Note that all nodes of outdegree 1 in T are members of precisely one
such chain.

In Fig. 2, we show an example of the key tree in SDR. The solid leaves corresponds to all the revoked nodes in
R, and all the solid nodes form the backbone tree T that connects all these leaves. Based on the above algorithm, we
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can easily get all the subsets, {Sab, Scd, Sef , Sgh}, because the nodes a, c, e, g have outdegree of 1 while their parents
have outdegree of 2, and b, d, f, h either are leaf nodes or have outdegree of 2.

Naor et al [8] show that the average number of subsets in the subset cover is 1.25r when there are r revoked users
in R. Thus, the communication complexity (i.e., the number of subsets) is independent of the group size, which makes
this algorithm very scalable, particularly when r � |N | (Chen and Dondeti [3] show that SDR performs better than
LKH for rekeying of large batches). The number of keys stored by each user is 0.5log2|N |.

In this algorithm, a current group member u only needs to receive exactly one encrypted key in every rekeying,
which is the new group key encrypted with the key of a subset to which it belongs. Because user u is provided with
the keys for all the subsets it might belong to at the time it joins the group, the key encryption keys used in each rekey
operation are independent of each other, leading to the stateless nature of the protocol. Note that in SDR the key tree
does not expand or shrink when users join or depart so that the keys a user obtains from the key server at its joining
time never need to be updated. Therefore, the key tree maintained by the key server has to be large enough to hold all
the potential users that may join the group during the lifetime of the application. Further note that in every rekeying,
the key server considers all the leaf nodes that have not been mapped to new users as revoked nodes when it computes
the subset cover, for the purposes of backward confidentiality.

3 Reliable Key Delivery for SDR

In every group rekeying, the key server first calls the SDR algorithm to determine the subset cover for all the current
members of the group. Then it generates a new group key, and encrypts the group key separately with the common
key of each subset in the subset cover. Finally, it multicasts all the encrypted keys to the group. The question we wish
to address is: how can every on-line user receive the new group key in a reliable and timely fashion in the presence of
packet losses in network?

Multicast based reliable rekey transport protocols generally involve two phases – the transmission phase and the
retransmission phase. The transmission phase consists of the first round of the algorithm, where the key server broad-
casts all the keying materials possibly with a certain degree of redundancy. Then it waits and collects retransmission
requests from the members that have not received their keys. The retransmission phase consists of multiple rounds in
which keying material is retransmitted until all the members have received their keys.

One approach (called Multi-send [6]) uses a simple proactive replication scheme where the key server packs the
encrypted keys into packets, and transmits all the packets multiple times in the first round of the key distribution. In
each round of the retransmission phase, the key server simply retransmits the packets that contain the encrypted keys
required by the users that have not yet received their keys. However, this approach has been shown [12] to be less
efficient than the proactive FEC based approach [15] and the WKA-BKR protocol [12]. In this section, we will first
discuss the application of these approaches to SDR and then present an improved hybrid approach. Note that previous
work on reliable key delivery [15, 12] has focused on the LKH algorithm and not on SDR.

Proactive FEC-based Key Delivery In the proactive FEC-based approach [15], the key server packs the encrypted
keys into packets of sk keys. These packets are divided into FEC blocks of k packets. The key server then generates
d(ρ − 1)ke parity packets for each block based on Reed Solomon Erasure (RSE) correcting codes [5], where ρ ≥ 1 is
the pro-activity factor. A user interested in the packets from a certain block can recover all the original packets in the
block as long as it receives any k out of dkρe packets from the block. If a user does not receive a packet that contains
the encrypted key of interest to it, but it receives t(t < k) packets from the block that contains this packet, it will ask
the key server for retransmission of k − t new parity packets. The key server collects all the retransmission requests,
and then for each block it generates and transmits the maximum number of new parity packets required by users. The
retransmission phase continues until all the users have successfully received their keys.

