
Intensional Encapsulations of Database Subsets via
Genetic Programming

Aybar C. Acar and Amihai Motro

March 8, 2005

Abstract

Finding intensional encapsulations of database subsets is the inverse of query eval-
uation. Whereas query evaluation transforms an intensional expression (the query) to
its extension (a set of data values), intensional encapsulation assigns an intensional
expression to a given set of data values. We describe a method for deriving intensional
representations of subsets of records in large database tables. Our method is based
on the paradigm of genetic programming. It is shown to achieve high accuracy and
maintain compact expression size, while requiring cost that is acceptable to all appli-
cations, but those that require instantaneous results. Intensional encapsulation has a
broad range of applications including cooperative answering, information integration,
security and data mining.

1 Introduction

The problem of finding intensional encapsulations of database subsets has attracted consid-
erable interest for almost two decades. Essentially, intensional encapsulation of data is the
inverse of query evaluation. Whereas query evaluation substitutes an intensional expression
(the query) with its extension (a set of data values), intensional encapsulation assigns an
intensional expression to a given set of data values.

The original application of intensional encapsulation was in cooperative answering sys-
tems, proactive systems that help users achieve their retrieval goals efficiently. The common
term for the method was intensional answering, and the idea was to respond to database
queries with concise expressions that describe, as accurately as possible, the usual (exten-
sional) answers to these queries. The user would thus receive two complementary responses:
the usual answer, and a compact description of the answer. For example, a query about the
employees who earn over $80,000 would be answered extensionally by the appropriate set of
employees, and intensionally by an expression such as “all the engineers, except John, but
also Mary”.

1

This paper describes a novel method for generating intensional encapsulations using the
paradigm of genetic programming. Given a set of database records, intensional expressions
are generated that attempt to “cover” the given set. These expressions are evolved and
recombined with each other until a satisfactory result is obtained. The attributes and at-
tribute values used in these expressions are selected using a Bayesian approach that uses the
probability distributions of the attribute values in the database.

The advantage of using genetic programming is that it does not require any semantic
information about the content of the database, the meaning of its attributes, and so on.
In comparison with other methods that are “blind” to semantics, genetic programming
offers much more precision. Genetic programming is especially adept at finding intensional
encapsulations for sets with small disjuncts (e.g., a set of records containing all engineers
and also Mary), where more traditional approaches like decision trees tend to generalize and
neglect the exceptions.

Any method for intensional encapsulation is subject to three performance measures.
The first measure is accuracy: How well does the intensional expression obtained represent
the given set. This is interpreted as the similarity of two sets: the given set, and the
extension of the intensional expression. We adopt a common measure of set similarity,
which is the harmonic mean of the relative containments of each set in the other set. Our
experiments achieved mean accuracy of 94.6%. Clearly, compact intensional encapsulations
are preferred as they are more comprehensible and more likely to be meaningful to the
application. Our second performance measure is therefore conciseness. Our measure for
conciseness is comparative: Our experiments begin with sets that are themselves generated
by intensional expressions. We then compare the complexity of the discovered intension with
the complexity of the a priori intension. In 90.4% of the experiments, conciseness has either
remained the same or has actually improved. The third performance measure is time: How
much effort is spent in obtaining acceptable encapsulations. Genetic programming processes
are measured by “generations”, and the mean number of generations required was 2.33. Using
a desktop computer of modest specifications, a 10 MB database required under 4 seconds on
average; for a 100 MB database the average was around 60 seconds. We believe that these
initial results prove the viability of our methods, particularly for classes of applications that
do not require instantaneous responses.

Our methodology is described in Section 3. Section 4 details our experiments. Summary
and conclusions are given in Section 5. We begin with a brief review of related work.

2 Background

The two main subject areas of this paper are genetic programming and intensional encap-
sulation. The authors are not aware of any previous work that combined these two areas.
Hence this section briefly reviews each of these areas separately.

