
Specifying Precise Use Cases

Jon Whittle

Dept of Information & Software Engineering
George Mason University

4400 University Drive
Fairfax, VA 22030

jwhittle@ise.gmu.edu

Abstract. Despite attempts to formalize the semantics of use cases,
they remain an informal notation. The informality of use cases is both a
blessing and a curse. Whilst it admits an easy learning curve and enables
communication between software stakeholders, it is also a barrier to the
application of automated methods for test case generation, validation
or simulation. This paper presents a precise way of specifying use cases
based on a three-level modeling paradigm strongly influenced by UML.
The formal syntax and semantics of use case charts are given, along with
an example that illustrates how they can be used in practice.

1 Introduction

Since their introduction, use cases have become a method of choice for elabo-
rating software requirements. A use case—defined by Cockburn as a description
of “the system’s behavior under various conditions as the system responds to a
request from one of the stakeholders” ([Coc00])—is typically represented as a
combination of a UML use case diagram [BRJ05] and loosely structured text in
one of many suggested template formats. The templates show the main sequence
of steps that define a use case as well as some additional sequences that may cap-
ture exceptions, alternatives or extensions. The templates are usually related at
a more abstract level using a UML use case diagram ([OMG]) in which use cases
are given graphically by ellipses and the actors that trigger those use cases are
shown using standardized icons. Use cases are almost exclusively defined in an
informal way—use case diagrams have no commonly agreed semantics and the
semantics of the text templates is deliberately left unspecified in UML because
there are no restrictions on what kind of text can be given.

The informality of use cases makes them very easy to use but is a barrier to
the application of automated analysis methods such as test case generation, sim-
ulation, validation etc. Usually, little attention is paid to how different use cases
interact—whether, for example, they can execute sequentially or concurrently,
whether there are inconsistencies, or whether they are complete.

Many attempts have been made to introduce rigor into use case descriptions,
ranging from structural restrictions on the text that can be used in templates
(e.g., [Smi04,Wil04]) to the development of a formal semantics for aspects of use

case diagrams (e.g., [Ste01,OP99]). Approaches based on formalizing the text in
templates usually define a restricted grammar for a subset of natural language
and may also enforce that words in the text come from a dictionary. Approaches
for defining a formal semantics for use cases focus on poorly specified constructs
in UML use case diagrams, such as the UML 〈〈include〉〉 and 〈〈extend〉〉 rela-
tionships [Ste01] or the generalization of use cases [Iso04]. This paper takes a
different approach. It gives an alternative, precisely defined, graphical language
for use cases. It does not attempt to formalize UML’s notion of a use case.

UML2.0 ([OMG]) introduces interaction overview diagrams, a notation based
on activity diagrams, for specifying relationships between interaction diagrams
(e.g., sequence diagrams). Interaction overview diagrams (IODs) can be used
to more precisely describe use cases as a set of interaction diagrams connected
by activity diagram relationships, e.g., concurrency. IODs are based on high-
level message sequence charts (hMSCs) [IT96], a well-established notation for
specifying interactions originally developed for the telecommunications domain.
Whilst IODs provide much needed expressiveness for relating interaction scenar-
ios, their semantics is still somewhat unclear since neither activity nor interaction
diagrams have a formal semantics. In addition, IODs model only a single use case
at a time and do not specify relationships between use cases. Nevertheless, IODs
are an important step in precise use case modeling and form the basis for the
use case charts presented in this paper.

In this paper, use case charts, a 3-level notation based on extended UML
activity diagrams, is proposed as a way of specifying use cases in detail. The
main application of use case charts to date has been to simulate use cases but use
case charts are also precise enough for test generation and automated validation.

The idea behind use case charts is illustrated in Figure 1. For the purposes
of this paper, a use case is considered to be a set of scenarios, where a scenario is
an expected or actual execution trace of a system. The functionality of a system
can be given as a set of use cases—that is, a set of sets of scenarios.