WKA-BKR The WKA-BKR scheme [12] also uses the simple packet replication technique used in the Multi-send
approach, but it outperforms the latter significantly because it exploits two properties of logical key trees. First, the
encrypted keys may have different replication weights, depending on the number of users interested in them and the
loss rates of these users. Clearly, when a subset in the SDR method covers a larger number of users or these users
have higher loss rates, the encrypted key for this subset should be given a higher degree of replication so that most of
these users will receive the key reliably. Hence, in this scheme the key server first determines the weight wi for each
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encrypted key Ki based upon the users interested in that key. It then packs the keys that have the same weight bwic
into the set of packets pi. On broadcasting the packets, the key server sends packets in pi bwic times. This process
is called weighted key assignment (WKA). Second, during the retransmission phase, since each user that has made
a retransmission request only needs one encrypted key to decode the current group key, there is no need for the key
server to retransmit the entire packet sent in the previous round that contained the requested key. Instead, the key server
repackages the keys that need to be retransmitted into new packets before retransmitting them. This process is called
batched key retransmission (BKR). The WKA-BKR scheme has been shown to have a lower bandwidth overhead than
the other schemes in most scenarios.

3.1 FEC-BKR: A Hybrid Approach

In our comparative performance evaluation of the proactive-FEC based scheme and the WKA-BKR scheme [12], we
found that one reason that WKA-BKR has a lower bandwidth overhead than the proactive-FEC based approach is due
to the bandwidth efficiency of its retransmission scheme, i.e., BKR. In the proactive FEC based approach, the key
server retransmits the maximum number of required parity packets for each block. Therefore, the bandwidth overhead
is dominated by retransmissions due to users experiencing high packet losses. On the other hand, we found that the
proactive-FEC approach usually has a smaller bandwidth overhead than WKA-BKR in the first round of transmission,
especially when the weights of many packets in WKA are larger than 2. This is because RSE encoding used in FEC
is more efficient than the simple replication used in WKA. Further, we found that proactive FEC-based protocols have
a lower latency of key delivery than WKA-BKR. Based on these observations, we propose a hybrid scheme, called
FEC-BKR, which is a combination of FEC and BKR.

In FEC-BKR, the key server first packs the encrypted keys into sp packets of sk keys, and then divides the packets
into sb blocks of k packets. Then it chooses an appropriate ρ and generates d(ρ − 1)ke parity packets for each block.
Finally, it broadcasts all the packets. In the retransmission phase, a user that has not received its key reports the missing
key. The key server collects all the retransmission requests, repackages the requested keys into new packets, and then
broadcasts these packets. This process is repeated until all users have received their keys successfully.

3.2 Performance Evaluation

Metrics and Simulation Model In this section, we evaluate the performance of FEC-BKR scheme by comparing
it to that of the proactive-FEC and the WKA-BKR schemes. We use two metrics in this evaluation: (i) the average
bandwidth overhead at the key server, defined as the ratio of the total bandwidth (including the bandwidth of the
original rekey payload and the replicated and the retransmitted packets) to the bandwidth of the original rekey payload,
and (ii) the fraction of members who successfully receive the group key in the first (transmission) round of the key
delivery protocol. The second metric reflects the latency of group rekeying. We use this metric (instead of the expected
number of rounds for delivering the group key to all the members of the group) since in the scenarios considered, more
than 99% of the group members receive the group key by the end of second round in all the protocols.

The results are obtained via simulation using a heterogeneous network packet loss model under which a fraction
α = 20% of the receivers have a high packet loss probability ph = 0.2, whereas the remaining receivers have a low
packet loss probability pl = 0.02. The packet loss a user experiences is assumed to be independent. We note that
similar models have been used in previous performance studies of reliable key delivery protocols [15, 12].

We assume that a packet contains 25 keys and that in the FEC-based approaches the FEC block size k can be
varied in each rekeying to reduce the overhead of packet padding. We examine the performance of the schemes using
the following group characteristics. The key server constructs a binary key tree of height 13, because it knows that
the maximum number of users who join the group over the lifetime of the application will not exceed 213 = 8092.
Initially, we assume that there are 5000 users in the group. At each rekeying event, the group membership of 100
(randomly selected) users is revoked and 100 new users join the group.