Genetic programming has developed over the last two decades as a local-optimization

2

method for generating simple computer programs that provide solutions for “black-box prob-
lems”; i.e., problems that seek to find the correct output for given input, without the need
for a general algorithm. The extent to which a program can achieve the correct mapping
of its input to the required output defines its fitness to the problem. In this process, initial
programs are modified and combined with each other to generate “offspring programs”, in an
attempt to find programs that achieve even higher fitness. This evolution process terminates
when a program is obtained that performs above a certain threshold of fitness.

The basic principles of genetic programming were defined in a landmark book by Koza [7],
which laid the foundations of genetic programming, including the tree generation algorithms,
breeding operations and evolutionary cycle used in this paper. A second publication by
this author [8] is also relevant to our work, in that it described mechanisms for using the
optimal substructure properties of the problem and defined reusable program portions called
automatically defined functions (ADFs). The attribute selection operators, described in
Section 3.2, are essentially ADFs, and our approach tries to exploit optimal substructures
by starting from simple subqueries and building accurate and concise intensional expressions
in a bottom-up fashion.

Genetic programming has been used to some extent in data mining. In some cases
researchers have preferred genetic programming as a classification method in place of or
along with more traditional methods such as decision trees [3]. The main motivation seems
to be to increase the accuracy of prediction. Genetic algorithms are have been claimed to
capture trends and rules in smaller subsets of the dataset that conventional methods may
overlook [4]. Genetic programming and algorithms have been successful enough in data
mining to bring about complete commercial systems based on this paradigm [5]. A more
complete treatment of genetic programming and genetic algorithms in data mining can be
found in [6].

The problem of finding compact descriptions for database subsets received considerable
attention in the last two decades. The problem is usually framed in the context of cooperative
query systems [11], and the idea is to annotate answer sets provided by a database system
with compact descriptions that provide additional insight and interpretation to these sets.
Borrowed from logic, the terms intension and extension are used in the database literature
to describe, respectively, the definition of a database predicate (e.g., a query, a view, or a
constraint), and the population of database items that satisfy the predicate (the answer to a
query, the materialization of a view, or the values conforming to the constraint). Hence, these
compact descriptions have been termed intensional answers. The term implies, however, that
the process is applicable only when the given set has been generated by an a priori query,
whereas it is just as useful when the given set is entirely ad hoc. We therefore adopt the
more general term intensional encapsulations.

This problem has been tackled in different database models, including relational databases,
logic databases, and databases that utilize concept taxonomies. Some methods find encap-
sulations that are purely intensional, whereas other also incorporate extensional information
into their encapsulations; some methods find encapsulations that characterize the exten-
sions perfectly (i.e., the extensions of the discovered intensions are identical to the original

3

extensions), whereas other methods only find applicable characterizations (i.e., they only
characterize subsets of the given extensions); by their nature, encapsulations of query ex-
tensions may need to be updated when the underlying database changes, yet some methods
derive their intensional expressions from data-independent information (e.g., from database
constraints), indeed thus providing equivalent formulations of the original queries. A survey
of a large number of intensional answering methods may be found in [10]. Of particular
relevance is [12], where two key quality aspects of intensional descriptions, accuracy and
conciseness, are discussed, and their often conflicting nature is observed.

In addition to cooperative answering, intensional encapsulations have other practical uses.
They are related to data mining in that it too seeks to derive an underlying explanation from a
given collection of data. In the area of information integration, newly discovered information
is assigned intensional descriptions, as part of a system that automatically incorporates new
sources into a virtual database [2]. In the area of database security, intensional encapsulations
may be used to analyze the set of records that have been delivered to a user over a period
of time, to determine whether the user has surreptitious intents [1].

3 Methodology

3.1 Overview

We assume that the data is stored in a relational database, and we shall adopt the terminol-
ogy and conventions of relational databases. We assume a single database table, denoted R,
and a target set of records T ⊆ R; i.e., T is the set of records of R for which an encapsulated
description is sought.

