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ABSTRACT
A virtual database system is software that provides unified
access to multiple information sources. If the sources are
overlapping in their contents and independently maintained,
then the likelihood of inconsistent answers is high. Solu-
tions are often based on ranking (which sorts the different
answers according to recurrence) and on fusion (which syn-
thesizes a new value from the different alternatives accord-
ing to a specific formula). In this paper we argue that both
methods are flawed, and we offer alternative solutions that
are based on knowledge about the performance of the source
data; including features such as recentness, availability, ac-
curacy and cost. These features are combined in a flexible
utility function that expresses the overall value of a data
item to the user. Utility allows us to (1) define meaningful
ranking on the inconsistent set of answers, and offer the top-
ranked answer as a preferred answer; (2) determine whether
a fusion value is indeed better than the initial values, by
calculating its utility and comparing it to the utilities of the
initial values; and (3) discover the best fusion: the fusion
formula that optimizes the utility. The advantages of such
performance-based and utility-driven ranking and fusion are
considerable.

1. INTRODUCTION
Occasionally, two or more independent sources of infor-

mation (e.g., databases) may contain values that purport
to represent the same real world value. If these values are
different, the representations are said to be inconsistent. In
systems that integrate information from multiple, indepen-
dent information sources, often known as virtual database
systems, some queries may thus result in answer that are
inconclusive. Hence, the issue of data inconsistency poses a
significant challenge all such systems.

Note that we assume that the inconsistencies are not due
to differences in semantics; e.g., the use of different units of
measurement or different notations for telephone numbers.
In other words, we assume that all semantic inconsistencies
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have already been reconciled. Note also that we assume that
the answer should be a single value; that is, it is not possible
for several different values to be correct.

1.1 A Classification of Solutions
Confronted with an inconsistent set of answers, one can

offer at least five solutions: (1) multi-answer, (2) ranked an-
swer, (3) preferred answer, (4) random answer, and (5) fused
answer.

A multi-answer is simply the complete and inconsistent
set of alternative answers. In the area of logic databases,
it is also referred to as a disjunctive answer. Multi-answers
may be regarded as providing users with “raw” information,
leaving them with the task of interpreting the results “out-
side” the system.

A ranked answer still offers the complete set of alterna-
tives, but the alternatives are now ranked according to their
likelihood of being the correct answer. Rankings are usu-
ally based on recurrence. In the inconsistent set of answers
obtained from multiple sources some answers could be iden-
tical. In general, identical answers tend to reinforce the like-
lihood of their value being the correct value. Consequently,
rankings are derived from a process similar to voting; that
is, an answer provided by n sources is ranked above an an-
swer provided by n − 1 sources. Clearly, multi-answers can
be regarded as a special case of ranked answers (when the
different alternatives are ranked identically).

Often a unique answer is required, and the set of alterna-
tives must be reduced to a single answer. We observe three
possible solutions:

If ranking is possible, then the top-ranked answer would
be offered as the preferred answer. Since rankings are based
on votes, the preferred answer is simply the most popular
answer.

A random answer is a single answer from the set, selected
at random. It is useful when the differences among the alter-
native values is judged to be inconsequential, or when there
is insufficient information for ranking (but a single answer
is still required).

An underlying assumption of the four types of answers
discussed so far is that the true value is one of the values in
the set. A fused answer is an answer obtained by combining
the individual answers into a single value; a value that may
be different from each of the alternatives. Usually, fusion
would be used for numerical data, such as averaging multiple
measurements, but could possibly be used for non-numerical
data as well, such as combining two incomplete addresses
into a single address. Usually, fusion is performed according
to an “expert formula”: a formula specified by an expert



familiar with the sources.

1.2 Current Weaknesses
Because multi-answers require no decisions, and random

answers apply arbitrary decisions, both may be considered
naive solutions that deserve no further investigation. On the
other hand, the other three types of answers have serious
limitations.

Because ranked and preferred answers are based on recur-
rence, they are useful only when the cardinality of the set
of answers is high and there is a high degree of recurrence.
When the set of alternative answers is small or when the
recurrence rate is low, ranking is entirely unreliable. For
example, when there are two or three values for the age of
a person, or when there are many values for the salary of a
person, all different, ranking is not meaningful.

As mentioned above, fusion is usually performed accord-
ing to an expert formula. Beyond this general promise, how-
ever, there is no proof that the fused value is optimal in any
sense; indeed, there is no proof even that it is better than
any of the alternative values.

