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Abstract. Security requirements have become an integral part of most modern soft-
ware systems. In order to produce secure systems, it is necessary to provide software
engineers with the appropriate systematic support. We propose a methodology to
integrate the specification of access control policies into UML and provide a graph-
based formal semantics for the UML access control specification which permits to
reason about the coherence of the access control specification. The main concepts in
the UML access control specification are illustrated with an example access control
model for distributed object systems.

1 Introduction

Security requirements are an important aspect in the development of software sys-
tems. In order to increase the overall system security and to more easily satisfy
the security constraints, security requirements should be taken into account early in
the software development process. Security requirements should be considered early
to avoid integration difficulties and unsatisfied security requirements. Furthermore,
the specification of security requirements should be easy, to enable the software en-
gineer to integrate security aspects into the application without being a security
expert. Finally, it must be possible to describe the security requirements using mod-
els known to software engineers. Besides an easy specification, the use of known
model techniques prevents software engineers from specifying mistakes in the se-
curity specifications. Once the requirements are specified, known model techniques
allow their verification to ensure security properties.

Since the UML is nowadays the de-facto standard modelling language, the usage
of UML for the specification of security aspects is an attractive aim, since software
engineers are used to the UML notation and the accompanying tools [19, 5,15, 7, 10].
We consider in this paper the specification of access control (AC) models with UML.
In our proposal, AC models are modelled using existing UML model elements, so
that UML tools can be directly used for the AC specification. Class diagrams are
used to specify the AC model entities, object diagrams are used for AC policy rules,
for AC model constraints and the access decision function.
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We give a graph-based formal semantics to the UML AC specification by the
transformation of the UML diagrams of the UML AC specification into attributed
graphs and graph rules [21]. The transformation gives a graph-based security frame-
work, for which we suggested verification concepts in [16-18].

Section 2 introduces the AC model used as the running example of this article;
section 3 presents the components of a UML AC specification and section 5 is an
application of the UML AC specification to a hospital application. Section 7 gives
a formal semantics based on graph transformations to the UML AC specification
and section 8 shows how the formal semantics can be used to prove some properties
of the UML AC specification. Section 10 concludes the paper and points to future
work.

2 Access Control in object-oriented systems

An access control model specifically designed to support the design and manage-
ment of access control policies in object-oriented systems is view-based access control
(VBAC) [2, 3]. VBAC relies on roles as abstractions of callers and can be regarded as
an extension of role-based access control (RBAC) [22] to distributed object systems.
Role-based access control reduces the complexity and cost of security administra-
tion in large systems because roles serve as a link between access modes for objects
(e.g. read or write access if the object is a file, the print command for a printer, a
method of a distributed object etc.) and subjects (users or processes that run on
behalf of them). A subject can access an object if it has a role which has the required
permissions for the access.

The principal new feature of VBAC is that of a view for the description of fine-
grained access rights, which are permissions for calling operations of distributed
objects. Views on objects are assigned to roles, and a subject can call an operation
of an object if it has a view on the object with a permission for the operation. The
subject has no access to the operation if the operation is not in a view assigned to
one of the subject’s roles.

Figure 1 shows a small example for the access control of Paper objects provid-
ing the operations read (), write(), append() and find (). The permissions read,
write, append and find give the access right to call the homonymous operation.
There are two views in this example: view Reading consists of the permissions read
and find, the view Modifying has the permissions write and append. The view
Reading is assigned to role Reviewer, view Modifying to the role Author. There-
fore, any user in role Modifying can call any operation of paper objects. A user in
role Reviewer, however, has read access to a paper but cannot modify it.

VBAC access policies are delivered in descriptor files and deployed together with
applications in the target environments, similar to approaches like EJB [23] or the
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Fig. 1. VBAC example.

CORBA Component Model [20]. These policies are initially designed by developers
and subsequently used and potentially adapted by deployers and security managers.
The deployment and management infrastructure designed for this approach is called
RAccooN [3,4]. A deployment tool processes policy descriptors and stores static
view and role definitions in repositories that can be managed using graphical man-
agement tools. At runtime, role membership is represented by digital certificates
issued by a role server. Access decisions are made locally in the server processes that
host application objects. These decisions are made on the basis of policy information
that is supplied by policy servers, which rely on the deployed policy information.
Policies can be managed in terms of roles and views using graphical management
tools.

3 Access Control specification in UML

We propose a three-layer model structure consisting of an access control metamodel,
an access control model and an access control instance model. We focus in this paper
on the access control meta model and the access control model.

Layer Description Example
access control meta-Defines the access controllVBAC, RBAC, etc.
model (ACMM) model independent of an
information/application
domain
access control model|Access control model|{Nurses, Doctor, etc.
(ACM) regarding an informa-
tion/application domain
instance model (IM) |instance of the model in a spe-|surgeon, internist etc.
cific information domain/ ap-
plication




The access control metamodel defines the language for specifying access control
models which are independent of an information or an application domain. Exam-
ples are VBAC, RBAC, Discretionary Access Control or Mandatory Access Control
models.

The access control model is an instance of the access control metamodel introduc-
ing the information and application domain, respectively. If the metamodel specifies
an RBAC model, doctor and nurse would be roles specific to a medical information
domain.

The instance access control model is an instance of the access control model
in a specific information or application domain. Examples would be orthopaedist,
surgeon, internist, etc. for doctor role instance objects.

We introduce in the next section the specification of the access control metamodel
and use the VBAC model as an example. Section 5 concerns the specification of the
access control model. We apply the VBAC metamodel to a medical information
domain.