Our method creates an initial population of intensional expressions (indeed, they are
queries against the table R), and evolves this population until one or more of these queries
performs satisfactorily (i.e., with acceptable accuracy). Let Qi denote a query of this pop-
ulation, and let Pi ⊆ R denote its extension in R; i.e., Qi(R) = Pi. The accuracy of Qi is
measured by the similarity of the sets Pi and T . Perfect accuracy is achieved when Pi = T .

The process begins with the generation of a set of random queries Qi. These arbitrary
queries are fully correct queries on the table R that are synthesized from primitives that have
been previously adopted. The judicious selection of these primitives and their combination
into queries will be discussed later.

Next, each query in the initial population is evaluated and a fitness value is computed.
Fitness is defined as the similarity of the query’s extension Pi and the target set T . The
measure to be used will be discussed later, but for now we assume that it is a value between
0 and 1, where 0 denotes complete disjointness of the sets and 1 denotes their complete
overlap.

The queries with the highest fitness are then bred with each other using either direct

4

combination, crossover or mutation, to generate a new population of queries. This new
generation is then evaluated in the same manner as its predecessor, and the evaluation is
used to produce yet a newer generation of queries. Typically, this evolutionary process
gradually increases the mean fitness of its population. The process is halted once a member
of the current population achieves satisfactory fitness. Satisfactory fitness is defined with a
similarity threshold. This threshold may be fixed, or it may depend on the sizes of R and T .
This iterative process is illustrated in Figure 1. As there is no guarantee that the process will
converge, it will in practice be stopped if fitness does not improve within a given number of
generations. In such cases the process will only be able to derive intensional encapsulations
of limited accuracy.

Evaluation of
Candidate Solutions

Creation of New
Candidate
Population

Breeding/Optimization
of Next Generation
Candidates

Selection of
Parents for
Next Generation

Satisfactory
Solution?

Target
Record Set

Finish

Y
E
S

NO

Initial
Random
Population

Figure 1: Overview of the Method

3.2 The Population

As common in genetic programming, the individuals of the population are represented as
trees. Since in this application the individuals are queries, the trees correspond to standard
relational algebra expressions. In these trees, leaf nodes correspond to selection operators
and internal nodes correspond to set operations.

There are four operations in total:

1. Selection(R, α) = {x | x ∈ R ∧ α(x)}

2. Union(R1 ,R2) = {x | x ∈ R1 ∨ x ∈ R2}

5

3. Intersection(R1 ,R2) = {x | x ∈ R1 ∧ x ∈ R2}

4. Difference(R1 ,R2) = {x | x ∈ R1 ∧ x /∈ R2}

R, R1 and R2 are sets of records, and α is a predicate formula that evaluates to true or false
for each record x. In general, α compares a particular position (attribute) in the record x
to a prespecified value. The particular type of comparison that can be used depends on the
type of the attribute. We distinguish three types of database attributes:

1. Nominal: Attributes whose values are (short) character strings. Ordinal relationships
among the values are not assumed. Examples include names, telephone numbers, model
numbers.

2. Numerical: Attributes whose values are numbers. Examples include distances, weights,
times, amounts of money.

3. Textual: Attributes whose values are free text (long character strings). Examples
includes comments, descriptions, exceptions.

We assume that each attribute of the given table is associated with one of these three types.
When a selection operation needs to be introduced, its specific formula α will depend on the
type of the selection attribute. Correspondingly, we define three types of selection formulas
α:

1. Equality: A = a

2. Range: a1 6 A < a2

3. Substring: A =′∗a∗′

In each formula, A indicates an attribute of the table, and a, a1 and a2 indicate a value of
that attribute. In other words, for nominal attributes, we consider selection formulas that
are equality comparisons, for numerical attributes we consider range comparisons, and for
text attributes we consider substring comparisons.

