On the Testing Maturity of Software Producing
Organizations: Detailed Data

Mats Grindal
Enea AB, Box 1033, SE-164 21 Kista, Sweden
and
School of Humanities and Informatics
University of Skovde, Sweden
magrQenea.se

Jeff Offutt
Information and Software Engineering
George Mason University
Fairfax, VA 22030, USA
offutt@ise.gmu.edu

Jonas Mellin
School of Humanities and Informatics
University of Skovde, Sweden
jonas.mellin@his.se

April 26, 2006

Technical Report ISE-TR-06-03
Department of Information and Software Engineering, George Mason University

Abstract

This paper presents data from a study of the current state of practice of software testing.
Test managers from twelve different software organizations were interviewed. The interviews

focused on the amount of resources spent on testing, how the testing is conducted, and the
knowledge of the personnel in the test organizations.

The data indicate that the overall test maturity is low. Test managers are aware of this
but have trouble improving. One problem is that the organizations are commercially suc-
cessful, suggesting that products must already be “good enough.” Also, the current lack of
structured testing in practice makes it difficult to quantify the current level of maturity and
thereby articulate the potential gain from increasing testing maturity to upper management
and developers.

Contents

1 Introduction

2 The Study
2.1 Research Questions
2.2 Organizations Investigated L oo
2.3 Data Collection e
2.4 Analysis
2.5 Validity

3 Observations and Data
3.1 Test Case Selection Methods
3.2 Test Strategy
3.3 Moment of Involvement
3.4 Test Team Knowledge
3.5 Test Time Consumption
3.6 Software Development Metrics

=

g O Q W »

Analysis and Results

4.1 Test Case Selection Methods
4.2 Test Strategyo
4.3 Moment of Involvement
4.4 Test Team Knowledge
4.5 Test Time Consumption
4.6 Metrics

Summary and Conclusions
Acknowledgments

Appendix A - The Questionnaire
Question 1 - Age

Question 2 - Size

Question 3 - Type of Product

Question 4 - Development Process

18
18
19
20
20
21
22

22

23

26

28

28

29

29

F

G

H

I

J

K

L

Question 5 - Test Organization
Question 6 - Project Duration
Question 7 - Testware
Question 8 - Test Strategy
Question 9 - Test Methods
Question 10 - Test Cases

Question 11 - Metrics

M Question 12 - Cost

N

@)

1

Subset of TPI Model

Details of subset of TPI Model

0.1 Test Strategy - key area 1
0.2 Life-cycle Model - key area 2o
0.3 Moment of Involvement - key area 3.
0.4 Test Specification Techniques - key area d
0.5 Metrics - key area 7 e
0.6 Test Functions and Training - key area 12
0.7 Unused key areas

Introduction

30

30

31

31

31

32

32

33

33

Studies from the 1970s and 1980s claimed that testing in industry consumes a large amount of
resources in a development project, sometimes more than 50% [Boe, Bro75, Deu87, You75]. A
recent study found that, at least for some distributed systems, there has been a significant shift of
the main development cost from programming to integration and testing [BRAEO00].
There has also been a steady increase in the quality requirements of software, partly led by the
increasing emphasis on application areas that have very high quality requirements, such as web
applications and embedded software [Off02].
The high cost of testing and the trend toward increased focus on the quality of software should
be strong incentives for software development organizations to improve their testing. However,
our experience from industry is that the test maturity of many organizations is still low. Further,

it is our perception that even though there is a great need for improving the quality of software
testing, lots of techniques have been developed, and numerous commercial tools are available, most
organizations do not make frequent or effective use of the tools.

This paper presents data from a documentation and assessment of the test maturity of twelve
software producing organizations. The main purpose of this study is to provide industry and
academia with a starting point for discussions on how to improve. In particular, we are interested
in aspects of test maturity that relate to the use of methods for selecting test cases. The reason
for this narrowed scope is that an abundance of test case selection methods have existed for a long
time [Mye79, Bei90], but are rarely used in industry. This study also reasons about the factors that
influence the application of testing research results in industry.

An early decision of this study was to focus on a diverse set of organizations instead of one
type of organization. A diverse sample makes it possible to compare groups of organizations, which
may help identify patterns that can be further explored in future studies. With diversity, the
results should also appeal to a larger audience. The down-side is that it is harder to draw general
conclusions from a diverse set. The twelve organizations investigated were selected to be diverse in
terms of age, size, type of product produced and how long the development projects usually last.

In the scope of this paper, the term testing is used in a wide sense. It includes pre-execution
testing such as reviews of requirements and validation through prototyping as well as all test case
execution activities. The main reason for this is our interest in the use of test strategies as a way
to coordinate the all of the verification and validation activities. Most organizations in our sample
used the term testing in this way. The more refined term of test case selection is used to mean a
specific procedure for selecting values for tests.

Section 2 describes how this study was performed, including how the organizations investigated
were selected, how the data was collected, and how the analysis of the data was conducted. This
section also discusses aspects of validity with respect to this study. Section 3 presents our collected
data and section 4 analyzes this data and discusses the results. Section 5 concludes this study with
a short summary.

2 The Study

This test maturity study was performed as a series of interviews with representatives from twelve
different organizations. It can be viewed as a qualitative study with some quantitative parts. The
forthcoming sections describe in more detail how this study was carried out.

2.1 Research Questions

This study had six distinct research questions, the primary one being (Q1:) Which test case
selection methods are used in the development projects? Some additional research questions were
also used to allow for deeper analysis of the results. These questions are (Q2:) Is the testing in the
development projects guided by a test strategy? (Q3:) When are testers first involved in the
project? (Q4:) What is the general knowledge of the testers? (Q5:) How much of the project
resources are spent on testing? (Q6:) Which metrics are collected and used during testing?