A use case chart specifies the scenarios for a system’s use cases as a 3-level
description: level-1 is the use case chart, an extended UML activity diagram in
which the nodes are use cases; level-2 is a set of scenario charts, or extended
activity diagrams where the nodes are scenarios; level-3 is a set of UML2.0
([OMG]) interaction diagrams. Each level-1 use case node is defined by a level-
2 scenario chart (i.e., a set of connected scenario nodes). Each level-2 scenario
node is defined by a UML2.0 interaction diagram. In Figure 1, 7 use cases are
connected in a level-1 use case chart that starts with an initial use case and then
forks into 4 “threads”. Each of these 7 use cases is defined by a level-2 scenario
chart. In Figure 1, the scenario chart for the use case at the source of the dashed
arrow is shown. In this scenario chart, there are three scenario nodes. Each node
is defined by a UML2.0 interaction diagram.

Semantically, control flow of the entire use case chart starts with the initial
node of the use case chart (level-1). Flow then passes between use case nodes
along the edges of the level-1 activity diagram. When flow reaches a use case
chart node at level-1, level-2 scenario chart defining this node is executed, with

Fig. 1. Use Case Charts.

flow starting from the scenario chart’s initial node. Flow exits a scenario node
when a final node is reached. Scenario charts may have two types of final nodes—
a final success node represents successful completion of the scenario chart and
a final failure node represents completion but with failure. Flow only continues
beyond the current use case node if a final success node is reached in the use
case’s defining scenario chart. The semantics of each scenario chart is similar to
that for high-level message sequence charts (hMSCs) [IT96]. Each scenario chart
node is defined by a UML2.0 interaction diagram. Hence, when flow passes into
a scenario chart node, the defining interaction diagram is executed. When the
interaction diagram completes, flow returns to the level-2 scenario chart, exits
the scenario node at that level and continues with the next scenario node.

The intention is to reuse as much of the notation of UML2.0 as possible. This
makes it easy for practitioners to learn the language. The activity diagrams used
are a restriction of UML2.0 with some additional features. Although use case
charts rely on the notation of UML activity diagrams, the semantics is quite
different. UML2.0 activity diagrams are a general purpose modeling language for
workflow modeling and business process modeling. Their (informal) semantics is
petri-net based [OMG]. In contrast, the formal semantics for use case charts is
a denotational, trace-based semantics.

2 Example of Use Case Charts

Figures 2, 3 and 4 give an example of how use case charts can be used to
precisely describe use cases. The system under development is an automated
train shuttle service in which autonomous shuttles transport passengers between
stations [Sof05]. When a passenger requires transport, a central broker asks all
active shuttles for bids on the transport order. The shuttle with the lowest bid

wins. A complete set of requirements for this application is given in [Sof05].
Figure 2 shows a use case chart that includes use cases for initialization of
the system, maintenance and repair of shuttles, and transportation (split into
multiple use cases). Each use case node in Figure 2 is defined by a level-2 scenario
chart—Figure 3 is the scenario chart for Carry Out Order. Figure 4 is a level-3
interaction diagram for the scenario chart defining Make A Bid.

Fig. 2. Shuttle System Use Case Chart.

Figure 2 shows that the shuttle system first goes through an Initialization use
case. After that, four use cases execute in parallel. If the Make A Bid use case
is successful, it can be followed by Carry Out Order or another bidding process
(executed in parallel). The Retirement use case represents the case when the
shuttles are shut down. It preempts any activity associated to Make A Bid. This
is represented by a stereotyped preemption relationship that applies to a region.
A region is a set of nodes enclosed in a dashed box.

Figure 3 is a description of what happens in the Carry Out Order use case.
Transportation of passengers takes place and the broker is informed of success.
The asterisk in the region represents the fact that the region may execute in
parallel with itself any numbers of times, i.e., there may be multiple concurrent
transports. The requirements of the problem state that during transport, shuttles
may not move to intermediate stations except to pick up or drop off passengers.
This is captured by introducing a negative scenario node with a stereotyped
negation arrow. Note that scenario charts must have at least one final success or
final failure node. A final success node represents the fact that execution of the
use case has successfully completed and is depicted graphically as in Figure 3.
A final failure node says that the use case completes but that execution should
not continue beyond the use case. This is given graphically using the final flow
node of activity diagram notation, i.e., a circle with a cross through it1. As an
example, suppose that the passenger transport cannot be completed for some
reason. This could be captured by introducing a scenario node capturing the
1 Note that this is not the standard UML2.0 interpretation for the final flow node.

Fig. 3. Shuttle System Scenario
Chart for Carry Out Order.