The creation of a new selection operation (either in the generation of the initial popula-
tion, or in subsequent evolutionary cycles) involves two separate decisions: First, an attribute
A is chosen, then appropriate limiting values (either a single value a or a pair of values a1

and a2) are adopted. The choice of A assumes simply that the attributes of R are distributed
uniformly (i.e., all the attributes have equal probability of being chosen). Once A has been
chosen, the limiting values are adopted in accordance with the type of A. The choice of
limiting values is important, as judicious choices will promote good initial fitness and will
increase the chance of early convergence. We begin by describing the choice of the limiting
value a when the attribute A is nominal.

6

For each attribute A of R we define a random variable XA whose range is the domain of
A.1 The limiting values are chosen from the domain of A according to the distribution of
XA. Intuitively, if a value v occurs frequently in the attribute A in the target set T , then
it would be wise to begin with a selection A = v, as it may be expected that the records
thus selected will have a good fit with T . The distribution of XA is defined with a Bayesian
approach. We observe that

p(r ∈ T | A = v) =
|σA=v(T)|
|σA=v(R)|

Namely, the probability that an arbitrary record r is in T , given the property that its
attribute A has the value v, is the proportion of records with this property that are included
in T . This value is normalized to define the probability distribution of XA:

p(XA = v) =
P (T | v)∑
k p(T | Vk)

We handle numerical and textual attributes in a manner similar to nominal attributes,
by reducing these types to nominal attributes.

Assume first that A is a textual attribute; i.e., each value v of A is a text string. Initially,
we convert all the strings in the domain of A to a set of tokens. A token is defined as a
substring delimited by whitespace or punctuation. For each token, we calculate the number
of R records and the number of T records in which the token appears. These numbers are
used to define the probability of a record being in T , given that it contains a given token.
These values are then normalized to a probability distribution for the tokens of A. When a
textual selection A =′∗a∗′ is required, a is chosen in accordance with this distribution.

When A is a numerical attribute, we partition its entire range to a set of intervals.
Intervals are defined so that the occurrences they encompass have sufficiently small variations
(i.e., the variance is below a predefined threshold). For each interval, we calculate the number
of R records and the number of T records in which values from the interval appear. These
numbers are used to define the probability of a record being in T , given that it contains
a value from one of the intervals. These values are then normalized into a probability
distribution for the intervals of A. When a numerical selection a1 6 A < a2 is required, one
of the intervals is chosen in accordance with this distribution.

It is worth pointing out that the tokens and intervals are defined only once and do not
need to be updated unless R changes.

3.3 Evaluation of Individuals

Once a population is created, each individual must be evaluated to determine its fitness. As
already indicated, the fitness of an individual Qi is the similarity of its extension Qi(R) = Pi

1If the domain of A is not available, we use the active domain; i.e., the set of values of attribute A in the
present instance of R.

7

to the target set T .

To define set similarity, we note that the identity of two sets A and B is defined A = B
if and only if A ⊆ B and B ⊆ A. Consequently, a reasonable approach to set similarity is
to measure the extent to which each set is contained in the other. The extent to which A
is contained in B may be taken as the fraction |A∩B|

|B| . Similarly, the extent to which B is

contained in A is |B∩A||A| . These fractions range between 0 (total disjointedness) and 1 (total

containment). When both fractions are 1, the sets are identical; when either one is 0 (the
other is then 0 as well), the sets are disjoint.2

For the purpose of fitness, these two measures must be combined into one. Note that
when Pi is compared with T , |Pi∩T ||T | measures the extent to which the generated expression

covers the given set (i.e., its ability to avoid “false negatives”). Similarly, |Pi∩T ||Pi| measures the

extent to which the generated expression is covered by the given set (i.e., its ability to avoid
“false positives”). As we have no preference of one error type over the other, we shall fuse
the two measures symmetrically. A well-accepted symmetric fusion of these two measures is
their harmonic mean. The harmonic mean of two numbers x1 and x2 is 2 x1·x2

x1+x2
. Substituting

|Pi∩T |
|T | and |Pi∩T |

|Pi| for x1 and x2, our measure of fitness is:

2
|Pi ∩ T |
|Pi|+ |T |

This measure preserves the properties that (1) it is between 0 and 1, (2) it is 0 if and only
if the two sets are disjoint, and (3) it is 1 if and only if the two sets are identical. Since the
target set T is assumed non-empty, it is well-defined.