4 Access Control Metamodel

An access control policy consists of a set of policy rules that define the choices in
the individual and collective behaviour of the entities in the system. To specify an
AC policy, it is necessary to model the entities in the system, the policy rules for the
behaviour of these entities and (possibly) additional constraints. Therefore, a UML
access control specification ACS = (T, PRules, Constr) consists of the following
UML diagrams:

— T, called type diagram, is a class diagram that specifies the available entities,
— PRules is a set of object diagrams for the specification of the policy rules,
— Constr is a set of object diagrams or OCL constraints for AC model constraints.

In the sequel, we explain each of the components using the VBAC policy model
of section 2 as running example.

4.1 AC entities

The available entities in an access control model are modelled in a class diagram,
called type diagram. For example, in the Access Control List implementation known
from Unix operating systems, the entities are mainly users, groups, processes and
files/directories with their read, write and execute permissions. In a Role-based
access control model, major entities are the roles and their assigned permissions,
users, sessions and objects.

The entities of the VBAC model are specified in the type diagram in figure 2.



Object: Represents the distributed objects in the system to which access
must be controlled by a policy. Objects can be related (e.g., by
inheritance).

Subject: Represents the system users or processes that run on behalf of
users. Subjects may have references to objects to access them.

Permission: A permission specifies a right to access an object. The permission
is uniquely assigned to the object to which the access right belongs.
For one object, however, there can be several permissions.

View: A view groups a number of permissions belonging to the same ob-
ject, i.e., views containing permissions defined for different objects
are not allowed.

Role: Represents the access control roles which are assigned to subjects.
One role can be played by several subjects and one subject can
play several roles. Views are assigned to roles: one view can be
assigned to different roles and a role may have several views. Roles
can be related by an inheritance relation, where the extended role
inherits all the views of the base view.

0.* 0..*

.|_Subject Role View Object
0.. 0.* 0.* 0.* 0.*
0”*
0..* 1 0.* 1
inherits - O
Permission o0

Fig. 2. The VBAC model.

In a concrete application, the classes in the type diagram are specialised to classes
taken from the application class diagram. For example, the role class in the VBAC
type diagram must be specialised to concrete roles of the given application (e.g.,
to the roles Author or Reviewer of fig. 1). Analog, all other classes are refined to
application specific classes.

4.2 Access Control Policy Rules

The access control policy rules define the behaviour of the system entities and con-
trol the possible system states. Policy rules are specified in object diagrams using



the special stereotypes <<create>> and <<destroy>>. The intended meaning of an
object or link with a stereotype <<create>> is that the object or link is created by
the system. The intended meaning of an object or link with stereotype <<destroy>>
is that the object or link is removed. Our approach in representing the actions of
a policy rule is similar to the representation of postconditions for actions in the
Catalysis approach [8]. To visualise an action in Catalysis, one diagram is used to
present the state before and after the action. Catalysis, however, uses a presentation
of the “after” state by bold elements or different colors instead of stereotypes.

Figure 3 (role management) and figure 4 (view management) show the policy
rules for the VBAC model.

create subject destroy subject create object destroy object
<<create>> <<destroy>> <<create>> <<destroy>>
s:Subject s:Subject 0:0bject 0:0bject
assign role remove role
s:Subject r:Role s:Subject r:Role
<<create>> | <<destroy>>
create permission remove permission
0:0bject <<create>> <<destroy>>
— [ <<create>>| p:Permssion p:Permssion

Fig. 3. VBAC policy rules.

create subject: Subject instances can be unconditionally added to the system
at any time, that is, their creation does not depend on the
current system state. The object diagram for policy rule create
subject consists of one subject instance with the stereotype
<<create>> which specifies that the subject instance is created

by the rule.
remove sub- Subjects can be unconditionally removed from the system at
ject: any time. The object diagram for rule remove subject speci-

fies this by a subject with stereotype <<destroy>>.



create object:
destroy object:

assign role:

Object instances can be created analog to subjects.

Object instances can be removed from the system analog to
subjects.

Rule assign role specifies the assignment of a subject to a
role. The assignment is modelled by a link between the sub-
ject instance and the role instance. The link is created (car-
ries stereotype <<create>>) while the subject as well as the
role must already exist in the system (they do not have a
<<create>>).

assign view remove view
v:View r:Role v:View r:Role
<<create>> | <<destroy>>
create view destroy view extend view
<<create>> <<destroy>> v:View p:Permission
v:View v:View <<create>>
restrict view
v:View p:Permission

remove role:

create permission:

remove perm.:

<<destroy>>

Fig. 4. VBAC policy rules for view management.

Rule remove role specifies the removal of a subject from a role
by deletion of the link between the role and the subject. Both
the subject and the role instance remain in the system, since
they do not carry a <<destroy>> stereotype.

Rule create permission creates a new permission object.
Since a permission must belong always to a unique object, the
created permission object is immediately connected to an ob-
ject.

Rule remove permission specifies the removal of a permission.



assign view: The assignment of a view instance to a role instance is specified
by a link between the two instances. Rule assign view specifies
the role-view assignment by the creation of a link between an
existing role and an existing view.

remove view: Rule remove view specifies the removal of a view from a role
by destroying the link between the role and the view.

create view: View instances can be created analogously to subjects.

destroy view: View instances can be removed analogously to subjects.

extend view: A view consists of a set of permissions. The assignment of a
permission to a view instance is specified by a link between the
instances. The rule extend view inserts this link between the
view and the permission instance.

restrict view: The rule restrict view removes a permission from a view by
removing the connecting link.

4.3 AC model constraints

The access control policy rules determine the acceptable system states. In some
situations, however, it is necessary to reduce the system states accepted by the
policy rules. For example, the policy rule assign role of the VBAC model can be
used to assign any number of subjects to the same role (by repeated application to
the same role). In many applications, however, there are role cardinality constraints,
e.g. a maximal number of subjects in a role. An additional constraint in VBAC is
the requirement that a view must have at least one permission when the view is
assigned to a role, otherwise permissionless views are allowed.