To determine the diversity of the sample, data on several organizational properties, such as age,
size, types of product developed, etc. were also gathered.

2.2 Organizations Investigated

The subjects of this study were customers of Enea Test AB, the first author’s employer. Enea Test
AB provides testing and test education consultancy services. A list of organizations was assembled
to achieve a spread across age, size and type of products developed. The organizations on the list
were contacted and asked if they were willing to participate in the study. They were also asked to
confirm our preliminary estimates of their organizational properties.

Thirteen organizations were contacted, and one declined to participate. The contacts at the
remaining 12 organizations were managers with testing as part of their responsibility.

Figures 1 through 6 show the spread across age and time since the last major reorganization,
size of company, size of development organization, size of normal projects, and type of product
developed. Figure 1 shows that the organizations range in age from three to fifty years, and the
time since the last major reorganization ranges from one to eight years.

As summarized in figure 2, the size of the organizations range from 15 to 2000 employees.
The size of the development departments range from 15 to 600. Six organizations have all their
development concentrated at one single site, while the others are spread between two and six sites.

Figures 3 and 4 show the sizes of the projects in calendar-time and person-hours. The shortest
projects take three to four months to complete while the longest projects take up to fifty months.
The cost for these projects measured in person-hours range from 1,700 to 288,000 hours. When the
project lengths varied within an organization, they were asked to report on their “typical” projects.
Organization 10 has two types of projects, one type with very little new functionality (10a) and
one with a lot of new functionality (10b), and in some cases gave data for each type of project.

The organizations investigated also exhibit great variance in the number and types of products
they develop. Figure 5 shows that six organizations develop embedded products, four of which are
also safety-critical. The other six develop software for non-embedded systems. Figure 6 shows that
all companies develop more than one product or product version at the same time. In some cases
the amount of parallel development is limited to two or three products or versions of products,

Year of last major
reorganization
2005
2004 % 1%
2003
2002 %
2001
2000
1999
1998 e

1997 s i i

1996

1995 | | | | |
0 10 20 30 40 50 60

& %
& %

Organization age

Figure 1: Age and year of last reorganization.

whereas in other cases as many as one hundred custom-designed product versions are developed
simultaneously.

Taken together, the twelve organizations exhibit a wide spread across all of the investigated
parameters, which enabled this study to sample from diverse organizations.

2.3 Data Collection

Each interview lasted about one hour. One researcher (the first author) met with the representative
at the organizations’ sites. Some representatives (called respondents hereafter) brought additional
people to the interview to help answer questions.

The respondent was given the questionnaire at the start of the interview. The interviewer
and the respondent completed the questionnaire together. The interviewer guided the respondent
through the questionnaire by clarifying information and helping the respondent to translate his/her
vocabulary to the vocabulary used on the questionnaire. When both parties agreed to an answer,
the interviewer recorded the answer in the questionnaire, in view of the respondent.

Number of employees

2500
2000

Employees

[] Developers
1500
1000
500

°—=l=“r- | |:! — T I
1 2 3 4 5 6

- 7- 8
Organization

number

Figure 2: Total number of employees and number who are developers.

2.4 Analysis

All results were transferred into a spreadsheet and the researchers met to discuss the data recorded
and how to best present them.

The graphs were then used to identify differences and similarities among the organizations.
Cross-property comparisons were then performed through Spearman tests [Alt91]. The Spearman
test compares two rankings based on ordinal values and determines the level of correlation be-
tween the two rankings. Table 1 shows the recommended interpretations of value of the Spearman
coefficient.

Results are documented and explained in section 4.

2.5 Validity

Cook and Campbell [CC79] identify four different types of validity that need to be considered in
studies of this type: conclusion validity, construct validity, internal validity, and external validity.

Months
60

50

40

30

20

104

1 2 38 4 5 6 7 8 9 10a 10b 11 12
Organization number

Figure 3: Size of projects in terms of calendar time.

Conclusion validity concerns on what grounds conclusions are made, for instance the knowledge
of the respondents and the statistical methods used. This study did not make an explicit evaluation
of the respondents’ knowledge, but all respondents are judged to be experienced, based on their
positions in their organizations. All participating organizations were guaranteed anonymity, which
adds to the confidence in the answers. To ensure that the interview was treated seriously, the
organizations were offered a free training seminar in return for a complete interview.

Interviewer bias was handled in part by only choosing organizations that the researchers were
unfamiliar with. A carefully reviewed questionnaire was also used to decrease the risk of interviewer
bias. Further, all documented answers were agreed upon by the interviewer and the respondent.

Construct validity concerns whether or not what is believed to be measured is actually what
is being measured. The main focus of this study is to find out which test case selection methods
companies use. There is a possibility of managers giving answers that reflect the directives, rather
than what is actually in use. However, we theorize that for new methods of working to be adopted
in an organization as a whole, these need to documented and communicated via the management.

Person months x 1000h
350

300

250

200

150

100

50

1 2 3 4 5 6 7 8 9 10a 10b 11 12
Organization humber

Figure 4: Size of projects in terms of person time.

Thus, what management thinks is being use is relevant even if it does not match.

Another risk relating to construct validity is the different terminologies used by different orga-
nizations. This was handled by using terminology from Test Process Improvement (TPI) [KP99]
and BS7925-1 [BS 98]. Both TPI and BS7925-1 were known to most organizations in this study.
Also, the interviewer discussed terminology with the respondents to clarify misunderstandings.