3.4 Selection of Parents

In genetic programming the two most common methods of selecting individuals with higher
fitness are fitness-proportional selection and tournament selection [7]. In the former, indi-
viduals are selected with probability proportional to their fitnesses. In the latter, groups of
3 or 7 individuals are randomly selected and the individual with the highest fitness in each
group is selected. In either case, the selection process repeats a number of times equal to
the population size to obtain the parents for the new generation. Notice that several copies
of the individuals with highest fitness are likely to be added to the parent pool whereas the
lowest ranking individuals will have a lower chance at breeding.

Of these two methods we shall use tournament selection with groups of 7. The choice in
this case is neither easy nor absolute. However, the fact that tournament selection is easier
to implement and easier to parallelize is a major advantage. Also, as with all local search
methods, genetic programming tends to converge as it proceeds. This is seen as dimin-
ished variation between individuals in the later generations. In such situations, tournament
selection is more likely to select for breeding the individuals with the highest fitness values.

2In information retrieval these measures are known as precision and recall.

8

3.5 Breeding

Once a pool of parent individuals has been selected, the next generation of individuals is
created using three operations: direct combination, mutation and crossover. Each operation
requires two individuals and in turn creates two new children. Brief descriptions of these
operations follow, and Figure 2 illustrates them with examples. The next generation does not
necessarily comprise new individuals only. A random portion of the parents may be injected
into the new mix without any alteration. In our experiments, 10% of the individuals of
each generation were comprised of unmodified parents from the preceding generation. The
remaining 90% were modified with these three operations, selected at random.

Mutation. Two individuals from the parent pool are selected and modified separately.
Recall that each individual is a tree with leaf nodes corresponding to selections and internal
nodes corresponding to set operations. In each of the two individuals, a node is selected at
random and the tree is pruned at that node, and a newly generated selection is added at to
that node. The resulting individuals are added to the new generation.

Crossover. Two individuals from the parent pool are selected, and in each, a node is
selected at random and the tree is pruned at that node. The removed subtrees are switched:
the subtree removed from one parent is grafted to the other tree at the point where it was
pruned. The resulting individuals are added to the new generation.

Direct Combination. Two individuals from the parent pool are selected and replicated,
obtaining two identical pairs. Each pair is connected with a new root node. The operations to
be associated with the new roots are selected at random from the three set operations (union,
intersection and difference). The resulting individuals are added to the new generation.

We mentioned in the introduction the benefit of concise intensional encapsulations. Con-
ciseness is not an intrinsic consideration in our methodology; namely, our genetic program-
ming process does not include conciseness in its measure of fitness. Of the three breeding
operations, mutation tends to create shorter expressions, direct combination tends to create
longer expressions, and crossover tends to keep lengths unchanged. Overall, however, since
the increase due to direct combination is on the average larger than the reduction due to
mutation, the complexity of expressions tends to increase with generations. In an effort
to control this increase, we begin with concise individuals; indeed, the initial generation
comprises individuals that are single node each (simple selections).

3.6 Termination and Optimization

Once the new generation has been generated, the cycle is repeated as shown in Figure 1. The
process terminates when “the best of the new generation” exceeds a prespecified threshold
fitness, or a prespecified number of generations pass without an improvement in the best
fitness attained. In either case, the individual with the best fitness is adopted.

9

Union

a = 3 b = ʻredʼ

Intersection

a = 5b = ʻblueʼ

Intersection

a = 5

Union

a = 3 b = ʻblueʼ

b = ʻredʼ

Union

a = 3 b = ʻredʼ

Intersection

a = 5b = ʻblueʼ

Intersection

a = 5

Union

b =ʼgreyʼ

1 < c <5

b = ʻredʼ

a = 5

b = ʻredʼ

b = ʻredʼ

Intersection

a = 5

Union

a = 5 b = ʻredʼ

(a) Crossover (b) Mutation

(c) Direct Combination

Figure 2: Recombination Methods

As we shall observe in the next section, our search process is dominated by the time
required for database access. To alleviate this problem, we cache intermediate database
results. Recall that the leaves of each query tree are selection operators. These are executed
in the database, and the results are stored in memory as efficient bit vectors. Thereafter, all
subsequent set operations in a particular tree (all the way to its root) are done in memory,
thus avoiding any additional database access. This optimization resulted in substantial
improvement.