Fig. 4. Shuttle System Interaction Diagram for a
scenario in Make A Bid.

failure and then an arrow to a final failure node. In this case, when the final
failure node is reached, the Make Payment use case in Figure 2 will not execute,
i.e., payment will not be paid for an unsuccessful transport.

Each scenario node in Figure 3 is described by a UML2.0 interaction dia-
gram. Figure 4 shows an interaction diagram that is part of the Make A Bid
use case. This particular example is shown to illustrate extensions that use case
charts introduce to UML2.0 interaction diagrams, namely, multiobjects and uni-
versal/existential messages. We introduce two new interaction operators, exist
and all. We also introduce a stereotype 〈〈multiobject〉〉 which denotes that an
interaction applies to multiple instances of a classifier. In the figure, Shuttle is
stereotyped as a multiobject which means that multiple shuttles may participate
in the interaction. There are two interaction fragments. In the first, the Broker
sends messages to all shuttles. In the second, there must be at least one makeBid
message to Controller followed by at least one makeBid message to Broker.

The activity diagrams used in use case charts and scenario charts are a re-
stricted version of UML2.0 activity diagrams but with some additional relation-
ships between nodes. They are restricted in that they do not include object
flow, swimlanes, signals etc. They do include additional notations, however. The
abstract syntax is defined in Section 3. The concrete syntax reuses as much of
the activity diagram notation as possible. Informally, the allowed arrow types
between nodes (either in use case or scenario charts) are given as follows, where,
for each arrow, X and Y are either both scenario nodes or both use case nodes:

1. X continues from Y (i.e., the usual activity diagram arrow)
2. X and Y are alternatives (the usual alternative defined by a condition)
3. X and Y run in parallel (the usual activity diagram fork and join)
4. X preempts Y —i.e., X interrupts Y and control does not return to Y once

X is complete, shown by the stereotype 〈〈preempts〉〉 from X to Y .

5. X suspends Y —i.e., X interrupts Y and control returns to Y once X is
complete, shown by the stereotype 〈〈suspends〉〉 from X to Y .

6. X is negative—i.e., the scenarios defined by X should never happen. This is
shown by an arrow stereotyped with 〈〈neg〉〉 to X and where the source of
the arrow is the region over which the scope of the negation applies.

7. X may have multiple copies—i.e., X can run in parallel with itself any
number of times. This is shown by an asterisk attached to node X.

In addition, use case charts and scenario charts may have regions (graphically
shown by dashed boxes) that scope nodes together. Arrows of type (4), (5), (8)
may have a region as the target of the arrow. Arrows of type (7) may have a
region as the source of the arrow. All other arrows do not link regions.

Arrow types (4), (5), (6) and (8) are not part of UML2.0 activity diagrams
(although there is a similar notation to (4) and (5) for interruption). Activity
diagrams do have a notion of region for defining an interruptible set of nodes. Re-
gions in use case charts are a general-purpose scoping mechanism not restricted
to defining interrupts. In addition to the arrow and region extensions, there are
minor extensions to interaction diagrams.

3 Use Case Chart Syntax

The abstract syntax for interaction diagrams is not given as it is assumed to be
the same as in UML2.0 except for the multiobject, universal/existential message
extensions. The concrete syntax for use case and scenario charts has already
been described and will not be addressed further.

3.1 Abstract Syntax for Scenario Charts (Level-2)

The abstract syntax of a scenario chart is given first. The abstract syntax for
use case charts is almost the same since both are based on activity diagrams.

Definition 1. A scenario chart (S, RS , ES , s0, SF , SF ′ , LS , fS ,mS , LE) is a graph
where S is a set of scenario nodes, RS ⊆ P(S) is a set of regions, ES ⊆
(P(S∪RS)×P(S∪RS)×LE) is a set of edges with labels from LE, s0 ∈ S is the
unique initial node, SF ⊂ S is a set of final success nodes, SF ′ ⊂ S is a set of
final failure nodes, LS is a set of scenario labels, fS : S → LS is a total, injective
function mapping each scenario node to a label and ms : S ∪ RS → {+,−} is a
total function marking whether or not each scenario or region can have multiple
concurrent executions. The labels in LS are references to an interaction diagram.
LE is defined to be the set {normal, neg, preempts, suspends}. LS is the set of
words from some alphabet Σ.