Internal validity concerns matters that may affect the causality of an independent variable,
without the knowledge or the researcher. Only one short (45-75 minutes) interview was held at
each organization to reduce the risk of the interviewer becoming biased by getting to know the
organization and its personnel.

Having only one respondent results in a risk that not the whole picture is revealed. This was

partly addressed by having overlapping questions to be able to detect possible inconsistencies in
the answers.

Number of organizations
5

Embedded " Web Mainframe
critical server

Type of product

Figure 5: Types of products developed by each organization.

Some answers, for instance the level of knowledge of their test team, are bound to be inexact.
This limits the ability to compare organizations, but this was not a primary goal of the study.

External validity concerns the generalization of the findings to other contexts and environments.
External validity of studies like this one is inherently difficult to judge since it is impossible to
know the size and distribution of the goal population. Hence, one can never know if a sample is
representative or how large the sample needs to be for a defined level of confidence.

The approach taken in this study is to construct a sample that is heterogeneous with respect
to a number of different properties like age, size, type of products etc. This approach limits the
possibilities of making general claims about the software industry based on the results in this study.

Values Interpretation
0 <|z|< 0.33 | Weak relationships
0.33 <|z|< 0.66 | Medium strength relationships
0.66 <|z|< 1 Strong relationships

Table 1: Interpretation of Spearman coefficients.

Number of products
120

100

80

60

40

20

1 2 3 4 56 7 8 9 10 11 12
Organization number

Figure 6: The number of products developed by each organization.

However, it is still possible to identify relationships and correlations among the studied organizations
and use these as a basis for further studies.

Practical reasons limited the heterogeneity in the way that all organizations are Swedish. It
seems unlikely that Swedish software companies would be substantially different from other Euro-
pean companies. There is a common perception that European companies emphasize reliability in
software more than North American companies, but we know of no data to support that perception.
It would be interesting to repeat this study in other parts of the world.

3 Observations and Data

The results of the interviews are presented in the same order as the questions in section 2.1. The
organizations are identified only by number, and not name, so as to protect their privacy. Some
data have been left out for space reasons.

3.1 Test Case Selection Methods

Only three of the twelve organizations report structured use of test case selection methods.

Organization 4 uses equivalence partitioning [Mye79], boundary value analysis [Mye79] and
some basic combination strategies [GOAQ5], for instance “each choice” [AO94]. Organization 8
uses boundary value analysis and cause-effect graphing [Mye79] and some proprietary methods.
Organization 10 tries to satisfy 100% requirements coverage to control the choice of test cases,
which can be considered to be an informal test case selection method.

In the remaining nine organizations there is no enforcement of the use of test case selection
methods. Instead it is up to individual testers and developers to select test cases. It is likely that
some individuals use test case selection methods on their own, but the organization as a whole has
no control of this.

It is interesting to note that two of the organizations that produce safety-critical products do
not enforce the use of test case selection methods.

3.2 Test Strategy

One goal of a test strategy is to provide organizational global advice in finding the most important
defects as early and cheaply as possible [KP99]. Thus, a test strategy describes the responsibility of
each test phase in the project. Advice is also included on how to choose test methods and coverage
criteria in each phase. The organizations were asked if they have a test strategy, if it is implicit or
explicit, what types of information it contains, and if it is used.

Figure 7 shows that three of the twelve organizations do not use a test strategy at all. Two
have explicit test strategies written but do not use them, three use implicit test strategies, mostly
embedded as advice in their test processes or in some cases as part of some standard regulating the
testing of certain aspects of the product. Only four use explicit test strategies.

The type of information included in the test strategies varies. Four organizations have infor-
mation about the test phases, three have pointers to standards, and only three have information
about test case selection methods. These three organizations are the same organizations that report
structured use of test case selection methods.

3.3 Moment of Involvement

It is a general view in the test community that testers should be involved early in the projects
[Dus02, CJ02]. There are several reasons for this. One reason is to use time effectively during test
execution by preparing all tests prior to the test execution. Another reason is that testers can help
detect and remove faults even before implementation.

Explicitly Explicitly
Not Used Used

Figure 7: Does a testing strategy exist (explicitly or implicitly)?

Six organizations involve their testers at the start of the project. Another four involve their
testers during requirements collection. When testers are involved in projects early, their main task
is usually test case design, which may lead to improved software requirements. In some cases the
testers also participate in requirements review.

The final two organizations do not involve their testers until the product is ready to be delivered
to the test organization.

3.4 Test Team Knowledge

One possible reason why structured testing is not used by organizations is because the testers do not
have enough knowledge. To evaluate this, the respondents were asked to rank the test department’s
knowledge on a scale from one to five (with five being high) in test theory, system design, and how
the system will be used (domain knowledge). Figure 8 shows the responses from each organization
for the three types of knowledge. Organizations that produce embedded software have shaded bars.

Score (1-5/category)

— Usage —
ol ’; - H H H H
0

Design — — —

2-_ | ﬂ
0

— TestTheory — —
T 1.1, T _T _T_T.T_T, 1

PP P L L PP T P
Organization number

| Embedded SW | | Non -Embedded SW |

Figure 8: Three types of test team knowledge. Shaded bars represent organizations producing
embedded software and non-shaded bars non-embedded software

3.5 Test Time Consumption

Figure 9 shows the amount of person-time spent on testing, relative to the total development time.
Organizations 7, 9, and 10 are the only ones who actually measured this (highlighted with white
bars in the figure), the others are estimates. The representative from the first organization had
no record of the amount of testing and was unwilling to make an estimation. As said previously,
organization 10 has two types of projects, one type with very little new functionality (10a) and one
with a lot of new functionality (100).