We use the method of independent replications for our simulations and all our results have 95% confidence intervals
that are within 1% of the reported value. In our discussion below, we use FEC(x) to denote the proactive FEC based
key delivery protocol [15] with pro-activity factor x, and FEC(x)-BKR to denote the hybrid scheme which uses pro-
activity factor x for the first round transmission and then uses BKR for retransmission.
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Results

Bandwidth Overhead Fig. 3 plots the rekeying bandwidth overhead (y-axis) of the schemes for 30 consecutive rekey-
ing events (x-axis). We can make the following observations from this figure. First, overall, the hybrid scheme
FEC(1.2)-BKR has the smallest bandwidth overhead, whereas FEC(1.2) has the second largest bandwidth over-
head (only slightly lower than FEC(1.6)). The difference between FEC(1.2)-BKR and FEC(1.2) is significant. Since
FEC(1.2)-BKR and FEC(1.2) have the same bandwidth overhead for replication in the first round of transmission,
the difference indicates that batched key retransmission is more efficient than retransmitting the maximum number of
required parity packets for each block. Note that FEC(1.6)-BKR outperforms FEC(1.6) due to the same reason.
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Second, the WKA-BKR scheme has a high bandwidth overhead at the beginning of the simulation, but the overhead
decreases with each rekeying event. In stateful protocols such as LKH, the bandwidth overhead of WKA-BKR and
FEC is mainly a function of the group size and the number of joins and leaves that are being processed as a batch [15,
12]. Since each rekeying event in our simulation has the same number of member joins and leaves, we would not expect
there to be much variation in the bandwidth overhead for different rekeying events for LKH. In contrast, for SDR the
bandwidth overhead of WKA-BKR depends upon the sizes of the subsets in the subset cover. The composition of the
subset cover tends to change over time. For example, the subset to which a user belongs is split when another user
from the same subset is revoked and this results in two smaller subsets. In the early rekeying events, the sizes of the
subsets in the subset cover are relatively large. Consequently, the replication weights of the keys associated with each
subset (the key encryption keys) under WKA-BKR are typically larger than 2 and the bandwidth overhead is relatively
large. As more users leave the group, most subsets become very small; as a result, their replication weights under
WKA-BKR are also reduced, leading to a lower overall bandwidth overhead.

Third, FEC(1.2) and FEC(1.6) have similar bandwidth overhead although FEC(1.6) has a higher degree of repli-
cation in the first round than FEC(1.2) does. This is because FEC(1.2) has a higher retransmission overhead than
FEC(1.6) has. Fourth, the curves of FECs fluctuate at some rekeying points while the curve of WKA-BKR is very
smooth. This fluctuation arises from the use of different FEC block sizes k for different rekeying events in order to
minimize the overhead of packet padding.

Latency In Fig. 4 we plot the fraction (fr) of users who receive the group key in the first (transmission) round of the
key delivery protocol for 30 consecutive rekey events. We observe that FEC(1.2) and FEC(1.2)-BKR have the same
latency as do FEC(1.6) and FEC(1.6)-BKR. However, fr is larger than 0.99 for FEC(1.6) and FEC(1.6)-BKR, whereas
it is around 0.97 for FEC(1.2) and FEC(1.2)-BKR. This is not surprising since the degree of redundancy in FEC(1.6)
is larger than that in FEC(1.2). For WKA-BKR, fr decreases over time since the replication weights used by the WKA
algorithm tend to be reduced as discussed above.

Overall, from Figures 3 and 4, we can conclude that FEC-BKR has low bandwidth overhead (comparable to that
of WKA-BKR), and relatively low latency (comparable to that of proactive FEC-based key delivery).
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3.3 Determining The Proactivity Factor ρ

In the discussion above, we assumed the key server selected an appropriate proactivity factor ρ for all the blocks.
Clearly, increasing ρ results in reduced latency at the expense of increased bandwidth overhead. We now sketch an
approach that can be used to determine a (probably different) ρ for each block, based on the number of users interested
in the keys in each block and the loss probabilities of these users. This approach allows the key server to achieve a
desired value of fr, given the packet loss rate of every user in the group. A user can estimate its packet loss rate and
piggyback this information in the NACK it sends to the key server.