Some cardinality constraints are already included in the access control type di-
agram of a UML AC specification (e.g., figure 2 requires a unique object for each
permission). The VBAC example constraint which requires at least one permission
for a view assigned to a role, however, is not expressible by cardinalities in a UML
class diagram and must be specified separately. We present two ways to specify these
additional access control constraints: textually by the Object Constraint Language
(OCL) or graphically by object diagrams.

The OCL constraint for the requirement that each view has a permission when
assigned to a role is as follows:

context View inv
(self.role->notEmpty) implies (self.permission->notEmpty)

The OCL is a powerful specification technique in which complex constraints
can be expressed. For a restricted set of OCL constraints we can give a graphical
representation which adapts itself better to the graphical nature of the other UML



diagrams. Furthermore, in section 7 this graphical representation can then be used
to apply verification concepts. The OCL constraints that can be given a graphical
representation are mainly OCL constraints concerning the object structure of a
system state. Some other OCL constraints can be presented graphical as well (see
[1]), but this is not topic in this paper.

The graphical access control constraints are either object diagrams which show
a forbidden structure that must never occur in a system state or they are object
diagrams which require a structure under certain system state conditions. We call
the former object diagrams negative constraints, the latter positive constraints. The
object diagrams for positive constraints make use of the stereotype <<exists>>: all
objects and links labelled with this stereotype must exist in a system state when the
remaining, i.e., non <<exists>>-labelled, objects and links occur in a system state.

Figure 5 is the graphical specification of the view-permission requirement by a
positive constraint. It shows a permission p assigned to a view v which in turn is

r:Role v:View <<existsr> <<exists>>
& p:Permission

Fig.5. VBAC constraint

assigned to a role r. The permission object p and its link to the view v carry the
<<exists>> label. Both must exist when the view v is assigned to a role r. Is no
role assigned to the view, the assigned permission do not have to exist. An example
of a negative constraint is given in the next section.

5 Access Control Model for an Information Domain

The access control metamodel defines a language for specifying access control mod-
els. In the previous section, we introduced the access control metamodel for VBAC.
An access control metamodel consists of three parts: a metamodel for the access con-
trol entities, the access control rules and the access control constraints. The access
control metamodel is independent of an information domain, e.g., the VBAC meta
objects are Subject, Role, View, Permission and Object. In an information domain,
these metaobjects are mapped to application dependent objects.

5.1 Information Domain Access Control Entities

The access control entities in the metamodel are specified in a class diagram. The
access control entities in the access control model are specified in a class diagram



as well, which is an instance of the metamodel class diagram and which contains
information resp. application domain specific access control entities.

Figure 6 shows an instance of the VBAC metamodel applied to a medical in-
formation domain. We consider a small part of a hospital in which patients are

i CIS
PatientRecPermission PatientRecord
ight : String 0.r
right : -Pati
Y addFinding(finding:Finding):boolean 1 |newPR():PatientRecord
show(): String list(): PatientRecord[]
getPR(patientID: int): PatientRecord
Person PatientRecordView
name: String 1
address: String
Staff Nurse ClSView
ward: String
Patient Doctor Head CISPermission
patientlD: int specialistArea: String Qi department: String right: String
| | 0.*

Fig. 6. Class diagram for the application.

medicated by doctors resp. nurses. Each ward has a head of department. The fol-
lowing table shows the mapping of the metaobjects to the objects in the access
control model with a brief description of its meaning. We try to keep the hospital
application small, but detailed enough to demonstrate the specification of the VBAC
model. A more detailed introduction to the hospital application can be found in [6].



metamodelmodel

description

Subject Person A person has a name and an address. The class is abstract.
Staff Specialisation of Person. Specifies the staff in the hospital.
The attribute ward specifies on which ward the staff member
is currently working.
Patient Specialisation of Person. Patients are identified by a patient
identifier patientID.

Role Nurse Role for nurses.

Doctor A specialisation of role nurse. Each permission granted to
role nurse is granted to doctors, too. Specialist area, e.g.
surgery or orthopaedy, defines the doctor’s specialist area.

Head Specialisation of role Doctor. Represents the head of depart-
ment of a ward.

View CISView |View for CIS permissions.

Patient- Views for PatientRecord permissions.

RecordView|

Objects CIS The central information system (CIS) contains the electron-
ical patient records. Patient records can be created by oper-
ation newPR () if it is the patient’s first stay in the hospital.
A list of all patient records can be requested by 1istPRQ),
a specific patient record is returned by getPR().

Patient- The (textual) contents of a patient record can be requested

Record by operation show(). Whenever findings for a patient are
created due to new investigations, the findings are added to
the patient record by operation addFinding().

Permission |CISPermission Permissions for object CIS. The attribute right contains
the name of the operation, to which the permissions grants
access.

PatientRec-|Permissions for object PatientRecord.

Permission

5.2 Access Control Policy Rules and Constraints

The access control policy rules and the access control constraints of the access control
model are derived from the object diagrams for the policy rules and constraints of the
metamodel, in which metaobjects are instantiated with information domain specific




objects specified in the type diagram of the access control model. The object diagram
got by instantiation of a policy rule or a constraint must be an instance of the type
diagram of the access control model.

For example, the rule assign role in fig. 3 can be specialised to a rule in which
the metaobject s:Subject is instantiated by the object s:Staff and the metaobject
r:Role by d:Doctor. Another example is the meta-rule create permission. The
metaobject o:0bject can be instantiated by a CIS object, the permission object
p:Permission by a CISPermission with a value list for attribute right. Fig. 7)
shows this policy rule and some more examples.

new staff new patient record assign doctor to staff
<<create>> <<create>> s:Staff d:Doctor
s:Staff pr:PatientRecord <<create>>
create ListPermission create CIS view
c:.CIS <<create>> <<create>>
<<create>> | n-C|SPermission v:CISView
[right = list]
add list permission assign view to nurse
v:CISView p:CISPermission v:CISView n:Nurse
<<create>> - :
[right = list] sscreate>>

Fig. 7. Policy rules in the access control model.