1.3 Features and Utility
Information sources vary greatly with respect to many

parameters, such as their availability, reliability, and other
performance measures. Yet, the methods discussed so far do
not take any such considerations into account. In this paper
we advocate the use of such performance measures in the
resolution of answer inconsistencies. Specifically, we assume

• A set of performance parameters; we refer to these as
data features.

• Each alternative answer is associated with a value for
each of these features.

• A utility function which is a linear combination of the
features. This function expresses the overall value of
an individual answer to the user.

These assumptions permit us to pursue three important
goals.

First, we may define ranking that is based on utility rather
than recurrence. For each individual answer we may calcu-
late the utility and then sort the answers according to their
utilities. Such ranked answers are useful even when the set
of alternatives is small (such as two or three values).

Second, when creating a fusion, we may calculate the util-
ity of the new value, and determine whether it is indeed
better than the available alternatives.

Third, we can address the issue of optimal fusion. A fu-
sion formula is a set of coefficients; varying these coefficients
generates different fusion values, each with its own utility.
The utility of the fusion is therefore a function of the fusion
coefficients. In optimizing this function we search for a com-
bination of coefficients (the fusion formula) that maximizes
the utility.

Altogether, we claim that the advantages of performance-
based and utility-driven ranking and fusion are considerable.

Section 2 discusses six specific data features that might
impact the construction of answers in the presence of in-
consistencies. Two approaches that rely on such metadata,
ranking and fusion, are defined in Section 3. Section 4 dis-
cusses the construction of ranked, preferred and fused an-
swers given the assumptions stated earlier. In particular,

it shows how to derive each of the data features of fusion
values, and hence how to calculate the utility of the fu-
sion. Section 5 discusses the problem of optimal fusion and
demonstrates it with an example. Section 6 reviews related
research, and Section 7 concludes with a summary and dis-
cussion of future work.

2. DATA FEATURES: KNOWLEDGE ABOUT
DATA

Knowledge about data is usually referred to as metadata.
There are many kinds of metadata, and we shall consider
only those that might impact the construction of answers in
the presence of inconsistencies.

In particular, we discuss six kinds of metadata, which we
shall refer to as features of the data. They are: (1) recent-
ness, (2) cost, (3) accuracy, (4) availability, (5) priority, and
(6) quality. A brief discussion of each of these features fol-
lows.

Recentness. Recentness refers to the time in which the
information was published. When resolving conflicts, newer
information is usually preferred. Arguably, recentness is the
most common method for resolving information conflicts.
We shall use t to denote the feature of recentness.

Cost. When alternative answers are available, an im-
portant decision factor could be the cost of materializing
each answer; for example, when two inconsistent answers
are offered, one may want to choose the cheapest answer
(especially when the difference in their costs is significant).
When the providing sources charge for their services, cost
may refer to the actual fees required. In a networked en-
vironment, cost may refer to the time necessary to retrieve
(download) each answer. Or a complex cost formula may be
devised that will combine different cost components. Cost
will be denoted with c.

Accuracy. Often, the data in databases is only an ap-
proximation of the true data. When information about the
goodness of the approximation is recorded, the results ob-
tained from a database can be interpreted more reliably.
Usually, when considering a set of alternative values (all of
which are approximations of the same true value), the value
with the highest level of accuracy would be preferred. We
shall denote accuracy with s.

There are many methods for recording the accuracy of an
approximation. As a simple example, numerical values could
be associated with a range, such as ±5%. A description of
our preferred model for representing accuracy follows.1

Assume that each database value is associated with a de-
gree of accuracy. This accuracy is denoted with a probability
density function, whose mean is the value itself. Formally,
each database “value” is indeed a random variable; the mean
of this variable becomes the stored value, and is interpreted
as an approximation of the true value; the standard devi-
ation of this variable is a measure of the level of accuracy
of the stored value. We shall assume that all probability
density functions have normal distributions.

Low standard deviation (a sharply peaked curve) indicates
that the probability that the true value is close to the mean
(the stored value) is high; this probability declines rapidly as
the true value shifts from the mean. Hence, lower standard
deviation corresponds to higher accuracy. Conversely, high

1Indeed, inaccuracy is just one of many known forms of
uncertainty and imprecision.



standard deviation (a flat curve) indicates that the proba-
bility that the true value is close to the mean (the stored
value) is low; this probability declines slowly as the true
value shifts from the mean. Hence, higher standard devia-
tion corresponds to lower accuracy. Indeed, as the standard
deviation increases, the distribution approaches a uniform
distribution, in which all values assume identical probabil-
ities. Such database values would have the lowest level of
accuracy.