4 Experimentation

4.1 Setup

Our methodology was implemented as a prototype using Common Lisp and PostgreSQL for
database management. The system was tested on a variant of the TPC-H [13] benchmark
database. The original TPC-H database is a synthetic 9-relation database of the inventory
control and sales of a manufacturing operation. Since our methodology assumes a single rela-
tion, 7 of the 9 relations were joined over their foreign keys (the remaining two relations were
considered somewhat redundant). The resulting join was projected to remove attributes that

10

are not useful for intensional encapsulations (such as employee IDs or telephone numbers).
The resulting relation had 24 attributes, 12 of which were nominal, 9 were numerical and 3
were textual. The TPC-H benchmark can generate databases of arbitrary size. Relations of
size 10 MB and 100 MB were synthesized to study the scaling of our methodology.

The target sets of records (the sets of records for which encapsulations were sought) were
generated by means of queries. Each query was composed by selecting random attributes
and random values for those attributes assuming equal probabilities. The query trees were
generated with the Probabilistic Tree Creation (PTC2) algorithm [9]. The PTC2 algorithm
can generate random queries of precisely defined size. One of the factors examined in the
experiments was the effect of the complexity of the generating query on the accuracy of the
encapsulation, and queries ranging from single selection predicates to 5-selection predicates
were used. These queries were evaluated on the database, and the extensions retrieved were
given to our system as targets. Throughout the experiment, the size of the population was
kept at 40. This size was determined after some experimentation. A lower population size
of 20 required far too many generations to converge; a higher population size of 60 required
more time per generation, without giving substantially better results. Table 1 shows the
number of experiments performed for each factor. Altogether, the experiment was repeated
2,000 times. Termination was controlled by setting the fitness threshold to 0.99, and the
maximal number of generations to 3.

DB Size Population Number of Targets
(MB) Size Query Complexity

1s 2s 3s 4s 5s
10 40 200 200 200 200 200
100 40 200 200 200 200 200

Table 1: Breakdown of Experiments

As explained, the target record sets were generated by random queries. Another accept-
able approach would have been to generate random record sets directly. There are three
reasons for our choice. First, in many applications (e.g, cooperative answering, or security),
the target sets are indeed generated by queries. Second, as we shall see, these a priori inten-
sional expressions are used in the evaluation of the effectiveness of the system with respect
to conciseness. Finally, using a priori intensional expressions guarantees the existence of at
least one encapsulation with perfect accuracy for each given target set (i.e., with targets that
are random sets of tuples, when the system returns an intensional encapsulation of imperfect
accuracy, it is impossible to tell if this is because the system is imperfect or because there
simply is no perfect intensional encapsulation of the given target set).

4.2 Accuracy

The first measure of performance that we consider is accuracy. Accuracy measures the
similarity of the given target set and the extension of the encapsulation obtained at the end

11

of the search process; i.e., it is the fitness of the final result. Recall that fitness values are
between 0 and 1.

The mean accuracy achieved in the entire set of experiments was 94.6%. Moreover, in
over half of the experiments the system found the perfect encapsulation. The complexity of
the query that generated the target set seems to have a significant effect on the success of
the system. More complex targets resulted in a noticeable decrease in the accuracy of the
encapsulations. The mean accuracies for targets of different complexity is shown in Table 2;
the individual distributions of accuracy are shown in Figure 3.