This definition describes a graph where edges may have multiple source nodes
and multiple target nodes. This subsumes the notion of fork and join from ac-
tivity diagrams which can be taken care of by allowing edges to have multiple
source nodes and/or multiple target nodes. Multiple source nodes lead in the

use case chart graphical notation to a join and multiple target nodes lead to a
fork. An edge with both multiple sources and multiple targets is equivalent to a
join followed by a fork. Regions are a scoping mechanism used to group nodes.
As stated previously, the intuition behind final success and final failure nodes is
that a final success node denotes successful completion of the scenario chart; a
final failure node denotes that the scenario chart completes but unsuccessfully.
Definition 1 omits the notion of conditions on edges, for the sake of clarity, but
it is enough to say that guards could be placed on arrows leaving a node.

3.2 Abstract Syntax for Use Case Charts (Level-1)

The abstract syntax for a use case chart is almost identical except that a use
case chart has only one type of final node (for success) and each use case node
maps to a scenario chart not an interaction diagram. Only one type of final
node is required for use case charts because there is no notion of success or
failure—either a use case chart completes or it does not.

Definition 2. A use case chart (U,RU , EU , u0, UF , LU , fU ,mU , LE) is a graph
where U is a set of nodes, RU ⊆ P(U) is a set of regions, EU ⊆ (P(U ∪RU)×
P(U ∪ RU) × LE) is a set of edges, u0 ∈ U is the unique initial node, UF ⊂ U
is a set of final nodes, LU is a set of scenario chart labels, fU : U → LU is a
total, injective function mapping each use case node to a scenario chart label and
mU : U ∪ RU → {+,−} is a total function marking whether each use case or
region can have multiple concurrent executions. The labels in LU are references
to a scenario chart. LE is as given in Definition 1.

4 Use Case Chart Semantics

A trace is a sequence of events where an event may be the sending of a message,
!x, or the receipt of a message, ?x.

Definition 3. The semantics of a 3-level use case chart, U , is a pair of trace
sets, (PU , NU), where PU is the set of positive traces for U and NU is the set of
negative traces for U .

Positive traces are traces that are possible in any implementation of the use
case chart. Negative traces may never occur in a valid implementation of the use
case chart. An implementation satisfies a use case chart if every positive trace is
a possible execution path and if no negative trace is a possible execution path.

First, the semantics of (a restriction of) UML2.0 interaction diagrams is
given, followed by the semantics for scenario charts, and finally, use case charts.

4.1 Semantics of UML2.0 Interaction Diagrams (Level-3)

The semantics for UML2.0 interaction diagrams follows the one given by Haugen
& Stølen [HHRS05], extended to include all and exist fragments.

Fig. 5. UML2.0 Interaction Fragments.

A message, x, in a UML2.0 interaction has two events—a send event, !x, and
a receive event, ?x. In any valid event trace, the send event must come before
the receive event. In UML2.0, as shown in Figure 5, messages can be composed
using interaction fragments, where a fragment has an interaction operator and a
number of interaction operands. For example, Figure 5(b) shows an alternative
fragment with two operands; 5(c) shows a parallel fragment with two operands;
and 5(d) shows a negative fragment with a single operand. The default operator
in UML2.0 is the sequential operator, seq (Figure 5(a)), which represents weak
sequencing. Any messages not explicitly contained within a fragment are by
default assumed to be contained within a seq fragment.

A message is a triple (s, tr, re) of a signal s, a transmitter instance, tr, and
a receiver instance, re. Each transmitter instance has a type, tr : Tr. Similarly,
re : Re. Let M denote the set of all messages and L the set of all lifelines. An
event is a pair of kind and message: (k,m) ∈ {!, ?}×M . Let E denote the set of
all events. A trace is a sequence of events. Let tr(e) denote the transmitter for
event e and re(e) denote its receiver. Let H be the set of valid event traces, that
is, event traces such that for any message x, the send event, !x, comes before
the receive event, ?x. Define the following operators on traces. h1 _ h2 is trace
concatenation. h1|B is the trace h1 restricted to events in the event set B — i.e.,
all events not in B are removed.

The semantics for the four fragments in Figure 5, as well as for univer-
sal/existential messages, is summarized in Figure 6. e is an event and di is an
interaction diagram, for all i. The semantics of a single event is a single positive
trace. Interaction operators are represented textually using the keywords neg,
alt, par and seq. For example, neg d represents an interaction diagram d that
is negated by a negative interaction fragment.