Availability. Availability is the probability that an an-
swer promised by a particular information source would be
retrievable when needed. In a network environment it mea-
sures the robustness of the route to the source as well as
the robustness of the server on which the information re-
sides. When considering alternative answers from multiple
sources, their respective availabilities is an important factor.
Availability will be denoted with v.

Priority. Priority simply indicates a preference for par-
ticular sources. This preference may be derived from their
past performance. Alternatively, sources may be associ-
ated with a level of credibility or authority or trust that was
granted by a certifying agency. We shall denote priority
with p.

Quality. Quality refers to a level of performance of the
data that is assured by the source; that is, any specification
which the data is warranted to meet or exceed. Whereas
other features, such as accuracy or cost, are associated with
distinct measurements, this feature can be used when the
source can only provide a lower bound which is guaranteed
to hold. Possibly, it could overlap with other features. For
example, in place of or in addition to the feature of accuracy,
a source may provide a minimal level of accuracy that each
data value is guaranteed to meet.

Similarly, one could define a dual feature that is measured
by upper bounds; that is, a specification that is guaranteed
not to exceed the specified value.

All these features assume numerical values, and, for sim-
plicity, we shall assume that the range of each feature is
between 0 and 1. Moreover, each of these numerical values
indicates a “level of performance” with respect to the fea-
ture, and we shall assume that in each case 1 is the highest
level of performance (the best), and 0 is the lowest level of
performance (the worst). The advantage of features that are
“normalized” to have the range [0, 1] is that it is easier to
define “combination” features. Assume, for example that we
wish to define a combination feature which is half cost and
half accuracy. If cost and accuracy are expressed in their
original (unnormalized) ranges, finding the correct weights
that express “half and half” is considerably more difficult.

Features may be assigned to data items of different granu-
larity. In general, each individual database value could have
its own feature values. At times, all the values in a column
(attribute) or in a row (tuple) could have the same feature
value. Furthermore, the entire database could have the same
feature value.

In specific situations, some of these features may not ap-
ply, or there may be other useful features that have not be
mentioned here. It should be emphasized, though, that in
this paper we do not argue for the appropriateness of in-
dividual features; rather, we argue for an approach to the
resolution of data inconsistencies that is based on the rela-
tive merits of the alternative values.

3. RANKING AND FUSION
To construct ranked, preferred and fused answers we must

provide formal definitions for ranking and fusion. In both
cases we shall employ linear combinations.

3.1 Ranking
We shall assume ranking policies that are linear combina-

tions of features. Let {f1, f2, . . . , fm} be the set of features.
A ranking policy is an expression w1·f1+w2·f2+· · ·+wm·fm,
where 0 ≤ wi ≤ 1 and

∑m
i=1 wi = 1. The ranking of a

specific data value is calculated by substituting its specific
feature values for f1, f2, . . . , fm.

Note that the effect of selecting wi = 0 is to ignore the
feature fi in the ranking policy. In addition to the obvious
purpose of allowing users to indicate their complete lack of
interest in the specific feature, we shall assume that ranking
policies are adjusted automatically to remove any feature
when it is not possessed by all the alternative values. We
shall refer to the set of values xi for which wi 6= 0 as the
features participating in the ranking.

Linear ranking expressions, while powerful, are not the
most general. For example, they cannot express the ranking
policy “if availability is below 0.5, then ignore this feature
altogether in the ranking.”

As ranking policies express the overall value to users, they
can be interpreted as definitions of utility. Therefore, we
shall also refer to a ranking policy as a utility function and
to the calculated ranking of a data value as the utility of
that value.

3.2 Fusion
Given a set of alternative values (approximations) {x1, x2,

. . . , xn}, fusion is an attempt to combine them into a value
that is closer to the correct value than any of the given val-
ues. In this sense, fusion creates an (n+1)’th approximation
by means of synthesis.

In this paper we limit our discussion to fusions of numer-
ical data values.

Let {x1, x2, . . . , xn} be a set of independent values all rep-
resenting the same true value. The fusion of x1, x2, . . . , xn

is a linear combination a1 · x1 + a2 · x2 + · · ·+ an · xn where
0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1.