These observations generally agree with old observations that testing consumes a major part of
the resources in development projects [Boe, Bro75, Deu87, You75]. Two organizations (7 and 10),
both of which produce safety-critical embedded software, report measured test time consumptions
of 65%.

There was a wide variation in time used on testing. Three were fairly low (less than 15%), two

70

(o))
o

(&)
o

N
o

N
(o]

Percent of project
time spent on testing
w
o

3

1 2 3 4 5 6‘7‘8‘9‘10a‘10b‘11 12

Organization nhumber

Figure 9: Time spent on testing, relative to other development activities. White bars represent
organizations who explicitly measured the time.

were high, and the rest were between 30% and 45%, which is close to the mean (35.1%).

Given the total amount of time spent on testing, the next question was to investigate how
this time was spent across the different test phases. This study defined the test phases to be pre-
execution, component (including unit testing by the programmers), integration, system, acceptance,
and other. The last category was used by two organizations for field testing, where the product is
tested in the deployment environment. All respondents successfully mapped their test process onto
these phases. Nine organizations have separate test teams to perform system testing, two of whom
also perform integration.

Figure 10 shows how time for testing activities was distributed across the different test phases.
This is a “box-plot” graph. Each box represents the 50% of the values in the middle and the lines
above and below the boxes extend to the highest and lowest value. For example, in the pre-execution
phase the organization that reported the least amount of time spent was 5%, and the highest was
40%. The box ranges from 10% to 35%, so one quarter of the values were below 10% and one

quarter above 35%. The diamonds represent the mean value reported (19% for pre-execution).

Of the twelve organizations, two had neither knowledge nor estimates. One of the remaining ten
had substantiated information, but did not want to share this information, so the figure includes
data for only nine organizations. Six of the nine organizations spend more testing time in the
system testing phase than in any other testing phase. Seven of the nine organizations spend 50%
or more of their total testing time in one single phase. Overall, it is striking how little time is spent
in early life-cycle test activities.

100%
S 80%
[z
g
S = 60%
[k e)]
> < | 2
g "‘;" 40% ‘
()]
T .
()] 200/0
9 * e .
|
0% | o o] | .
IR o5 o B @&
N O L.O e i NSRS MO
N AT QP S SOEN

Test phases

Figure 10: Distribution of testing time over different test phases. Lines show the high and low
values, boxes show the middle 50% values, and diamonds show the mean values.

3.6 Software Development Metrics

Metrics are used to substantiate claims about the tested product as well as the status of the project.
Metrics also helps managers decide if a process change has helped.

Two of the organizations do not collect any metrics at all. Between the remaining ten, all
monitor used resources, usually time. Nine monitor test progress, usually executed test cases, and

nine, but not the same nine, monitor found defects. All these metrics are collected and used within
the projects.

Although a few organizations monitor some aspect of project performance, e.g. requirements
coverage, only one organization has an established metrics program that allows them to evaluate
changes in processes, tools, methods, etc.

Within the system lifetime, the most common metric is defects found during operation, which
is monitored by six organizations. Two of these also measure effectiveness and how much time is
spend in maintenance. Four organizations use their metrics to compare projects or products.

4 Analysis and Results

This section analyzes the data presented in Section 3, following the order of the research questions
in section 2.1. Wherever applicable our results are compared with and contrasted to the results
of a testing state-of-practice investigation of Australian software producing companies that was
conducted during 2002 and 2003 [NMR*04].

4.1 Test Case Selection Methods

The three organizations that use test strategies to help select test cases use very basic methods
(equivalence partitioning, boundary value analysis and requirements coverage). None of the or-
ganizations reported using even simple test criteria like edge coverage on graphs, let alone more
advanced criteria such as MCDC, data flow or mutation.

These findings correspond with results from a recent study in Australia [NMR104]. In the
Australian investigation, 29 of 64 organizations reported using a black-box method during the past
three years. Only 16 reported using white-box methods and 3 reported using mutation analysis.

There are differences in methodology between our study and the Australian study that may
inflate some of the Australian numbers. The 64 participants in the Australian survey responded
to a massively distributed inquiry that was sent to well over 10,000 Australian I'T professionals.
Exactly half of the respondents came from software houses and I'T consultancy businesses. It seems
reasonable to expect that relatively immature organizations are less inclined to participate in such
a study, and it is also likely that test maturity is higher in consultancy companies that in many
other industries. Another difference is that our survey asked which methods are being used at the
present time, while in the Australian investigation they asked which methods had been used the
past three years.

One conclusion that can clearly be drawn from both studies is that the use of structured test
case methods both among the organizations in both studies survey is very limited. Finding sim-
ilar patterns in two independent investigations in two different parts of the world strengthen the

suspicion that this situation applies in other parts of the world as well.

Many managers expressed concerns for the lack of structure in the testing. This makes us believe
that managers recognize the benefits of structured testing. However, this is far from a commitment
to improve.

If managers want to improve their testing, they face at least three major obstacles. First, the
organizations are all commercially successful, indicating that their products are at least “good
enough.” The upper management may therefore be reluctant to invest in change unless the test
managers can present a case based on hard facts. The second obstacle is that most organizations in
this study do not record enough metrics to describe the current situation in economic terms. Hence
the payoff from improved testing cannot be quantified.