[[e]] = (e, ∅)

[[neg d]] = (∅, p ∪ n)

[[d1 alt d2]] = (p1 ∪ p2, n1 ∪ n2)

[[d1 par d2]] = (p1‖p2, (n1‖p2) ∪ (n1‖n2) ∪ (p1‖n2))

[[d1 seq d2]] = (p1 � p2, (n1 � p2) ∪ (n1 � n2) ∪ (p1 � n2))

[[all d]] = (all p,all n)

[[exist d]] = (exist p, exist n)

where (p, n) = [[d]], (p1, n1) = [[d1]] and (p2, n2) = [[d2]]

Fig. 6. UML2.0 Interaction Diagram Semantics.

For alt, the set of positive traces is the union of the set of positive traces
from each operand. The set of negative traces is the union of the set of negative
traces from each operand. The neg operator simply negates all traces—its set
of negative traces is the union of the positive and negative traces of its operand.
This captures the fact that the negation of a negative trace remains negative.

par is defined by interleaving traces from each of its operands. In Figure 6, ‖
denotes interleaving and is formally defined below. par’s positive traces are the
interleavings of positive traces from both operands. Its negative traces are the
interleavings of negative traces from both operands, or a positive trace from one
operand with the negative trace from the other operand. Interleaving is defined
as follows for trace sets s1, s2 (adapted from [HHRS05]):

s1‖s2 = {h ∈ H | ∃o ∈ {1, 2}∞ · π2((o, h)|{1}×E) ∈ s1 ∧ π2((o, h)|{2}×E) ∈ s2}

The infinite sequence o is an oracle to resolve non-determinism in the interleav-
ing. π2 is a projection operator returning the second element in a pair. Any trace
in the set s1‖s2 is an interleaving of events from a trace in s1 with events from
a trace in s2.

seq fragments are defined in UML2.0 to have a weak sequencing semantics
([OMG]): the ordering of events within each operand is maintained; events on
different lifelines from different operands may come in any order; events on the
same lifeline from different operands are ordered such that an event from the first
operand comes before an event from the second operand. Any seq fragment joins
traces from each of its operands in a way that satisfies these three constraints.
Informally, the positive traces for seq are all possible ways of joining a positive
trace from the first operand and a positive trace from the second operand. The
negative traces for seq are those derived from joining a positive trace from the
first operand with a negative trace from the second, or a negative trace from the
first with either a positive or negative trace from the second.

The definition in Figure 6 relies on a definition of�, weak sequencing for trace
sets (adapted from [HHRS05]), which captures formally the three constraints

stated above. ev(l) is the set of events that take place on lifeline l.

s1 � s2 = {h ∈ s1‖s2 | ∃h1 ∈ s1, h2 ∈ s2 · ∀l ∈ L · h|ev(l) = h1|ev(l) _ h2|ev(l)}

The semantics for the multiobject extensions are now given. Consider first
the interaction operator all applied to a single positive event trace, all e1, e2,
The resulting positive traces are all those that can be derived by replacing each
ei by its image under all. If ti is a receive event where the receiving instance is
a multiobject, then the image under all is the trace ei1 , ei2 , . . . where each eij

is the same event as ei but with a different receiver, namely, instance j. The
corresponding send event is also replaced by a set of send events, one for each
instance j. The same logic applies if ei is a send event where the sending instance
is a multiobject. In this case, ei is replaced by a set of send events, one for each
instance of the multiobject, and the corresponding receive events for the new
send events are added.

For an event e, define e _(I,re), where I is a set of type instances, as a
concatenation of copies of e where each element of the concatenation has the
receiver of e replaced by an element of I. Similarly, e _(I,tr) is a concatenation of
copies of e where each element of the concatenation has the transmitter replaced
by an element of I. Furthermore, _ ei ∈ h defines repeated concatenation
indexed over the events ei of an event trace h. If tr(e) : Tr and re(e) : Re,
then let insttr(e) denote the set of all instances of Tr (including tr(e) itself).
Similarly, instre(e) is the set of all instances of Re (including re(e)).