The set of all the fused valued obtained by trying all the
possible coefficients that satisfy 0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1

is the interval [min{a1, . . . , an}, max{a1, . . . , an}]. This cor-
responds to our intuition that the true value lies somewhere
in this range.

Note that the effect of selecting ai = 0 is to remove xi from
the fusion process. This may be advantageous in numerous
cases, for example when the availability of xi is low, or when
its cost is high. We shall refer to the set of values xi for which
ai 6= 0 as the values participating in the fusion.

Again, linear fusion expressions are powerful, but not the
most general. For example, they cannot express the fusion
policy “if x1 is a statistical outlier,2 then ignore it altogether
in the fusion process”.

4. CONSTRUCTING ANSWERS

4.1 Ranked and Preferred Answers
2Its value deviates significantly from the mean of the other
values.



The process of constructing ranked and preferred answers
is straightforward: we calculate the utility of each alter-
native value xi according to the prevailing utility function.
The values are then sorted according to their utility (to cre-
ate a ranked answer) or the value with the highest utility is
chosen (to create a preferred answer).

Note that preferred answers that are derived from ranking-
by-recurrence (voting) require that all the alternative values
be retrieved apriori. In distinction, preferred answers that
are based on utility are derived from metadata, and require
the retrieval of the winning value only.

4.2 Fused Answers
Constructing a fused answer is also straightforward. A

more complex issue is to derive the features of this new
value. Once these features have been derived, the overall
utility of the fused value can be calculated. This utility
should then be compared to the utilities of the initial values,
to determine whether any improvement has been attained.

Consider the fusion x = a1 · x1 + a2 · x2 + · · · + an · xn.
Assume that k of the n coefficients are positive. Without loss
of generality we may assume that the positive coefficients are
a1, a2, . . . , ak; i.e., the participating values are x1, x2, . . . , xk.
The derivation of the various feature values of x is discussed
below.

In deriving each feature value we must address the issue
of appropriate ranges. As already mentioned, we shall as-
sume that all feature values are in the range [0, 1], with 1
corresponding to the best value and 0 corresponding to the
worst. For each of the six features we must show how ac-
tual values are mapped into this range, and we must ensure
that the value assigned to their fusion is in this range as
well. However, we shall only be concerned with the specific
fusion at hand. For example, assume an answer set with
three alternative values x1, x2, and x3, assume that their
individual values for some feature are c1, c2, and c3, and as-
sume that their fusion should be assigned the feature value
c = c1 + c2 + c3; then we shall only be concerned that the
four values c1, c2, c3 and c are mapped appropriately.

4.2.1 Recentness
A prevailing method for indicating recentness is to use

timestamps, which are usually clock values, and we shall
assume that this method is used. A range of “active” times-
tamps is created from the timestamps of the multi-answer
and the present timestamp (the current clock value). To
map this range to the interval [0, 1], the oldest timestamp in
the set is mapped to 0, and the present timestamp is mapped
to 1. Intermediate timestamps are interpolated linearly into
this range.

When a set of values is combined to a new value, the
timestamp of the new value is always the current clock value.
Hence, the new value receives the recentness value 1:

t(x) = 1

Obviously, the new value is in the range [0, 1].
The new recentness value reflects the time in which the

new value was created, rather than the recentness values
of the alternatives. As an example, assume two values x1

and x2 with recentness t1 and t2, respectively, and assume
the fusion 1 · +x1 + 0 · x2. The new value is equal to x1,
yet its recentness is not t1 but 1. This is because the new
value reflects a decision that is reached at the present time.

A current decision, which is based, presumably, on current
knowledge, justifies an update of the timestamp. Note that
the feature of the fused value is independent of the features
of the available values.

4.2.2 Cost
To create the fusion value x, the participating values must

all be retrieved. Hence the cost of fusion is the sum of the
costs of the participating values.