Consider a user ui with a loss probability pi and the block Bx that contains its interested key Ky with a proactivity
factor of ρx. Let Lx = dkρxe. The probability that ui receives Ky directly is 1 − pi. In the case it does not receive
Ky directly, it is still able to reconstruct the packet that contains Ky through RSE correcting code if it receives at least
any k other packets in the Lx packets. Therefore, the probability p(x, i) that it will receive Ky in the first round of
transmission is

p(x, i) = (1 − pi) + pi(

Lx−1
∑

j=k

(

Lx − 1

j

)

(1 − pi)
j
(pLx−j−1

i )). (1)

Similarly, the key server computes {p(x, i)}s for other users interested in Ky , and then {p(x, i)}s for other users
interested in the other keys in the block Bx. Because a user will sends a Nack to the key server if it does not receive
its key, the expected number of Nacks the key server receives from block Bx for the first round of transmission is
actually the sum of all the {1 − p(x, i)}s. By adjusting ρx, the key server can therefore control the number of Nacks
from each block Bx and further the total number of Nacks from all blocks following the first round of transmission.
Note the number of Nacks from the retransmission phase is usually a very small portion of the total number of Nacks,
so it could be ignored in this estimation. This process allows the key server to pick different {ρ}s for different blocks
and control the fraction of users who receive the group key in the first transmission round.

4 Self-Healing Key Delivery for SDR

The reliable key delivery protocols discussed in Section 3 work well for scenarios where a user experiences random
packet losses. However, a user might have to request multiple packet retransmissions until it finally receives the
encrypted key of interest to it. Hence, there is no guarantee that it will receive the group key before the next group
rekeying event. This is especially true for receivers that are experiencing intermittent burst packet losses. Another
similar scenario arises when a user is off-line (while still a member of the group) at the time of group rekeying. If the
user receives data that was encrypted using a group key that it has not received, it will need to obtain that group key.

A self-healing key delivery protocol allows a user to obtain missing group keys on its own without requesting
a retransmission from the key server. This is accomplished by combining information from the current key update
broadcast with information received in previous key update broadcasts. In this section, we will discuss two schemes
that add the self-healing property to SDR. These schemes enable users to recover a certain number of previous group
keys without asking for retransmission. Specifically, we say a scheme has m-recoverability if the maximum number of
previous group keys a legitimate user can recover is m.

Notation We list below notations which appear in the rest of this discussion.

– H is a one-way hash function such as SHA-1.
– {s}k means encrypting message s with key k.

4.1 Scheme I: The Basic Scheme

Figure. 5 shows a sequence of rekeying events. We assume T (i) is the current rekeying time, and K(i) is the new group
key to be distributed. A simple approach that enables a current member to recover the previous m group keys, i.e.,
K(i−m),K(i−m+1), ...,K(i−2),K(i−1), is to encrypt these m keys with the current group key K(i) individually
and broadcast them to the group. Hence, as long as a user receives K(i) reliably (e.g., through FEC-BKR), it will be
able to recover the previous m keys. However, this approach does not enforce backward confidentiality, because a
newly joined user can also recover these keys.
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m

Fig. 5. Recovering the previous group keys, here T (i) is the current rekey time.

To solve this problem, it is important to bind the time at which user joined the group with its ability to recover a
previous group key. In other words, a user should only allowed to recover the group keys that were used after it joined
the group. To achieve this goal, in our scheme the key server encrypts each group key, K(i−j), 1 ≤ j ≤ m with a key
that is derived by XORing the current group key K(i) with the group key K(j − 1). Thus, the key server broadcasts
m encrypted keys as follows:

KeyServer −→ ∗ : {K(i − m)}K(i−m−1)⊕K(i), {K(i − m + 1)}K(i−m)⊕K(i), ..., {K(i − 1)}K(i−2)⊕K(i),

where ⊕ is the XOR operation. A user that joined the group at time T (j), i − m < j < i, and received K(j) can
recover all the keys between K(j) and K(i) after it receives K(i). A newly joined user, i.e., a user joining at T (i),
cannot recover the previous keys because it does not hold any previous keys. On the other hand, a user that was off-line
for more than m rekeying periods cannot recover these previous keys. The communication cost is m keys for this basic
scheme.