Now define all e as follows:

all e =


e _(insttr(e),tr) if tr(e) is a multiobject
e _(instre(e),re) if re(e) is a multiobject

_ ei ∈ e _(insttr(e),tr) ei _(instre(e),re) if both tr(e) and
re(e) are multiobjects

e otherwise

The intent of this definition is to effect the replacement of events by multiple
events, one for each instance, as described above. In the case that an event has
a multiobject receiver and a multiobject transmitter, the definition describes a
“nested” replacement, in which the replacement is first done for the transmitter
and then the result is processed with receiver replacement.

For a trace h, h[e′/e] is defined as the trace h with all occurrences of event
e replaced by e′. Multiple replacements are separated by commas and applied
sequentially. Now define all h for an event trace h = e1, e2, . . . as follows:

all h = h [(all e1)/e1, (all e2)/e2, . . .]

The definition extends naturally to a set of traces, s:

all s = {h ∈ H | h = (all h1) ∧ h1 ∈ s}

The definition of the semantics of all applied to an interaction diagram, as
given in Figure 6, is now clear. The case for exists is similar and is not presented
here, for lack of space.

This concludes the definition of the trace-based semantics for UML2.0 inter-
action diagrams. UML2.0 contains other constructs not considered here.

4.2 Semantics of Scenario Charts (Level-2)

The semantics is extended to scenario charts in the natural way—the semantics
is also given as a pair of a set of positive traces and a set of negative traces.

Fig. 7. Flattening Scenario Charts.

Edges of type normal in scenario charts can be given a semantics by “flatten-
ing” the edge—i.e., create a new interaction diagram that takes the interaction
diagrams represented by the source and target of the edge and connects them
using an interaction fragment with a particular interaction operator. See Figure
7. Normal edges with only one source and target scenario node can be flattened
using the seq interaction operator for sequential composition. This captures
the weak sequential semantics of one-to-one normal edges. Many-to-many nor-
mal edges are flattened using the par interaction operator. This is because the
semantics of a one-to-many edge is defined to be a forking and that of a many-
to-one edge is defined to be a joining of “threads”. Hence, a many-to-many edge
can be replaced by a fork and join in the usual activity diagram notation. Since
normal edges can be eliminated in this way, their semantics is not explicitly
given here but the semantics is assumed to be that of the equivalent “flattened”
interaction diagram. This leaves only edges of type neg, preempts and suspends.

In what follows, c1 preempts c2 informally means that scenario node c1

preempts scenario node c2. c1 suspends c2 means that c1 suspends c2 and
c1 negative during c2 means that c1 can never happen during the execution of
c2. c1 → c2 denotes a normal edge between scenario nodes. Edges can also be
between sets of scenario nodes. c1∗ denotes that multiple occurrences of c1 can

occur in parallel. The semantics for preemption, suspension and negation are
given only for one-to-one edges, but can be extended to many-to-many edges.
Figure 8 summarizes the semantics. In this figure, c1, c2 are scenario nodes
defined by interaction diagrams d1 and d2, respectively. C1 and C2 are sets of
scenario nodes defined by sets of interaction diagrams D1 and D2 where there
is a bijective mapping from Ci to Di. par X, for a set of interaction diagrams
X = {x1, x2, . . .}, is shorthand for x1 par x2 par size(X) returns the number
of elements in X. If size(X) = 1, X ′ refers to its only element. prefix(h) denotes
the set of prefixes of event trace h.

[[C1 → C2]]

8>><
>>:

D′
1 seq D′

2 if size(D1) = 1 ∧ size(D2) = 1
(par D1) seq D′

2 if size(D1) > 1 ∧ size(D2) = 1
D′

1 seq (par D2) if size(D1) > 1 ∧ size(D2) = 1
(par D1) seq (par D2) if size(D1) > 1 ∧ size(D2) > 1

[[c1 preempts c2]] =
({h ∈ H | ∃h1 ∈ p1, h2 ∈ H, h′ ∈ p2 · h = h2 _ h1 ∧ h2 ∈ prefix(h′)}

, n2)

[[c1 suspends c2]] =
({h ∈ H | ∃h1 ∈ p1, h2 ∈ p2, h2a, h2b ∈ H · h = h2a _ h1 _ h2b ∧ h2 = h2a _ h2b}

, n2)

[[c1 negative during c2]] = (p2, n2 ∪ p1‖p2)

[[c1∗]] = d1 par d1 par . . .

where c1, c2 are defined by interaction diagrams d1, d2 respectively
and (p1, n1) = [[d1]], (p2, n2) = [[d2]]

Fig. 8. Semantics for Edges in Scenario Charts.