To guarantee that all costs and the sum of the costs are
in the range [0, 1], we normalize each cost by dividing it by
the sum of the costs of all the given values; so that higher
costs are associated with lower values we subtract this result
from 1. Let cr(xi) denote the “raw” cost of retrieving xi

(for example, in dollars or in seconds of download time); the
normalized cost is

c(xi) = 1− cr(xi)∑n
i=1 cr(xi)

As indicated above, the raw cost of the fusion is simply
the sum of the raw costs of the participating values:

cr(x) =

k∑
i=1

cr(xi)

Hence, the normalized cost of the fusion is

c(x) = 1−
∑k

i=1 cr(xi)∑n
i=1 cr(xi)

Which can be expressed, using normalized costs only:

c(x) = 1−
k∑

i=1

(1− c(xi))

It can be shown that if k = n (all values participate) then
c(x) = 0 (the cost is the highest possible). The latter for-
mula can also be written as

c(x) = 1−
n∑

i=1

daie · (1− c(xi))

where the cost of the fusion is a function of all n costs and
coefficients.3

4.2.3 Accuracy
If each of the participating database values has a normal

distribution with mean xi and standard deviation σi, then
the fusion x = a1 · x1 + a2 · x2 + · · · ak · xk would have a
normal distribution with parameters

1. Mean:
∑k

i=1 ai · xi

2. Standard deviation:
√∑k

i=1 a2
i · σ2

i

The mean of the fusion corresponds to the fused value itself
and the standard deviation of the fusion is its accuracy. It
can be shown that the standard deviation of the fusion lies
between the lowest and the highest standard deviations.

To obtain accuracy values in the range [0, 1], we divide
each standard deviation by the highest standard deviation;
so that higher standard deviations (lower accuracies) are
associated with lower values, we subtract this result from 1.

3daie may be read “if ai = 0 then 0 else 1”.



Let σi denote the standard deviation of xi; the accuracy of
xi is

s(xi) = 1− σi

maxn
i=1 σi

As indicated above, the standard deviation of the fusion
is √√√√ k∑

i=1

a2
i · σ2

i

Hence, the accuracy of the fusion is

s(x) = 1−

√∑k
i=1 a2

i · σ2
i

maxn
i=1 σi

Which can be expressed, using accuracies only:

s(x) = 1−

√√√√ k∑
i=1

a2
i · (1− s(xi))2

The latter formula can also be written as

s(x) = 1−

√√√√ n∑
i=1

a2
i · (1− s(xi))2

where the accuracy of the fusion is a function of all n accu-
racies and coefficients.

4.2.4 Availability
Availability is the probability that at a random moment

the particular information source is available. This feature
needs no mapping as it is already in the range [0, 1].

To create the fusion value x, all the sources for the partic-
ipating values must be available. Assuming that the avail-
abilities of these sources are mutually independent, the avail-
ability of x is the product of the availabilities of the sources:

v(x) =

k∏
i=1

v(xi)

It is easy to verify that v(x) is in the range [0, 1]. The latter
formula can also be written as

v(x) =

n∏
i=1

max{vi(x), b(1− ai)c}

where the availability of the fusion is expressed as a function
of all n availabilities and coefficients.4

4.2.5 Priority
Without loss of generality, we assume that priority is

stated in six levels, which are integers between 0 and 5,
with 5 corresponding to the highest priority and 0 corre-
sponding to the lowest. These are mapped trivially to the
range [0, 1], with 1 corresponding to highest priority and 0
corresponding to lowest priority.

When a new value is synthesized from a set of database
values using a linear formula, and each database value is
associated with its own priority, it is intuitive to use the
same formula for synthesizing the priorities. In other words,

4max{vi(x), b(1 − ai)c} may be read “if ai = 0 then 1 else
vi(x)”.

feature type feature value
recentness t(x) = 1
cost c(x) = 1−

∑n
i=1daie · (1− c(xi))

accuracy s(x) = 1−
√∑n

i=1 a2
i · (1− s(xi))2

availability v(x) =
∏n

i=1 max{v(xi), b(1− ai)c}
priority p(x) =

∑n
i=1 ai · p(xi)

quality q(x) = minn
i=1{max{q(xi), b(1− ai)c}}

Table 1: Fusion features.

the priorities are synthesized using the same proportions
that were used in the fusion:

p(x) =

k∑
i=1

ai · p(xi)

It is easy to verify that p(x) is in the range [0, 1]. The latter
formula can also be written as

p(x) =

n∑
i=1

ai · p(xi)

where the priority of the fusion is expressed as a function of
all n priorities and coefficients.

4.2.6 Quality
Without loss of generality, we assume that quality is stated

in eleven levels, which are integers between 0 and 10, with
10 corresponding to the highest priority and 0 corresponding
to the lowest. These are mapped trivially to the range [0, 1],
with 1 corresponding to highest priority and 0 corresponding
to lowest priority.