There are two scenarios where the security of this scheme may be compromised. The first scenario arises when a
revoked user joins the group again some time in the future. For instance, a user that left the group at T (j), i − m <

j < i, and rejoins at T (i) will be able to recover all the keys between K(j) and K(i) based on K(j − 1) and K(i).
A similar scenario arises when a user that has left the group or whose membership was revoked colludes with a newly
joined user. In the above example, a user whose membership was revoked at time T (j) and has the key K(j−1) could
collude with a newly joined user who has K(i) to recover the intermediate keys that they are not authorized to have.

4.2 Scheme II: Dealing with the Rejoining/Colluding Attack

We now propose an extension to the basic scheme that addresses the rejoining/colluding attack described above. The
key idea is to bind the ability of a user to recover a previous group key not only to the time at which it became a
member but also to its membership duration. The scheme involves the following steps.

1. In each group rekeying, the key server generates a key chain of size m+1. Let the keys in the key chain generated
for the rekeying at T (i) be Km(i),Km−1(i), ...,K1(i),K0(i), where K0(i) = H(K1(i)) = H2(K2(i)) =
... = Hm(Km(i)) and H is a one-way hash function. Due to the one-wayness of the hash function, a user
knowing Kj(i) can compute all the keys Kj−1(i), ...,K0(i) independently, but it cannot compute any of the keys
Kj+1(i), ...,Km(i). K0(i) is the group key that all the users should use for data encryption between T (i) and
T (i + 1).

2. The key server generates the subset cover and an encrypted key for each subset in the cover. The users in the group
are considered to be partitioned into m+1 subgroups, depending upon their membership duration. Each subgroup
is associated with a separate key from the one-way key chain generated in the first step. In other words, the key to
be delivered to the users in a subset is one of the keys from the above key chain, depending on the membership
duration of the users in the subset. Specifically, Kj(i) is the key intended for the members that joined the group
at T (i − j) for 0 ≤ j < m, and Km(i) is the key intended for members that joined at or before T (i − m). The
algorithm used for key distribution is discussed in more detail later in this section.

3. The key server broadcasts m encrypted keys as shown below:

KeyServer −→ ∗ : {K0(i − m)}K0(i−m−1)⊕Km(i), {K
0(i − m + 1)}K0(i−m)⊕Km−1(i), ...,

{K0(i − 2)}K0(i−3)⊕K2(i), {K
0(i − 1)}K0(i−2)⊕K1(i).
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From step 3, we can see clearly that the ability of a user to recover previous group keys depends on its membership
duration. For a new user that only receives K0(i), it cannot contribute any keys to help any users whose membership
was revoked earlier to recover the previous group keys. For a current member that has been in the group for at least m

rekeying periods, it can generate all the keys in the key chain after it receives Km(i); hence it can recover all the m

group keys if it has K0(i−m− 1). For a current member that joined at T (j), i−m < j < i, it will receive K i−j(i),
which enables it to recover at most the keys between K0(j) and K0(i) even when it colludes with the early revoked
nodes. But this is not an additional security leak, because the user is authorized to have these keys. Thus, this scheme
is secure to the rejoining/colluding attack that appears in Scheme I.
An Example In Fig. 6 we show an example that illustrates scheme II. Let T (10) be the current rekeying time and
m = 5. Following the algorithm above, the key server first generates a random key K5(10), based on which it
generates a hash key chain K5(10),K4(10), ...,K1(10),K0(10). The current members of the group are considered
to be divided into m + 1 = 6 subgroups depending upon their membership duration. The key sent to newly joined
members is K0(10), while the keys sent to the remaining members are as follows: K1(10) is sent to the users that
joined at T (9), K2(10) is sent to the users that joined at T (8), K3(10) is sent to the users that joined at T (7), K4(10)
joined at T (6), and K5(10) to all the users that joined at or before T (5). Finally it broadcasts

KeyServer −→ ∗ : {K0(5)}K0(4)⊕K5(10), {K
0(6)}K0(5)⊕K4(10), ..., {K

0(8)}K0(7)⊕K2(10), {K
0(9)}K0(8)⊕K1(10).