For preemption, a positive trace for (c1 preempts c2) is any trace made
up of a prefix of a positive trace of c2 concatenated with a positive trace of
c1. Note that a preempting scenario cannot have negative traces. Furthermore,
(c1 preempts c2) does not introduce any new negative traces because preempt-
ing traces have no effect on the original negative traces. The case for suspension
is similar except that control returns to the suspended scenario once the sus-
pending scenario is complete.

In the case of negation, the positive traces of (c1 negative during c2) are
simply the positive traces of c2. Negative traces, however, can be any trace that
is an interleaving of a positive trace of c2 with a positive trace of c1. This, in
effect, defines a monitor for traces of c1—if a positive c1 trace occurs at any
point, even with events interleaved from c2, then this defines a negative trace.
Note that c1 cannot have negative traces.

The semantics for multiple concurrent executions (the asterisk notation) is
given by interleaving and hence can be described in terms of flattening using
par operators. The number of par operators is unbounded since there can be
any number of executions of the node.

Regions are sets of connected nodes and so, their semantics is a pair of trace
sets. Hence, their semantics is not given explicitly here but follows the same
rules as in Figure 8. The semantics for final success and final failure nodes are
given in the following subsection.

Figure 8 defines the semantics for single edges. This is extended to an entire
scenario chart as follows. A path through a scenario chart is a (possibly infinite)
sequence of scenario nodes s0, s1, s2 . . . where s0 is the unique initial node. If the
path is finite, it must be ended by either a final success or final failure node. A
path is maximal if it is not a proper prefix of any other path. The set of positive
traces of a scenario chart is the set of traces that follow a maximal path through
the chart. Similarly, for the set of negative traces.

4.3 Semantics of Use Case Charts (Level-1)

The semantics for use case charts is essentially the same as for scenario charts
because both a scenario and a use case are given meaning as a pair of trace
sets. For use case charts, however, the meaning of a normal edge is given by
strong not weak sequential composition. Operationally, this means that before
execution can continue along an edge to the next use case, all participants in
the interaction must complete (where completion is defined below). In contrast,
in scenario charts, some participants may complete and continue to the next
node while others remain in the current node. Strong composition is chosen to
define use case charts because nodes represent use cases. Use cases are considered
modular functional units in which the entire unit must complete before control
goes elsewhere. Strong composition enforces the modularity. Semantically, strong
composition of traces is defined to be concatenation.

A use case chart node completes if and only if its defining scenario chart
reaches a final success or final failure node. If the scenario chart reaches a final
success node, control continues to the next use case node. If the scenario chart
reaches a final failure node, the use case “thread” terminates. Semantically, each
trace in a scenario chart is either infinite, ends with a final success node (a success
trace) or a final failure node (a failure trace). Suppose a use case chart has two
nodes, u1 and u2, connected by a single edge from u1 to u2. Then the positive
trace set of the use case chart is the union of three trace sets: the positive infinite
traces of u1, the set of traces formed by concatenating positive success traces
from u1 with positive traces from u2, and the set of positive failure traces from
u1. The first of these three trace sets captures the fact that infinite traces of u1

never reach u2. The second of the trace sets captures strong composition and
the final trace set corresponds to the case when traces in u1 end at a final failure
node. This is captured formally in Figure 9.

For any use case node, ui, let s(ui), f(ui) denote the set of positive traces of
ui that end in a final success and final failure node, respectively, and let inf(ui)

denote the infinite set of positive traces. Then the set of positive traces of ui

is the disjoint union of s(ui), f(ui) and inf(ui). In Figure 9, the definition of
concatenation is extended to sets of traces, in the natural way, as follows:

s1 _ s2 = {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 · h = h1 _ h2}

where s1, s2 are trace sets. For negative traces, the final success and final failure
nodes have no effect; negative traces are composed using strong composition.
Finally, only normal edges are affected by final success and final failure nodes,
i.e., preemption, suspension and negation edges retain the same semantics.

[[c1 → c2]] = (inf(c1) ∪ f(c1) ∪ (s(c1) _ p1), (n1 _ p2) ∪ (n1 _ n2) ∪ (p1 _ n2))

Fig. 9. Semantics for Normal Edges in Use Case Charts.