The nature of threshold specifications suggests that the
quality of the fusion is the lowest of the quality thresholds
of the participating values:

q(x) =
k

min
i=1

{q(xi)}

It is easy to verify that q(x) is in the range [0, 1]. The latter
formula can also be written as

q(x) =
n

min
i=1

{max{qi(x), b(1− ai)c}}

where the quality of the fusion is expressed as a function of
all n qualities and coefficients.5

If a dual feature is used that guarantees that the data
value would not exceed an upper bound, then the feature
of the fusion would be the highest of the features of the
participating values.

4.3 The Utility of the Fusion
Consider a fusion x = a1 · x1 + a2 · x2 + · · · + an · xn.

Table 1 summarizes the features of this fusion. Let u =
w1 · t + w2 · c + w3 · s + w4 · p + w5 · a + w6 · s be the utility
function.

The utility of the fusion is

u(x) = w1·t(x)+w2·c(x)+w3·s(x)+w4·p(x)+w5·v(x)+w6·q(x)
(1)

where t(x), c(x), s(x), p(x), v(x), q(x) are calculated as in Ta-
ble 1.

5max{qi(x), b(1 − ai)c} may be read “if ai = 0 then 1 else
qi(x)”.



An obvious conclusion apparent in Table 1 is that the
features of a linear fusion are derived from the features of the
participants in a variety of ways, depending on the particular
feature. Indeed, our discussion avoided additional features,
if their fusion was too similar to the fusion of features already
considered.

5. THE BEST FUSION
Our approach to fusion was to assume that an “expert”

would provide the specific values for the coefficients a1, . . . , an

that are used to combine the given approximations x1, . . . , xn.
The fusion process would be considered successful if and only
if the utility of the fused value exceeds the utility of each of
the individual approximations: u(x) > maxn

i=1 u(xi).
Still, the coefficients provided by an expert may prove to

be successful, but may not deliver the highest utility possi-
ble by fusion. In other words, we would like to select the
fusion (i.e., the fusion coefficients ai) that would maximize
the utility.6

As an intuitive illustration, assume that one receives two
predictions on the time that an approaching hurricane will
make landfall: 36 hours and 24 hours. Assume that the
first estimate was issued at 6 am by a source of high au-
thority, whereas the second estimate was issued at noon by
a source of lesser authority. Intuitively, one would conclude
that landfall is likely to occur between 24 and 36 hours. The
actual estimate to be adopted will be impacted by the rel-
ative importance assigned to the recentness of an estimate
vs. the authority of the source that issued it (the utility).
Thus, if one values authority over recentness, one will choose
a value closer to 36 (and vice versa). Our approach is to find
the value between 24 and 36 that optimizes the utility.

The utility of the fusion combines six individual features,
but the effect of the fusion coefficients on each feature is dif-
ferent, and we observe three cases. One feature, recentness,
is not affected by the selection of the coefficients. In the
case of cost, availability or quality it only matters whether
a coefficient is zero or positive (i.e., the actual value of a
positive coefficient is irrelevant). Finally, in the case of ac-
curacy or priority the actual value of a positive coefficient is
important.

In Equation 1 the utility of the fusion was expressed as a
function of the values xi (the coefficients ai and the weights
wi were constants). We now assume that the values xi and
the weights wi are constants and treat the utility of the fu-
sion as a function of the coefficients ai. In this function, the
features of each xi are constants as well, and, for clarity, are
denoted ti, ci, si, vi, pi, qi, rather than t(xi), c(xi), s(xi), v(xi),
p(xi), q(xi).

6Of course, such optimization is meaningful only when the
utility of the fusion is dependent on the coefficients ai. Thus,
if the only feature under consideration is recentness, a fea-
ture not dependent on the coefficients, then all linear fusions
have the same utility.

u(a1, a2, . . . , an) = w1 · 1 (2)

+ w2 · (1−
n∑

i=1

daie · (1− ci))

+ w3 · (1−

√√√√ n∑
i=1

a2
i · (1− si)2)

+ w4 ·
n∏

i=1

max{vi, b(1− ai)c}

+ w5 ·
n∑

i=1

ai · pi

+ w6 ·
n

min
i=1

{max{qi, b(1− ai)c}}

There are numerous techniques and software packages that
can be used to maximize u(a1, a2, . . . , an) (for example, Mat-
lab, Mathematica or Microsoft Excel), and we do not address
here specific techniques of optimization.