(2)

K(13)K(12)K(11)K(10)K(9)K(8)K(7)K(6)K(5)K(4)

m = 5

T(5) T(6) T(7) T(8) T(9) T(10) T(11)

Fig. 6. An example illustrating Scheme II. Here T (10) is the current rekey time.

The Key Distribution Algorithm To evaluate the communication complexity of this scheme, we first discuss the key
distribution algorithm that distributes the keys in the key chain to users of different membership durations in step 2 of
the scheme. A simple approach for this is to deliver Km(i) to the current users that joined at or before T (i−m) using
the SDR method, while delivering all the keys Kj(i), m < j ≤ 0, to the users that joined at T (i− j) through unicast,
encrypted individually with the leaf keys corresponding to these users. Note each leaf key is only shared between the
user mapped to the leaf and the key server. Let N(i) denote the number of users that join the group between T (i − 1)
and T (i), then the communication complexity of this scheme is

∑i

j=i−m N(j). Thus, the scalability of this approach
depends on the arrival rate of the system. Below we present another algorithm that has the communication complexity
of O(m).

In SDR, a newly joined user is always mapped to the leftmost leaf that has does not have any users mapped to it,
i.e., users are placed into the leaves of the key tree from the left to the right in the same order as their joining times.
Hence, all the N(i) users that join between T (i−1) and T (i) and are added into the key tree at T (i) as a batch occupy
N(i) consecutive leaves of the key tree. Naturally, they form one or more subsets in the SDR algorithm. The following
steps can be used for determining the number of subsets for these N(i) users:

1. The key server identifies the minimal full subtree S(i) that covers all these N(i) users. Clearly, the root of this
subtree is the least common ancestor of these users.

2. The key server marks all the leaves in S(i) which are not mapped to any of these N(i) users as revoked.
3. The key server runs the SDR algorithm to determine the number of subsets for S(i).

The key server maintains a main key tree that corresponds to all the users that joined at least m rekeying periods ago,
and m subtrees that correspond to the other users that joined at different rekeying periods. From the mth rekeying on,
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in every rekeying the key server merges the subtree that corresponds to the users whose membership durations just
exceeded m rekeying periods into the main key tree.

As in the original SDR algorithm, the number of subsets in this algorithm increases when users join and leave. The
communication complexity of our approach depends upon how many additional subsets Na our algorithm introduces
compared to the original SDR algorithm. The value of Na depends on the group size, the number of arrivals and
the number of revoked users in each rekeying period, and the value of m. We studied this issue through extensive
simulations. We found that in most cases Na is smaller than m, whereas in other cases it lies between m and 2m.
Although we do not have an analytical proof for this conclusion, our simulations strongly indicate that the number
of additional subsets is less than 2m. Thus, taking into account the m keys broadcast in step 3 of our scheme, we
conclude that we can add the self-healing property to SDR at the expense of transmitting at most 3m additional keys.

5 Conclusions

In this paper, we studied two important issues related to the subset difference rekeying method. First, we investigated
the issue of providing reliable rekey payload transport for SDR. We presented a hybrid key distribution scheme, called
FEC-BKR, that combines the benefits of proactive FEC and WKA-BKR, two previously proposed reliable key delivery
protocols. Through simulation, we show that FEC-BKR has low latency (comparable to that of proactive FEC) and low
bandwidth overhead (comparable to that of WKA-BKR). Second, we address the issue of self-healing key distribution
for SDR. We present a recovery scheme that add the self-healing property to SDR, i.e., it enables a member that has
missed up to a certain number m of previous rekey operations to recover the missing group keys without asking the
key server for retransmission. We found that the communication overhead imposed by our key recovery scheme is
quite small (less than 3m additional keys).
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