The following instantiations are examples of invalid instantiations: The instantia-
tion of the metaobject s:Subject to p:Person is not possible since the class Person
is abstract, i.e., it has no instances. The instantiation of the metaobject s:Subject
to p:Patient and the metaobject r:Role to d:Doctor in rule assign role is not
possible since the type diagram of the access control model does not permit links
between patient and doctor objects.

The policy rules of the access control model are given by all object diagrams
that can be derived from the policy rules of the metamodel with objects taken
from the access control model type diagram which are instances of the type diagram.



The access control constraints of the access control model are derived from the
access control constraints of the metamodel analog to the policy rules. The meta-
objects are instantiated with objects given in the access control model type diagram.
An example of the specialisation of the VBAC constraint in figure 5 is a constraint
in which the role is a Nurse object, the view is CISView and the permission is a
CISPermissiom. An invalid instantiation according to the ACM class diagram is a
CISView object for the view and a PatientRecPermission object for the permission.

In addition to the instantiations of metamodel constraints, there may be informa-
tion domain dependent constraints. For example, the VBAC type diagram in figure 2
does not specify a restriction on the number of subjects in one role. In the hospital
application, however, there is at most one head of department for each ward. The
application specific constraints can be added by specifying them either graphically
or with OCL. Figure 8 shows the graphical constraints for the head of department
requirement. The negative constraint a) ensures that there are no more than two
staff members assigned to the same Head role. Negative constraint b) models that
there is at most one Head role object for each department. Below the corresponding
OCL constraints are given.

positive constraint

r:Nurse v:CISView i Sodass
<<exists>> p:CISPermission

negative constraint a)

s:Staff r:Head s':Staff

negative constraint b)

r:Head r':Head
department=x department=x

Fig. 8. ACM constraints.

a) context Head inv
self.staff->size() < 2
b) context Head inv
Head.allInstances->forAl11(hil,h2 | hl <> h2 implies
hl.department<> h2.department )



The policy constraints of the access control model are given by

— all object diagrams got by the instantiation of the constraint diagrams of the
access control metamodel by objects specified in the access control model (ACM)
type diagram, so that the resulting object diagrams are instances of the ACM
type diagram and

— a set of object diagrams specifying information domain specific constraints.

6 Access Decision Function

The access decision function of an access control model determines whether an access
for a concrete subject in a particular state is possible or not. When a subject tries
to access an object during runtime, the policy enforcement engine must be queried
to decide whether the access is allowed or denied based on the deployed policy. In
the case of the VBAC model, access control is required when object operations are
called. The query comprises the question whether the subject has a role with a
permission to call the desired operation.

Queries are specified by object diagrams, called query diagrams, which model
the subject, the desired access of the subject on an object and the system structure
necessary to grant this access to the subject. These three aspects may be differently
modelled for different access control models, but we require them to be covered by
the query diagram.

We consider access decision on the instance model layer, since the access decision
enforcement engine is used during runtime when specific instances are considered.
Assume for example, a runtime object s of type Staff wants to call the operation
list () of an instance c of type CIS. The query diagram in figure 9 shows the way how
the access decision function can be modelled in the VBAC model. The query diagram

call operation list() _cCls

s:Staff r:Nurse v:CISView p:CISPermission
[right = list]

Fig. 9. Query diagram for calling operation op().

contains the subject instance s:Staff which wants to call the operation 1ist () of
the CIS object c. The desired access of the subject (the staffer) is modelled in a note
containing the operation the subject tries to call. The object structure necessary to



call the operation 1ist () is that of a role assigned to the subject where the role has
a view with permission 1ist. In figure 9 is checked if the instance s:Staff is in role
Nurse with a view having the permission 1ist. The other roles must be checked as
well, so that there are two additional query diagrams for role Doctor and Head as
well.

To decide if a subject has access to an object in a given system configuration,
the query diagram must be found in the object diagram representing the current
system state. If the query diagram is a part of the system diagram, access is granted,
otherwise access is denied.

7 Semantics via graph transformations

In this section, we give a graph-based, formal semantics to the UML AC specifica-
tion. The formal semantics enables to check the UML AC model w.r.t. consistency
properties (see section 8). We briefly introduce graph transformations in the next
subsection as far as necessary for the remainder of this article. For the general con-
cepts of graphs, graph rules, types and attribution in the algebraic approaches, see
[21]. After the introduction to graph transformations, we present the translation
from the UML AC model to a graph-based security policy framework [16].

7.1 Background on Graph Transformations

A graph consists of disjoint sets of nodes and directed edges e : a — b from a source
node a to a target node b. Nodes and edges of a graph are labelled statically as well
as dynamically. The static labels are node and edge types used to identify graphical
objects, the dynamic labels, called attributes, are used to store data together with
the static objects. The node and edge type information is specified in a type graph.
For the description of attributes a simple algebraic approach is used in this article.
If more complex attributes are necessary, a categorical or algebraic approach can be
chosen, as well. Each node and edge type is associated with an attribute tuple type
containing several attribute declarations. A declaration consists of an attribute name
and an attribute data type. A graph object is associated with a tuple of constant
attribute values. In rules, also variables and complex expressions are allowed.