5.1 Example
Assume a conflicting set of 5 values. The raw features

associated with these values are given in Table 2. Prior
to optimization these values are normalized, as shown in
Table 3 (the current timestamp is assumed to be 200).

First, assume a utility function with equal weights for all
its 6 features. The highest utility (0.501) would be achieved
by the fusion

x = 0.482 · x2 + 0.303 · x3 + 0.215 · x5

Note that the optimal solution suggests ignoring the values
x1 and x4 altogether.

Next, assume a utility function with equal weights for the
four features concerned with “content” (i.e., all but availabil-
ity and cost). The highest utility (0.666) would be achieved
by the fusion

x = 0.148 · x1 + 0.293 · x2 + 0.337 · x3 + 0.222 · x4

Finally, assume a utility function whose only nonzero weight
is cost=1.0. The highest utility (0.968) would be achieved
by the “fusion” x = x4. Note that x4 is indeed the value
with the lowest cost. Tables 4 and 5 summarize these and
two other utility functions.

6. RELATED WORK
Previous work related to the subject of this paper can be

reviewed in three categories: (1) methods for combining dif-
ferent ranked lists of data objects in a single ranked list (the
term collection fusion is commonly used here); (2) research
that considers features of information sources to determine
the value of their data to users (the term data quality is
often used in these works); and (3) methods for combining
different “readings” of the same “phenomenon” in a single
value (the true definition of data fusion). The following sub-
sections provide brief summaries of the scientific literature
in these three categories.

6.1 Collection Fusion
The advent of Internet meta-search engines, systems that

submit search requests to multiple search engines and then



Feature (raw) x1 x2 x3 x4 x5

Recentness (timestamp) 10 20 30 30 60
Cost (cents) 80 50 30 10 140
Accuracy (standard deviation) 2.5 0.5 2 1 1.5
Availability (probability) 0.6 0.4 0.7 0.9 0.3
Priority (on a scale of 0–5) 4 2 5 1 3
Quality (on a scale of 0–10) 7 6 3 4 5

Table 2: Example: raw features.

Feature x1 x2 x3 x4 x5

(normalized)
Recentness 0 0.053 0.105 0.105 0.263
Cost 0.258 0.161 0.097 0.032 0.452
Accuracy 0 0.800 0.200 0.600 0.400
Availability 0.6 0.4 0.7 0.9 0.3
Priority 0.8 0.4 1.0 0.2 0.6
Quality 0.7 0.6 0.3 0.4 0.5

Table 3: Example: normalized features.

feature u1 u2 u3 u4 u5

Recentness 0.167 0.250 0 0 0
Cost 0.167 0 0.333 0.500 1
Accuracy 0.167 0.250 0.333 0 0
Availability 0.167 0 0.333 0 0
Priority 0.167 0.250 0 0.500 0
Quality 0.167 0.250 0 0 0

Table 4: Example: five different utility formulas.

No. Optimal fusion
u1 0.482 · x2 + 0.303 · x3 + 0.215 · x5

u2 0.148 · x1 + 0.293 · x2 + 0.337 · x3 + 0.222 · x4

u3 0.735 · x2 + 0.184 · x4 + 0.082 · x5

u4 x3

u5 x4

Table 5: Example: five corresponding optimal fu-
sions.

combine their results, has sparked interest in the problem of
fusing several independent ranked lists of data objects (e.g.,
documents) in a single ranked list. The relationship to our
subject here is rather minor, and we mention it primarily
because the term data fusion is often used as well. The
body of work on this subject is rather large. Surveys and
reviews of major collection fusion strategies may be found
in [6, 10, 19].

6.2 Data Quality
Works in this category are relevant because they too at-

tempt to quantify the value or fitness of information on the
basis of its source and context. Most of these works are pre-
sented as data quality management, and have often adopted
general quality management paradigms [14, 16]. Such quan-
tifications have been especially important in appraising data
obtained from the Web, where signal-to-noise ratio in in-
formation is often quite low [13], or, with more traditional
databases, in applications where the integrity and fitness of
the data are considered critical [15]. In assessing the value
and fitness of data, many different dimensions of quality
have been proposed, and although there is no clear agree-
ment on the features that are most important, accuracy,
cost, age, availability and reliability have been mentioned
most often. A particularly relevant study, which encom-
passes both data quality and collection fusion, suggests fus-
ing several ranked lists of documents on the basis of various
dimensions of quality that are associated with the individual
sources [12].