Complexity Mean
(Selections) Accuracy

1 0.998
2 0.969
3 0.950
4 0.928
5 0.877

Table 2: Accuracy by Target Complexity

4.3 Conciseness

Our measure for conciseness of an intensional expression is the number of nodes in the
tree that represents it. For example, an expression with a single selection has conciseness
measure 1, and an expression which is the difference of two subexpressions, each constituting
a conjunction of two selections, has conciseness measure 7. Determining the effectiveness of
the system with respect to conciseness is not straightforward. Our approach has been to
compare the conciseness of the discovered encapsulation to that of the generating intensional
expression (which, of course, is unknown to the system).

Overall, in 90.4% of the experiments the system generated intensional encapsulations that
were as least as concise as the a priori expressions (in 73.1% of the experiments conciseness
remained the same, in 17.3% it actually improved). Only in 9.6% of the experiments, the
discovered encapsulations were less concise. Like accuracy, conciseness too declined as the
complexity of targets increased. Table 3 breaks down the comparative conciseness rates
according to the complexity of the targets.

4.4 Time

The third measure of performance that we consider is time. Predictably, the primary bot-
tleneck for the system is database management; in particular, the disk input and output
activity.

12

0.2 0.4 0.6 0.8 1

20

40

60

80

100

0.2 0.4 0.6 0.8 1

20

40

60

80

0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

70

0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

0.2 0.4 0.6 0.8 1

5

10

15

20

25

30

35

Overlap Level Overlap Level

Overlap Level Overlap Level

Overlap Level

N
o
rm

.
F
re

q
u
e
n
c
y

N
o
rm

.
F
re

q
u
e
n
c
y

N
o
rm

.
F
re

q
u
e
n
c
y

N
o
rm

.
F
re

q
u
e
n
c
y

N
o
rm

.
F
re

q
u
e
n
c
y

(a) 1 predicate Targets (b) 2 predicate Targets

(b) 3 predicate Targets (c) 4 predicate Targets

(d) 5 predicate Targets

Figure 3: The Distribution of Accuracy for each Target Complexity

Complexity % Less % Equally % More
(Selections) Concise Concise Concise

1 1.21 98.79 N/A
2 2.34 84.21 13.45
3 9.03 78.61 12.36
4 17.84 56.48 25.68
5 17.56 47.52 34.92

Table 3: Conciseness by Target Complexity

13

Figure 4 plots the number of blocks retrieved by the DBMS during each experiment vs.
the overall duration of that experiment. The relationship is definitely linear. Moreover, since
we know that the size of each disk block is 4 KB, the slope of the line is 23.7 MB/s, which
roughly corresponds to the data transfer rate of the commodity PC used for the experiment.3

R
2
 = 0.9911

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5 10 15 20 25 30

Time per Run (s)

Figure 4: I/O Activity vs. Time

As discussed earlier, genetic programming processes are measured by the number of
generations required for the process to converge. Figure 5 shows the distribution of the
number of generations in our experiments. The mean number of generations required was
2.339. This information, along with the time required per generation, gives the average time
required for an experiment. The average time for the 10 MB database was 3.76 seconds, and
the average for the 100 MB database was 61.32 seconds. The relationship of the average
experiment time with respect to number of generations is shown in Figure 6.

Note that processing time as a function of number of generations is actually a weak
quadratic,4 where one would expect the relationship to be linear. However, as already
mentioned, the individuals grow larger as generations advance. Therefore, although the
number of individuals processed in each generation is constant, processing individuals in
later generations requires more time. Theoretically, the square term would start to dominate
after about 20 generations. However, since in practice we never get that far, the behavior

3The computer used a 1.8 GHz AthlonXP CPU with 256 MB RAM running FreeBSD on an 80 GB IDE
disk drive with Reiser File System.

4The coefficient of the square term was 0.025 for the 10 MB database and 0.767 for the 100 MB database.