Figure 10 shows an example of a type graph and a possible instance graph. There
is one node type class and two edge types generalisation and association. Attributes
for class nodes are name (of type string), stereotype (a set of Strings), attributes
(set of pairs (attribute name, attribute type)) and operations (set of triples (oper-
ation name, operation parameter, return type). Attribute for the association edges
is name, generalisation edges do not have attributes. Graph b) shows an instance
graph with respect to the type graph.



a) b)

association
class name = ™
class name = "classA"
name: String attributes = { (al,String), (a2, int) }
stereotype: Set(String) operations = {} class
attributes: Set(Tuple_A) name = "classC"
operations: Set(Tuple_Op) attributes = { (a4,String) }
association | operations = {}
r class name = "™
generalization association name = "classB" association
name: String attributes = { (a3, boolean) } name ="
operations = {(opName,{},boolean)}

Fig. 10. Type graph (a) and instance graph (b).

A graph morphism f : G — H between two graphs G and H is a partial mapping
between the nodes (resp. edges) of G and the nodes (resp. edges) of H so that 1)
f respects the graph structure, i.e. whenever the mapping for edges is defined for
an edge e, the mapping for the source node s and the target node ¢ of e is defined
and f(s) and f(t) are the source and target node for the edge f(e) in H, 2) nodes
and edges are mapped only to nodes and edges of the same type, and 3) f respects
the attribution, i.e., attributes coincide or are in a previously defined relation (what
is defined in the algebraic specification of the attribute type). We call the graph
morphism fotal if the mappings between the node and edge sets are total. A graph
morphism is injective if the underlying mappings for nodes and edges are injective.
Figure 11 shows an example of an injective and total graph morphism. Please note,
that the attributions of the association edges does not coincide. In graph G the name
is a variable x and in graph H it is the constant ””. We assume in the rest of the
paper a relation between variables and constants, so that we can substitute variables
by constants.

A graph rule r, or just rule, is an injective graph morphism r : L. — R in which
the attributes of image and domain nodes/edges coincide. The graph L, called the
left-hand side of the graph rule, describes the elements a graph must contain for r to
be applicable. The partial morphism is undefined on nodes/edges that are intended
to be deleted, defined on nodes/edges that are intended to be preserved. Nodes and
edges of R, right-hand side, without a pre-image are newly created. Note that the
actual deletions/additions are performed on the graphs to which the rule is applied.
An example graph rule is shown on top of figure 12. Its left-hand side consists of
one class A and an association. The right-hand side has a class A node and a class
C node. Both nodes are connected by an association edge. The graph morphism for
the rule is defined only for the class A node and undefined on the association edge.
Therefore, the node will be preserved during the rule application, the association
edge will be deleted. Since the class €' node and the association edge do not have a
pre-image in the left-hand side, they are created by the rule.



class association class
name = "classA" name = X name = "classC"
attributes = { (al1,String), (a2, int) } ! attributes = { (a4,String) }
operations = {} operations = {}

H ! association

class ; name = "
name = "classA"
attributes = { (a1,String), (a2, int) } l '
operations = {} class

name = "classC"
attributes = { (a4,String) }

association | operations = {}

class e ™

name = "classB" association
attributes = { (a3, boolean) } name ="
operations = {(opName,{},boolean)}

Fig. 11. Ezample of a graph morphism.

The application of a rule v : L — R to a graph G requires a total morphism
m : L — G, called match, from the left-hand side of the rule to G. The application
itself is formally characterised by the pushout of the rule morphism and the match
in the category of graphs and graph morphisms. The construction of the derived
graph consists of two steps: first delete all objects in G that have a pre-image in
L\ dom(r), then add all graph objects of R\ (L) to G connected to the nodes
m(dom(r)). If the label or attribute value of the left-hand side is a variable, it is
substituted with the label or attribute value of the mapped graph object. Figure 12
applies the rule on the top to graph H. First, the association edge at class A in G
is deleted, then the class C together with the association edge is added to G. The
result graph is graph H.

7.2 From UML Diagrams to Graphs

Due to the graphical notation of UML, UML diagrams can be represented as at-
tributed typed graphs. We follow the representation introduced in [25].

Each class in a class diagram is a node of type class. The class name is stored
in the attribute name, the stereotype(s) in the attribute stereotype. The UML class
attributes and operations are represented as sets of tuples in the attributes attributes
and operations, respectively. Each tuple for a UML class attribute contains infor-
mation about the attribute’s name and the attribute type. The tuple for the UML



L R -
class class association class
name = "classB" N | .| name = "classB" name =" name = "classC"
attributes = { (al,String), (a2, int) } attribu_tes ={(al,String), (a2, int) } ; attributes = { (a4,String) }
operations = {} operations = {} D operations = {}
association } :
3 name =" i : 3 |
G ' H !
; i ] i
class class | class
name = "classB" [ S ___|.| name = "classB" ] name = “"classC"
attributes = { (a1,String), (a2, int) } , attributes = { (a1,String), (a2, int) } ' N attributes = { (a4,String) }
operations = {} operations = {} association | gnerations = {}
name =
association association
name =" association name ="
name ="
class class
name = "classA" name = "classA"
attributes = { (@3, boolean) } ~ f------------- ---+ attributes = { (a3, boolean) }
operations = {(opName,{},boolean)} operations = {(opName,{},boolean)}

Fig. 12. Graph rule application.

class operations has tuple elements for the operation’s name, the parameter list and
the return type. The parameter list itself is a set of pairs consisting of parameter
name and parameter type. Fig. 13 shows the graph representation of the UML class

PatientRecord in fig. 6.

a) b)

PatientRecord

Class
name = "PatientRecord"

addFinding(finding:Finding):boolean stereotype = {}

show():String attributes= { }
operations = { (addFinding, { (finding,Finding)}, boolean),

(show, {}, String) }

Fig. 13. Representation of a UML class (left) as an attributed graph node (right).

UML objects are represented in a similar way. The graph node for an UML
object has the graph attributes name for the object name, class for the class name
of which the object is an instance of and attribute for the attribute values.