A third obstacle preventing change is that most types of improvements require an initial invest-
ment that would (hopefully) pay back later. With tight project schedules and short times-to-market,
it is hard to convince program managers to select a project to try a new process on.

The Australian investigation explored the respondents’ perceptions of possible barriers to adop-
tion of structured testing methods. Lack of expertise was ranked highest (28 votes) followed by
time-consumption (20 votes) and lack of support tools (18 votes). (The respondents were allowed
to choose more than one.) The authors’ main conclusion from these data is that either software
professionals are not given proper education in universities or in industry, or there is a genuine
shortage of software testing professionals. In either case, there is an obvious need for more software
testing education.

In our investigation, the organizations ranked test theory knowledge as being on average fair,
which could mean that lack of test knowledge is a significant contributor to the lack of test maturity.

4.2 Test Strategy

Section 3.2 showed that nine of the twelve organizations have some notion of test strategy. This may
seem positive superficially, but the contents of these test strategies and how they are used is less
positive. Only three organizations maintain information about how testing should be performed.
Thus, only three have information in their test strategies that is normally considered to be test
strategy information. The other types of information maintained in the test strategies of the
organizations are certainly important but normally maintained in other documents, for instance
test and trouble reporting processes.

Insufficient use of test strategies does not always lead to poor products. Test strategy decisions
are continuously made during the project and if the organization is lucky or if the decisions makers
are good, the decisions can still result in good products. Also, hard work (that is, extra time and
money) can often make up for poor strategies. Without a test strategy to guide the decision making
process, there is a risk that product and process quality varies greatly between different projects.

Organizations also become more dependent on key persons to achieve the project goals. Suggestion
for, implementation of and, in particular evaluation of improvement also become more difficult.

Of the three organizations that have test strategies, we only have data on resource consumption
for two. An interesting similarity of the two is that they report almost identical distribution of
test time in figure 10. Even more interesting is that both organizations invest 35% to 40% of the
total test time in pre-execution testing, which is twice as much as any other organization in the
study. Obviously, the number of observations are far too low to make any conclusions but it is not
surprising that test strategies may help to distribute the testing time more evenly.

4.3 Moment of Involvement

One result that surprised us is that most organizations involve their testers early in the projects;
half from the project start. Another four organizations involve their testers during the requirements
collection. Only two of twelve brought in testers at the end, which happily contradicts the “throwing
software over the wall” process that is sometimes assumed to occur.

The claim of early involvement is validated by the observation that on average, 14% of the total
execution time is spent on pre-execution testing for the nine organizations where this information
is available, as shown in figure 9. Thus, the suspicion that the lack of test maturity stems from late
involvement of the testers does not seem to be correct.

The two organizations that do not involve their testers until the end of implementation have
several properties in common. Their development organizations are very small, 15—25 people. Their
projects are short, four to six months and 1000 to 3000 person-hours. They also estimate that their
testers have little knowledge in test theory. Instead many of their testers have a background as
users of the systems, which is reflected in high domain knowledge of the test teams. Finally, these
are the only two organizations that do not use test specifications nor produce final test reports.
Our suspicion is that high domain knowledge may compensate, up to a certain level, for lack of
testing theory. Also, a low level of test maturity may be safer with small projects than with larger
projects.

4.4 Test Team Knowledge

It is interesting to note that the evaluation of test team knowledge is very different in organizations
that develop embedded software from the organizations that develop non-embedded software. Em-
bedded software organizations rank the test theory knowledge as much higher and the non-embedded
software organizations rank the domain knowledge as higher. The average test theory knowledge for
embedded organizations is 3.67, while for non-embedded organizations it is only 2.83. The average
domain knowledge for embedded organizations is only 3.0, while for non-embedded organizations it
is 4.5.

Our interpretation of this data is that embedded and non-embedded systems may be tested in
different ways. There also seem to exist at least two different approaches to testing; one based on
using a high level of domain knowledge and the other using a highly refined method for generating
tests.

4.5 Test Time Consumption

Our findings match earlier studies, which found that testing consumes a large amount of re-
sources [Boe, Bro75, Deu87, You75]. Further, we believe that the average (35%) amount of time
spent on testing shown in figure 9 is low due to the fact that only three organizations (four values)
are based on solid facts, and all these values are above the average, with three of them being the
highest values. When guessing, it is easy to overlook less obvious contributions to the values, so
others may be higher.

Both organizations that spend 65% of their times on testing are large and old organizations that
produce both hardware and software for safety critical system. It is not surprising that companies
spend more time testing safety critical software.

A test strategy seems to help the organizations spend time more evenly over the different test
phases. This is illustrated by the two organizations that have explicit test strategies being the
only two that have an even distribution of test time over the different phases. The other seven
organizations spend most of their test time in system testing as shown in figure 10, with a glaring
fact that the average system testing time is 46%. This is probably indicative of a lack of test
maturity, and suggests there is a lot of room for improvement if the testing effort could be more
evenly distributed.

It is well known that system testing is the most expensive time to find failures. Moreover, it is
much harder to debug failures (tracing back to actual software faults) when the failures are found
at the system level than when found during component testing.

The study of one of the two organizations that spends 65% of their time on testing led to an
important insight. Projects that added a small amount of new functionality emphasized a lot of
regression testing, and the relative amount of testing was higher than with projects that had more
new functionality.

A Spearman test shows a strong correlation (0.78) between the amount of documentation pro-
duced and the time spent on test preparation. This is hardly surprising since most documents (test
specifications) are produced in during this phase. There is a medium strength correlation (0.55)
between the amount of information in the test specifications and the time spent on test preparation.