14

 1 3 5 7 9

10

20

30

40

50

 2 4 6 8 10

Number of Generations

P
e
r
c
e
n
t

o
f

R
u
n
s

Figure 5: Distribution of Number of Required Generations

R2 = 0.9985

R2 = 0.9975

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

Number of Generations

10MB
100MB
100MB Fit
10MB Fit

Figure 6: Time Requirement vs. Number of Generations

15

may be regarded linear. It should be noted that the primary reason for weakness of the
square term is the caching of intermediate results as explained in Section 3.6. This simple
optimization removes a significant load off the DBMS, especially for larger queries.

5 Conclusion

We described a novel approach to the well-known problem of finding intensional encapsula-
tions of database subsets, based on the paradigm of genetic programming. In experiments,
our method performed very well qualitatively; i.e., with respect to both accuracy and con-
ciseness. Its time performance may be considered acceptable for all applications that do not
require instantaneous results (its performance for moderate size databases may be considered
acceptable even for real-time applications).

Indeed, the time performance achieved may be considered surprisingly good, given the
general opinion of genetic programming as a solution method of low efficiency. This ac-
complishment is largely due to the fact that the programs we handle, namely queries, are
very specialized, with restricted contexts and relatively small search spaces. In addition, our
judicious choice of selection predicates promoted more rapid convergence of the evolutionary
process. Furthermore, by caching solutions in memory, we were able to reduce database
access substantially and thus contain the time required for each generation. Combined, the
reduction in the number of generations required and efficient processing of each generation,
resulted in this reasonably good performance. We observe that our method lends itself to
parallelization, and we estimate that by increasing the database power (e.g., by using a
cluster of database servers), further and considerable improvements may be achieved.

References

[1] Acar, A. C. and A. Motro. Why is this User Asking so Many Questions? Explain-
ing Sequences of Queries. In Proceedings of the 18th Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, pages 159–176, Kluwer, 2004.

[2] Berlin, J. and A. Motro. Autoplex: Automated Discovery of Contents for Virtual
Databases. In Proceedings of COOPIS-01, Sixth IFCIS International Conference on
Cooperative Information Systems, Lecture Notes in Computer Science No. 2172, pages
108–122, Springer, 2001.

[3] Carvalho, D. R. and, A. A. Freitas. A Hybrid Decision Tree/Genetic Algorithm for
Coping with the Problem of Small Disjuncts in Data Mining. In Proceedings of the
2000 Genetic and Evolutionary Computation Conference, pages 1061–1068, Morgan
Kaufmann, 2000.

[4] Carvalho, D. R. and A. A Freitas. A Genetic Algorithm-based Solution for the Prob-
lem of Small Disjuncts. In Proceedings of PKDD 2000, the 4th European Conference

16

on Principles of Data Mining and Knowledge Discovery, Lecture Notes in Artificial
Intelligence No.1910, pages 345–352, Springer, 2000.

[5] Flockhart, I. W. and N. J. Radcliffe. GA-MINER: Parallel Data Mining with Hier-
archical Genetic Algorithms — Final Report. EPCC-AIKMS-GA-MINER Report 1.0,
University of Edinburgh, 1995.

[6] Freitas, A. A. A Survey of Evolutionary Algorithms for Data Mining and Knowledge
Discovery. In Advances in Evolutionary Computing: Theory and Applications, pages
819-845, Springer, 2003.

[7] Koza, J. R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

[8] Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press, 1994.

[9] Luke, S. Two Fast Tree-creation Algorithms for Genetic Programming. IEEE Transac-
tions on Evolutionary Computation, 4(3):274–283, IEEE, 2000.

[10] Motro, A. Intensional Answers to Database Queries. IEEE Transactions on Knowledge
and Data Engineering, 6(3):444-454, IEEE, 1994.

[11] Motro, A. Cooperative Database Systems. International Journal of Intelligent Systems,
11(10):717–732, Wiley, 1996.

[12] Shum, C. D. and R. Muntz. Implicit Representation for Extensional Answers. In Pro-
ceedings of the Second International Conference on Expert Database Systems, pages
497–522, Benjamin Cummings, 1988.

[13] Transaction Processing Performance Council. TPC Benchmark H Rev. 2.1.0. Technical
Report, TPC, 2002.

17