Directed associations of the UML class diagram are represented as edges of type
association. In this paper, the edge attributes contain only the association name, but
other information about role names, role visibilities etc. can be transformed into edge
attributes, too. Bidirectional associations are translated into two edges in opposite
directions. Generalisations are represented by an edge of type generalisation. Fach



subclass node inherits the association edges of the superclass node and the attributes
attribute and operations of the superclass node are added to the attributes and
operations of the subclass node. Fig. 14 shows an example. Links between objects

) b)
Class
Person name = "Person”
name:String stereotype = {}
address: String attributes = { (name, String),
(address String) }
% operations = {}
Staff Nurse generalization
ward:String Class association Class § _
name = " Staff" name="" name = "Nurse'
stereotype = {} _— ste(eotype ={}
attributes = { (ward, String) } attributes = {}
operations = {} operations = {}

Fig. 14. Representation of UML associations and generalisations.

are represented by edges of type link.

The multiplicity information in class diagrams is not yet considered in the trans-
lation. Each multiplicity range n..m (n < m) for an association is translated into
a positive graphical constraint for the lower bound n and a negative graphical con-
straint for the upper bound m. A positive graphical constraint is a total and injective
graph morphism ¢ : X — Y and a graph G satisfies c if for all total and injective
graph morphisms p : X — G there exists a total and injective graph morphism
¢:Y - Gsothat X 5y S5a=x5%G A negative graphical constraint is a
graph C and a graph G satisfies C if there does not exist a total, injective graph
morphism p: C — G.

The graph X of the positive graphical constraint for the lower bound n contains
one object node of the association’s source class. The graph Y contains the same
node and n object nodes for the association’s target class. The graph morphism maps
the object node in X to its counterpart in Y. The graph C' of the negative graphical
constraint for the upper bound m contains one object node of the association’s source
class and m + 1 objects of the association’s target class. Fig. 15 shows an example
for a multiplicity 1..1 between class PatientRecord and class CIS. References are
represented by link edges. A lower bound 0 and an upper bound * are not translated
into graphical constraints, because they have no implementation consequences.

7.3 UML AC Specification and Security Policy Framework

The translation of UML class and object diagrams into attributed graphs is the basis
for the translation of a UML AC specification AC'S = (T, PRules,Constr) into a
graph-based security policy framework [16].



PatientRecord L1 CIS
a)
X Y
object object object
name =N name = N ) name =C
class = "PatientRecord” | |-~ ~ class= "PatientRecord” | 1NK___ | glass="CIS"
b)
C - -
object ) object . object
name = C1 link name = N link name = C2
class="CIS" class = "PatientRecord" class="CIS"

Fig. 15. Representation of UML multiplicities in UML class diagrams: a) positive constraint for
lower bound, b) negative constraint for upper bound.

Definition 1 (Graph-based Security Policy Framework). A graph-based
security policy framework, or short security framework, is a tuple SP =
(TG, Rules, Pos, Neg), where TG is a type graph, Rules is a set of graph rules,
Pos is a set of positive graphical constraints, and Neg is a set of negative graphical
constraints.

Given a UML AC specification AC'S = (T, PRules, Constr), the type diagram
T generates the type graph T'G together with some positive and negative graphical
constraints for the sets Pos resp. Neg, the set of object diagrams in PRules gener-
ates the graph rules in Rules and the object diagrams in C'onstr generate additional
positive and negative graphical constraints in Pos and Neg, respectively:

— The type diagram T of a UML AC specification is a class diagram and we
take its graph representation as the type graph T'G of the security framework.
Since a type graph can not specify the multiplicities in a class diagram, we add
the constraints for the multiplicities in the class diagram T to the graphical
constraint sets Pos and Neg, respectively.

— Each object diagram OD in PRules is translated into a graph rule r : L — R,
where L is the attributed graph given by all objects and links of OD without a
stereotype <<create>> and R is the attributed graph given by all objects and
links of OD without a stereotype <<destroy>>. The morphism r is defined for
all objects/links without a stereotype <<destroy>> and maps the objects and
associations to their counterparts in R. Fig. 16 shows the graph rules for the
object diagrams create subject and assign role of fig. 3.



object

name="g"

attributes = {}
operations = {}

class = "Subject”

L
object object
name="s" name="s"
class="Subject" | | __ || class="Subject"
attributes = {} attributes = {}
operations = {} operations = {}
link
object object
name = "role" name = "role"
class="Role" class="Role"
attributes = {} attributes = {}
operations = {} operations = {}

Fig. 16. Translation of UML AC specification policy rules into graph rules.

— Each object diagram OD in Constr with an object or link carrying a stereotype
<<exists>> is translated into a positive graphical constraint ¢ : X — Y, where
X is induced by all objects/links without a stereotype <<exists>> and Y is the
attributed graph induced by OD. The morphism ¢ maps each node/edge to its
counterpart in Y. Each object diagram OD in Constr without the stereotype
<<exists>> (i.e., a negative constraint) is translated into a negative graphical
constraint C'; where C' is the attributed graph induced by OD. Figure 15 is the

positive graphical constraint for the object diagram in figure 5.

X
object - link object
name="r — name="v"
class="Role" |- class="View"
1 Vlink
Y i L i
object - ink | object
name="r ; ' | name="v"
class = "Role" L1 class="View"
link
link link
object
name ="p"

class = "Permission"

Fig. 17. Translation of UML AC specification constraints into graphical constraints.




8 Verification

This section concerns the coherence of a UML AC specification. Informally, a UML
AC specification is coherent if the policy rules allow system states only which sat-
isfy the constraints of the UML AC specification. To ensure coherence formally, we
use the verification concepts in [16-18] to check coherence of a graph-based security
framework. We define a UML AC specification to be coherent if the graph-based
security framework is coherent which results from the translation of the UML AC
specification as introduced in the previous section. A graph-based security frame-
work is coherent if all graphs constructed by the graph rules satisfy all graphical
constraints. A graph-based security framework is incoherent if there is a graph rule
which creates a graph that does not satisfy one of the graphical constraints.