There is a medium strong inverse correlation (-0.53) between system testing time and time spent
on test preparation and also a medium strong correlation (0.54) between system testing time and
test execution. Our conclusion from these findings is that good preparations and possibly re-use of
previously generated documentation may help cut overall testing time.

4.6 Metrics

In section 3.6, it is shown that except for one organization, the collected metrics only allow limited
evaluations of the product within the project. This result also corresponds to the findings in the
Australian investigation [NMR*04] where the most common metric was number of found defects
used by 31 of the 65 surveyed respondents.

An obvious conclusion from these investigations is that there is plenty of room for improvement
in the area of metrics. However, it is still open as to which metrics are best, and how they are best
captured.

5 Summary and Conclusions

This paper presents data from a study of how twelve organizations test software. Following is a
summary list of our major findings in this study.

1. An average of 35% of development time is spent on testing (with a significant amount of
variation)

2. Structured testing strategies and test selection methods are not widely used

3. The majority of tests are run at the system level; relatively little unit and integration testing
is done

4. Projects with little new development spend a higher percentage of their development time on
testing than projects with lots of new development

5. The use of an explicit test strategy seem to help organizations improve in general

6. Test preparations and re-use may help cut overall costs for system testing

The overall test maturity of the organizations was found to be low; only three use structured test
strategies in the proper sense and only three use structured test case selection methods. However,
many of the organizations are commercially successful, leading us to conclude that their products
are still “good enough” in an economic sense. This could be because the individual testers are
very good, market expectations are low, the organizations overcome poor process with hard work
(which implies that their testing is inefficient), or because structured testing is not helpful. An
open question is to what extent can testers with good knowledge in the how the product is used
compensate for lack of structure in testing?

From a high level management point of view, as long as the products make a profit, there are
not a lot of compelling reasons to invest in improved testing. Many of the managers we interviewed

expressed concerns for the relatively low test maturity, which means that there is an awareness of
a problem. Another reason that change is slow is because it is hard to assess the current situation
and estimate the potential gain.

The organizations in this study that were found to be the most mature all use more detailed
test strategies that describe test phases and which test case selection methods to use detailed test
strategies. Thus, we conclude that the use of a structured testing strategy is a great help for
organizations to increase their testing maturity.

Based on the findings in this study we advise test managers to concentrate on implementing a
metrics program that allows for project and product quality assessments in economic terms.

One of our most important observation flows from point number 4 above, especially when com-
bined with one of the most important trends in software design and development today. When
companies spend less time developing new software, they spend more of their budget on testing.
This is especially significant because software development organizations are dramatically increas-
ing the use of component integration and reuse, meaning less new software is being written all the
time. Instead, we are spending our development efforts in “wiring together” pre-existing compo-
nents. Although somewhat speculative, these observations suggest that we are on the verge of an
economic “phase transition,” and significant investments in testing can now have a major impact
on companies’ economic success. In fact, testing is becoming the prime economic driver in soft-
ware process. Indirect evidence for this can already be seen from a recent increase in the number
of industry-oriented book on software testing, widespread adoption of tools for developer (unit)
testing such as JUnit, and the recent success of testing tools such as Agitar’s Agitator.

6 Acknowledgments

We would like to thank Enea for generously providing the contacts to the organizations investigated.
Then we owe each of the participating organizations our gratitude. Thank you for your openness
and generosity! Then we would like to thank Asa G. Dahlstedt for reviewing the questionnaire.
The authors also would like to thank Anders Claesson, Aynur Abdurazik, and Wuzhi Xu for help
with references and review. The first author is sponsored in part by Enea AB and Swedish Knowl-
edge Foundation. The second author is sponsored in part by National Institute of Standards and
Technology (NIST), Software Diagnostics and Conformance Testing Division (SDCT).

References

[Alt91] D. G. Altman. Practical Statistics for Medical Research. Chapman & Hall (CRC),
London, 1991.

[A094]

[Beigo]

[Boe]

[BRAE00]

[Bro75]

[BS 98]
[CCT79]

[CJ02]

[Deu87|

[Dus02]

[GOAO5]

[KP99]

[Mye79]
[INMR*04]

Paul E. Ammann and Jeff Offutt. Using formal methods to derive test frames in
category-partition testing. In Proceedings of the Ninth Annual Conference on Com-
puter Assurance (COMPASS’94), Gaithersburg MD, pages 69-80. IEEE Computer Soci-
ety Press, June 1994.

Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990.

B.W. Boehm. Some Information Processing Implications of Air Force Space Missions:
1970-1980, Santa Monica, California, The Rand Corp. Memorandum RM-6213-PR.

L. Bratthall, P. Runesson, K. Adelsward, and W. Eriksson. A survey of lead-time chal-
lenges ini the development and evolution of distributed real-time systems. Information
and Software Technology, 42:947-958, 2000.

F.P. Brooks. The Mythical Man-Month. Addison-Wesley: Reading MA, 1975.
British Computer Society BS 7925-1. Glossary of terms used in software testing, 1998.

T.D. Cook and D.T. Campbell. Quasi-Experimentation Design and Analysis Issues for
Field Settings. Houghton Mifflin Company, 1979.

R.D. Craig and S.P. Jaskiel. Systematic Software Testing. Artech House Publishers,
2002.

M.S. Deutsch. Verification and validation. In Jensen and Tonies, editors, Software
Engineering. Prentice Hall, 1987.