6.3 Data Fusion
Data fusion is an area which has long been almost synony-

mous with sensor fusion. Sensor fusion is concerned with the
interpretation and reconciliation of real-time data received
from multiple sensors. The primary applications of such fu-
sion are in military command, control and communications
systems [5, 4]. Other applications include navigation and
traffic control systems [9], weather and earth sciences [8]
and process control in industry [17]. Although such appli-
cations are abundant in the literature, to the best of our
knowledge, there is no generalized work involving the fusion
of individual data items to create new fused values in the
area of information systems.

Possibly, the closest work can be found in a sequence of
studies in probability-based fusion of heterogeneous database
attributes [3, 18, 2]. All these works describe systems in
which alternative values retrieved from different sources are
combined in a probability function, which is then offered to
the user as “partial values” (i.e., the alternative values are
assigned individual probabilities that total 1). The intri-
cacies of assigning these probabilities are different in each
study. Whereas [3] assigns all partial values equal proba-
bilities, [18] assumes the probabilities are provided with the
data, and [2] tries to approximate these probabilities using
Jaccard’s similarity coefficients. In yet another study, a win-
ning alternative is chosen using the Dempster-Shafer theory
of evidence [7]. Note that none of these approaches create
a new value from the values retrieved, and all assume that
values are non-numeric.

Using source features for the specific purpose of resolving
database inconsistencies in multidatabase environments is
the subject of [1]. The utility-based approach described in
this paper was sketched briefly in [11].



7. CONCLUSION

7.1 Summary
In this paper we addressed the important issue of data

inconsistencies in answers constructed from multiple infor-
mation sources. This issue comes up in all virtual database
systems, if they assume (as reality dictates) that their infor-
mation sources are mutually independent.

To address this issue, we proposed a model that associates
metadata (which we called features) with each of the infor-
mation sources. Specifically, we investigated in some depth
six features of data sources that may affect the way inconsis-
tencies are resolved: recentness, cost, accuracy, availability,
priority, and quality. Of course, there may be other valid
features. Yet, it is our claim that it would be possible to
incorporate most of these additional features into the frame-
work that was developed here.

These features were combined linearly into a utility func-
tion, with user-provided weights. This function assigns a
utility to each of the values in the inconsistent answer. These
values may then be ranked, yielding a ranked answer, or the
top-ranked answer may be offered as a preferred answer.

An underlying assumption of these two types of answers is
that the “true” value is one of the values in the set. We then
turned our attention to the possibility that the true value
is a new value which is a (linear) combination of the given
values, called the fusion. For each of the six features we
showed how to calculate the feature value of the fusion, re-
sulting in an overall utility for the fusion. The fusion should
be preferred if its utility exceeds the utility of each of the
original elements.

Different fusion formulas would deliver fusions with differ-
ent utilities. Finally, we considered the problem of the best
fusion, which is a problem of optimization: find the fusion
coefficients that yield the fusion with the best utility.

The number of features is expected to be small (under 10),
and when the cardinality of the answer is moderate (say,
under 20), finding the best fusion using existing software
should not seriously impact the performance of a virtual
database system.

7.2 Future Directions
In various places in this paper we assumed that the incon-

sistent data is numeric. A potentially important extension
to this work would be to handle inconsistencies among non-
numeric forms of data as well. In this paper we defined the
concept of utility and used it for three purposes: (1) to rank
of the available alternatives (or conclude a preferred alter-
native), (2) to determine whether a proposed linear fusion
is better than the available alternatives, and (3) to find the
best linear fusion coefficients.

Calculating the utilities of alternative values from differ-
ent sources did not assume that the values are necessarily
numeric. Hence, the first result is applicable to the non-
numeric case.

The other two results, however, required that the alter-
native values be fused in a new value, and we assumed that
values are numeric and fusions are linear combinations. One
possibility for fusing non-numeric values is to divide them
into subcomponents, and use recurrence to determine the
preferred value of each subcomponent. For example, incon-
sistent addresses may be fused together by selecting the most
“popular” value in each address component (city, zip-code,

state, etc.).7 It should be possible to define the utility of
such fusions and compare it to the original utilities, though
we expect it to be considerably harder to define fusions that
would optimize this utility.
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