Consider the UML AC specification for the access control model in section 5. Its
set of policy rules contains the object diagrams in figure 3 and figure 4 specialised
to application specific objects given in the access control model type diagram in
figure 6. One example is the specialisation of the policy rule assign role in figure 3
by a Staff instance as subject and Head as role. Applying this rule several times
to the same Head role but different staff member instances, we get several staffers
who play the role Head for the same department. The negative constraint a) in
figure 8, however, forbids more than one subject in role Head. Therefore, the AC
UML specification is not coherent.

Whether a graph rule may produce a system state which violates a graphical con-
straint can be detected statically [17]. In the sequel we distinguish between deleting
rules which delete elements but do not add anything and extending rules which add
elements but do not delete anything. All rules in this article can be put in one of
these two categories.

An extending graph rule may violate a negative constraint by adding elements
which complete the forbidden system state. A deleting rule cannot violate a negative
constraint. An extending graph rule may violate a positive constraint ¢ : X — Y by
adding elements which construct the premise X of the positive constraint without
completely constructing the conclusion Y. A deleting rule can violate a positive
constraint by deleting elements from the conclusion but the premise is still valid.
In the example mentioned above, the extending rule assign role can construct the
forbidden graph of the negative constraint a) in figure 8. If a rule can violate a
constraint, we say the rule and the constraint are in conflict.

Conflicts between rules p and constraints ¢ : X — Y can be resolved by adding
application conditions to the graph rules. The idea of the conflict resolution by
an additional application condition is, that the application condition prevents the
application of the rule whenever the application would produce a graph that violates
the constraint. An application condition for a graph rule p with rule morphism



r : L — R is a total injective morphism n : L — N, where the part N \ n(L)
represents a structure that must not occur in a graph G for the rule to be applicable.

Definition 2 (application condition). An application condition for a rule p :
L 5 R is a total injective graph morphism n : L — N. A morphism m : L — G
satisfies an application condition n if there does not exist a total injective graph
morphism q : N — G with m = qon. A rule p with application condition n is
applicable to a graph G if there is a match m : L — G which satisfies the application
condition.

We present next the constructions of the application conditions that ensure a co-
herent graph-based security framework. We start with the construction for extending
rules. Afterwards, we present the construction for deleting rules.

Definition 3 (extending rule reduction). Given an extending rule p : L = R,
a graph X and a nonempty overlap S of R and X, so that X N (R\ r(L)) # 0.

Ll sR< g

Lk

N——C<~—X
r* b

Let C = R+35 X be the pushout object of s1: S — R and so : S — X in the category
Graph, and let c’ :> N be the derwatzon wzth the inverse rule p~' : R —> L at

match h. Define A(p,X) ={n:L — N|C :> )N, C = R +g X for some overlap
S with XN R\r(L) #0 }.

Proposition 1 (preservation of satisfaction). Let p : L = R be an extend-
ing rule, NC' a negative graphical constraint and ¢ : X — Y a positive graphical
constraint.

1. Let p(NC) be the rule p extended by the application conditions A(p, NC) and

G " 0 be a derivation with p(NC) at match m. Then, G satisfies NC
implies H satisfies NC.
p(c),m

2. Let p(c) be the rule p extended by the application conditions A(p, X) and G ==
H be a derivation with p(c) at match m. Then, G satisfies ¢ implies H satsifies
c.

In the case of a negative constraint, the application conditions prevent the rule
from building the graph specified in the negative constraint. In the case of a positive
constraint, the application conditions prevent the rule from constructing the premise
X of a positive constraint. The proof is given in [12].



Next, we present the construction of the application conditions for a deleting
rule.

Definition 4 (deleting rule reduction). Given a deleting rule p : L - R, a
positive constraint ¢ : X — Y and a nonempty overlap S of L and Y, so that

(L \ dom(r)) N (Y \ (X)) # 0.

Lt g

Let N = L +g Y be the pushout object of s1 : S — L and s2 : S — Y in the
category Graph. Define A(p,c¢) ={n: L — N|N = L+gY for some overlap S with

(L \ dom(r)) N (Y \ ¢(X)) # 0}

Proposition 2 (preservation of satisfaction). Let p : L = R be a deleting rule,
c: X — Y a positive constraint and p(c) the rule p extended by the application

conditions A(p,c) (see Constr. }). Let G PN B be a derivation with p(c) at match

m, then G satisfies ¢ implies H satisfies c.
Proof. Let G pgn H be a derivation and G satisfies ¢. Let p : X — H then there
is a total morphism pg : X — G with r* o pg = p since p(c) is a deleting rule. By
assumption, G satisfies ¢ so that there exists a total morphism ¢z : Y — G with
coqg = pg. It remains to show that r* oqg is total since then r*oggoc = r*opg = p.
We assume 7* o g¢ to be partial. Then, the rule p(c) deletes parts of Y\ ¢(X).
By construction, there is an overlap S with morphisms s : S — L and s3: S =Y
so that m o sy = qg o s9. Let (N,a: L — N,b:Y — N) be the pushout of s; and
s2, by pushout property, there is a unique total graph morphism v : N — G with
m = u o a. This, however, is a contradiction to the fact that m is a match for p(c).

For deleting rules, the application conditions prevent the rule from deleting parts
of the conclusion Y which are not part of X. If parts of Y are deleted which are
part of X, too, this cannot destroy satisfaction since then the premise does not exist
anymore in the graph.