E. Dustin. Effective Software Testing: 50 Specific Ways to Improve Your Testing.
Addison-Wesley, 2002.

M. Grindal, A. J. Offutt, and S. F. Andler. Combination testing strategies: A survey.
Software Testing, Verification, and Reliability, 15(3):167-199, September 2005.

Tim Koomen and Martin Pol. Test Process Improvement - A practical step-by-step guide
to structured testing. ACM Press, 1999.

Glenford J. Myers. The Art of Software Testing. John Wiley and Sons, 1979.

S.P. Ng, T. Murnane, K. Reed, D. Grant, and T.Y. Chen. A preliminary survey on
software testing practices in Aaustralia. In Proceedings of the 2004 Australian Software
Engineering Conference (ASWECO04), April 13-16, Melbourne, Australia, pages 116—
125. IEEE, April 2004.

[Off02] Jeff Offutt. Quality attributes of Web software applications. IEEE Software: Special
Issue on Software Engineering of Internet Software, 19(2):25-32, March/April 2002.

[You75] E. Yourdon. Techniques of Program Structure and Design. Prentice Hall Inc., 1975.

A Appendix A - The Questionnaire

Appendix A lists the questions that were used in the questionnaire.
Questionnaire

1. Age of organization
When was the organization founded?
When was the latest re-organization?

2. Size of organization

How many employees are there in the organization?

How many employees are involved in product development?
What is the geographic organization of the organization?

3. Product
What type of product is being developed?
How many products are being developed?

4. Test Activities in the development process
Which test activities occurs in a project?

5. Test organization
Does a separate test organization exist?
What is the competence of the test organization:
Test Theory(1-5): System Design(1-5): System Usage(1-5):
When is the test organization involved in the project:
start of project/requirements collection/start of implementation/end of implementation

6. Project

What is the calendar time duration of projects?
What is the man-hour duration of projects?
How much of the project cost is cost for testing?

7. Testware
Which of the following documents are produced by the (system) test organization:
test plan/test specification/test status report/trouble report/test delivery note/final test report

8. Test strategy

Does a testing strategy exist (explicitly /implicitly)?
Is the testing strategy used in the projects?

What is included in the testing strategy?

9. Test methods

Are testing methods used in the projects?
Which testing methods are used?

How are testing methods selected?

10. Test Cases
How are test cases selected?
Are test cases reused from previous projects?
On what grounds?
How are test cases stored?
Which of the following information are included in test cases:
Sensible Name/ Unique Id/ Revision/ Priority/ Author/ Goal/ Purpose/ Configuration Require-
ments/ Precondition/ Action(s)/ Result(s)/ Postcondition/ Type of Test Case/ TC Passing Criteria

11. Metrics
Are any metrics collected?
Which metrics?
(project/product):
used resources (hours, money, etc.)
performed activities (hours, lead time, etc.)
size and complexity of tested system
test products (test specs, test cases, etc.)
test progress (performed tests, status)
number of defects (sorted by different properties)
(project/process):
defect find-effectiveness
defect find-efficiency
test coverage
testware defects
perception of quality
(product in operation):
found faults in production

effectiveness of maintenance
efficiency of maintenance
(cross product comparison):
collection and comparison of metrics across different products

12. Cost
What is the total cost of testing in the project?
How much of the total cost of testing is spent on
pre-execution testing
component testing
integration testing
system testing
acceptance testing
How much of the system testing cost is spent on
planning
preparation
execution

B Question 1 - Age

Question 1 concerns different aspects of organizational age (Table 2).

Reorg.

organization
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12
Org. Age | 25+ | 10 14 35 4 20 40 20 40 20 20 40
Latest 1997 | 1997 | 2004 | 2004 | 2002 | 2002 | 2001 | 1997 | 2002 | 2003 | 2003 | 1998

Table 2: Age of each company and year of the latest reorganization

C Question 2 - Size

Question 2 concerns different aspects of organizational size. (Tables 3 and 4).

organization
1\2\3\4\5\6\7\8\9\10\11\12
Total 200 | 60 | 35| 300 | 15 | 150 | 2000 | 650 | 500 | 160 | 1500 | 300
Development | 25 | 35|30 | 120 | 15| 40 | 600 | 150 | 500 | 20 | 400 | 70

Table 3: Number of employees in total and in the development organization

1\2\3\4\57%7172?9\10\11\12
[Dev.sites [2 |1 [1[1]1][1[4]2][2[5][5] 1]

Table 4: Number of development sites

D Question 3 - Type of Product

Question 3 concerns the types of products that are being developed. (Table 5). In several cases an
organization develops more than one type of product. In such cases, the interview focused on the
main product of that organization.

organization
1 \ 2 \ 3 \ 4 \ 5 \ 6
Product SW SW | HW/SW | HW/SW | SW | HW/SW
type Mf. CS Emb. SC M. SC
organization
7 \ 8 \ 9 \ 10 \ 11 \ 12
Product | HW/SW | SW SW HW/SW | SW | HW/SW
type SC Web M. SC Web Emb.

Table 5: Type of product: Mf-Mainframe, CS-Client Server, Emb-Embedded, SC-Safety Critical

Question 3 also covers the number of products or versions of products each organization develops
concurrently. (Table 6).

E Question 4 - Development Process

Question 4 concerns the test phases each organization maintains in their standard projects. (Ta-
ble 7).