5 Related Work

At first glance, use case charts look quite similar to hMSCs [IT96] and UML2.0
[OMG] IODs. However, in IODs, there are only two levels of hierarchy — activity
diagrams connect references to interaction diagrams but use cases are not han-
dled. In hMSCs, nodes can be references to other hMSCs so there is an unlimited
number of levels. However, there is no semantic difference between nodes at dif-
ferent levels—references to hMSCs are just syntactic sugar and can be flattened
to references to basic MSCs—so there are in effect only two levels, interactions
and references to interactions. Use cases again are not handled.

Use case charts contain relationships that do not exist in UML or hMSCs, as
noted in Section 2. Finally, there is a formal semantic model for use case charts.
There is no official formal semantics for UML2.0 IODs. Although one can infer
a semantics for UML2.0 activity diagrams (or at least part of them) because
the UML specification [OMG] bases the semantics on petri-nets, the semantic
assumptions of generic UML activity diagrams do not carry over to IODs because
a number of restrictions and modifications are made to the activity diagrams
used in IODs. The semantics given here for use case charts is declarative. It is
also possible to define an operational semantics based on petri-nets but this is
outside the scope of this paper.

Activity diagrams and hMSCs can, of course, be used in a variety of ways to
support use-case based development. Some authors (e.g., [MB02]), for example,
suggest the use of activity diagrams to connect use cases. Others (e.g., [MZ99])
suggest to define each use case by an hMSC. The former approach does not
consider how to use activity diagrams to define each use case. The latter only
connects use cases using a standard UML use case diagram. Use case charts
essentially combine these two approaches in that activity diagrams are used
both to relate use cases and to define those use cases. As such, the contribution
of this paper is more in the formal semantics than the syntax.

6 Conclusion

This paper presented a precise notation for specifying use cases. The notation is
based on UML and is defined on three levels: use cases, scenarios and interactions.
A formal syntax and semantics of the notation is presented.

Use case charts are precisely and unambiguously defined, and can therefore
be executed. A project is currently underway to implement a simulator for use
case charts that is compliant with the semantics defined in this paper. This will
enable users to immediately execute their use cases and validate the use case
specification. Clearly, use case charts require a degree of rigor and effort above
and beyond what is normal for use case definition. The author feels, therefore,
that the notation is most beneficial when applied to the specification of systems
with stringent functional requirements, e.g., systems that are highly distributed,
concurrent and/or safety-critical. Use case charts have been applied on a number
of industrial case studies, most notably a transaction-based weather data system
that is part of a NASA air traffic control application.

References

[BRJ05] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide, 2nd Edition. Addison-Wesley Professional, 2005.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[HHRS05] Øystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stølen.
Stairs: Towards formal design with sequence diagrams. Journal of Software
and System Modeling, 2005. To Appear.

[Iso04] Sadahiro Isoda. On uml2.0s abandonment of the actors-call-use-cases con-
jecture. Journal of Object Technology, 4(6), 2004.

[IT96] ITU-TS. Recommendation z.120. Technical report, 1996.
[MB02] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for

Model-Driven Architectures. Addison-Wesley, Boston, USA, 2002.
[MZ99] Nikolai Mansurov and D. Zhukov. Automatic synthesis of sdl models in use

case methodology. In SDL Forum, pages 225–240, 1999.
[OMG05] OMG. Unified Modeling Language 2.0 specification, 2005.

http://www.omg.org.
[OP99] Gunnar Overgaard and Karin Palmkvist. A formal approach to use cases

and their relationships. In First International Workshop on The Unified
Modeling Language UML’98, pages 406–418. Springer-Verlag, 1999.

[Smi04] Michal Smialek. Accommodating informality with necessary precision in use
case scenarios. Journal of Object Technology, 4(6), 2004.

[Sof05] Software Engineering Group, University of Paderborn. Shuttle
system case study, 2005. http://www.cs.uni-paderborn.de/cs/ag-
schaefer/CaseStudies/ShuttleSystem/.

[Ste01] Perdita Stevens. On use cases and their relationships in the unified modelling
language. In FASE ’01: Proceedings of the 4th International Conference on
Fundamental Approaches to Software Engineering, pages 140–155, London,
UK, 2001. Springer-Verlag.

[Wil04] Clay Williams. Towards engineered, useful use cases. Journal of Object
Technology, 4(6), 2004.