Theorem 1. Let SF = (TG, Rules, Pos, Neg) be a graph-based security framework
and SF' = (TG, Rules', Pos, Neg) the framework in which each extending rule p €
Rules is extended by application conditions A(p, NC) U A(p, X) for all NC € Neg
and ¢ : X =Y € Pos and each deleting rule is extended by application conditions
A(p,c) for all c € Pos. Then, SF' is coherent.



Follows from proposition 1 and proposition 2.

An example for construction 3 is given in figure 18, an example for construction 4
in figure 19. The first example shows the extending rule assign role for staff members

L R S1 X
object object object object
name = "sx" |||l name ="sx" A name = "sx" S ~ name = "sx"
class = "Staff" class = "Staff" class = "Staff" class = "Staff"
link l link Jlink
object object object object __
name ="y" ——1--f Name ="y" OV R _| name ="y" [ |l hame ="y
class = "Head" class = "Head" class = "Head" class = "Head"
link
n \ PO object
name = "sy"
class = "Staff"
object object PO
name = "sx" ...~ name ="sx"
class = "Staff" class = "Staff"
| tink
object object
name ="y" _ | ___{/ name ="y"
class = "Head" class = "Head"
link link
object object
name = "sy" - -1~ name = "sy"
class = "Staff" class = "Staff"

Fig. 18. Ezample for an extending rule and a negative constraint.

and Head roles and the negative constraint which forbids two staff members in the
Head role. The overlap S is one of two possible overlaps, since the link must be
included in S by construction 3. The application condition n forbids the assignment
of a staffer to the role Head if there is already a staffer in this role.

The second example in figure 19 shows the deleting rule destroy permission for
a CISPermission and the positive constraint which requires a CISPermission in
each CISView when assigned to role Nurse. The overlap S is the only possible one
in this example. The application condition n forbids to delete the permission object
when there exists a connected CISView assigned to a role Nurse.

The extended graph rules can be translated back into a UML representation. We
need only an additional UML representation for application conditions. We choose



R L S

destroy object — object
— name ="px" |4 1 name = "px"
permission | | class = "CISPermission” class = "CISPermission"
n | PO
N , ! \% . !
object object
name = "px" e4----F-1 name = "px"
class = "CISPermission” class = "CISPermission"
link link
object object
name = "vx" ~------t----1 hame = "vx"
class = "CISView" class = "CISView"
link link
object object
name = "rx" e R Rt name = "rx"
class = "Nurse" class = "Nurse"

Fig. 19. Ezample for deleting rule and positive constraint.

the stereotype <<not>> (fig. 20 shows the UML representation of the example in fig-
ure 18). The intended meaning of an object diagram for a policy rule with stereotype
<<not>> is, that the rule can be applied when all objects/links without stereotype
<<create>> occur and all objects/links with stereotype <<not>> do not occur.

9 Related Work

Recent research concerns the integration of security engineering into the software
development process. Since the UML is the de-facto standard modeling language in
practice, the approaches try to integrate security aspects into the UML.

Epstein and Sandhu introduce in [10] a UML-based notion for RBAC. The notion,
however, is neither suitable for the verification of security properties nor for the
generation of access control specifications. Quoting from the paper: ” Although there
is a check on the UML syntax, there is no logic or semantic check. We have to trust
he designer to accurately depict the model” and ”...this paper ...does not show a
methodical approach for defining constraints for UML or for the RBAC model....”

Jirjens extends in [14] the UML for specifying aspects of multi-level secure sys-
tems and security protocols. He proposes a tailored formal semantics to formally



a) graph rule with application condition

N L R
object object object
name = "sx" l-f--1- Name="sx" -{---{» Name="sx"
class = "Staff" class = "Staff" class = " Staff"
link
object link object object object
name = "sy" name ="y" <|--1-1 name="y" F-1---t~ name="y"
class = " Staff" class="Head" class="Head" class="Head"

b) UML representation

<<not>> i ]
o Staff <<not>> y:Head <<create>> x: Staff

Fig. 20. UML representation of application conditions.

evaluate UML diagrams and to indicate possible weaknesses. In contrast to our ap-
proach, there is no model-driven integration of security and the verification does
not provides an automatic consistency construction to resolve unsatisfied security
constraints.

Fernandez-Medina et al. extend in [11] the UML to support the design of secure
databases. They consider a multilevel database model in which all model elements
have a security level and a security role which are both modeled by tagged values.
They extend the OCL to be able to represent multilevel system constraints. Unlike
[11] which is developed for multilevel databases, our approach is more general for
any access control model and not restricted to databases. In contrast to [11] which
extends the OCL by non-standard features, we use for the specification of constraints
the standard OCL. The OCL extension has the advantage of a clearer and more
legible specification in the specific context of multilevel databases, but does not
ensure compatibility.

An approach closely related to ours is SecureUML [19]. SecureUML is a UML-
based modeling language for the model-driven development of secure systems. It pro-
vides support for specifying constraints, as well. The security information integrated
in the UML models is used to generate access control infrastructures. In contrast to
our approach, SecuretUML focuses on static design models which are closely related
to implementations. Therefore, there is no support for detecting security require-
ments (e.g., which roles are needed and which permissions they need). Unlike our
approach, which is suitable for arbitrary access control models, SecureUML builds



on RBAC. Moreover, SecureUML does not have a formal semantics to verify security
properties.

10 Conclusion

We have presented an approach to the specification of AC control policies in UML by
means of UML class and object diagrams that can be modelled with existing UML
tools. A translation of the UML AC specification into a graph-based security frame-
work permits the application of verification concepts from graph transformations to
reason about the coherence of a UML AC specification.

The UML AC specification can be modelled using existing UML CASE tools.
One aim of future work is the transformation of the XMI export (got by the CASE
tool) into a XML format for graphs [24]. Then, graph transformation tools [9] can
be used for the automatic verification of AC requirements.
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