1]2[3]4]5 \Ozg&\mi:aﬁiosn\ 9 [10]11[12
| Nrof Prods. [350 [5[9]10[20][100[20[50] 2 [15] 9 |

Table 6: Number of products or versions of products concurrently developed

organization
Test Phase 1\2\3\4\5\6\7\8\9\10\11\12
Pre-execution X | X X[X[X[X]| X | X
Unit Testing X[XXX XX X[X|X|X|X
Integration Testing X[X|X X X
System Testing XXX XXX X[X[X|X|X]|X
Acceptance Testing | X X X | X X
Field Testing X X

Table 7: Formalized test activities throughout the development process

F Question 5 - Test Organization

Question 5 is focused on when testers are actively involved in the project (table 8), whether or not
the organizations have a separate testing organization (table 9), and the knowledge of the people
doing system testing (table 10).

’ moment \ organizations
start of project 4,7,9,10,11,12
requirements collection 2,3,6,8
start of implementation
end of implementation 1,5

Table 8: When are testers actively involved in development projects? Numbers refer to organiza-
tions.

G Question 6 - Project Duration

Question 6 concerns project duration in terms of calender and person time (table 11). Relative cost
of testing, i.e., the amount of resources in a project that are dedicated to test activities (table 12).

organization
1 | 2[3[]4]5]6[7]8]9]10]11]12
]Separate Test Org.\Yes\Yes\Yes\Yes \ No\Yes\Yes\Yes\Yes \ No\Yes \ No‘

Table 9: Formalized test activities throughout the development process

organization
1\2\3\4\5\6\7\8\9\10\11\12
Test Theory |2 (1|54 24|45 |5] 3 | 2| 2
Prod. Design |4 (22|22 [2|3|5|2] 5 | 3|5
End-usage 4151213424554 |43

Table 10: Estimated knowledge (1(low) - 5(high)) of system testers in three knowledge areas

H Question 7 - Testware

Question 7 concerns which types of test documentation are written in the projects. (Table 13)

I Question 8 - Test Strategy

Question 8 covers the test strategy. Does a test strategy exist (implicitly or explicitly) and is it
used? (Table 14) If there is a test strategy, what does it contain? (Table 15)

J Question 9 - Test Methods

Question 9 is focused on test methods. Which test methods are being used and how does a tester
know which test method to apply? (Table 16)

organization
1\2\3\4\5\6\7\8\9\10a\10b\11\12
Calender months 6 (4 (12112424 50 | 6 [45] 3 12 [12| 6
Person hours (x1000) | 1 | 4 {36 |60 |3 |30|288 15| 4 | 1,7 | 11 |60 | 18

Table 11: Duration of development projects calender months and person hours

1/2[3[4]5] ﬁoﬂg?ﬁzastifg [10a [10b [11| 12
| Relative test cost (%) [- [35[10|15 [33[33]65[33]35] 65 | 45 |40 [12 |

Table 12: Relative cost of testing in development projects

organization
Test Phase 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12
Test plan No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No

Test specification | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes
Test status report | No | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No
Trouble report Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes
Test delivery note | No | Yes | No | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | No
Final test report No | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes

Table 13: Different types of documents produced in development projects

K Question 10 - Test Cases

Question 10 deals with test cases. On what grounds are test cases selected (table 17), are test cases
reused from previous projects and in that case how? (Table 18) Other aspects of test cases also
covered in question 10 are how test cases are stored (table 19) and what types of information that
are contained in a test case (table 20).

L Question 11 - Metrics

Question 11 concerns which types of metrics the organizations collect and use in their projects
(table 21).

’ \ organizations
no test strategy 1,7,12
Implicit test strategy 2,5,6
Explicit test strategy, not used 9,11
Explicit test strategy, used 3,4,8,10

Table 14: Which organizations have and use test strategies. Numbers refer to organizations.

’ org. \ Test strategy contents

General info on test case selection in test process.

Test team involvement, and improvement activities.

Required amount of testing and how to achieve this.

Automation strategy. Prioritize new functions in testing.

Requirements coverage, Standards for certain aspects of the product.

Which test activities should be executed. Test responsibilities for the different
activities. Methods, tools, and trouble reporting, including classification of faults.
9 Different test phases, responsibility, checklists, parts of the test process.

10 Different test phases, responsibility. Also some standards from FDA and the
European counterpart affect the test strategy.

11 Different test phases, responsibility, and which test documents each activity
should produce.

Q0| O O = | W[N

Table 15: Contents of the test strategies that exist, implicitly or explicitly.

’ org. \ Used Test Methods \ Selection of Test Methods ‘
4 EP, BVA, Combination Strategies | Test Strategy
8 EP, CEG, Own Methods Testers & Managers choose
11 Req. coverage Individual choice

Table 16: Test methods used by organizations and how test methods are selected.

M Question 12 - Cost

Finally, question 12 focuses on resource consumption. How is the total cost of testing distributed
across the different test phases (table 22), and in system test, how much time is spent on planning,
preparation, and execution? (Table 23)

N Subset of TPI Model

The Test Process Improvement (TPI) [KP99] method is used to rank the test maturity of an
organization in twenty different key-areas. For each key-area 2 — 4 maturity levels are defined,
with requirements in order to reach that level and dependencies to other key-area levels. The
organizations are ranked in the six key-areas in which there is enough information in this survey to
be reasonably sure about the level. The details of these six key-areas can be found below

Table 24 shows the TPI ranking of the twelve organizations in this study for the six selected

’ org. \ TC Selection

1 Testers’ Experience

2 Testers’ Experience and implicit strategy

3 Testers” Experience influenced by requirements coverage.

4 Test methods complemented with free testing in which testers

use their experience within given directions.

5 Testers” Experience influenced by focus on new functionality.

6 Testers” Experience influenced by requirements coverage.
Review of test cases by application engineers.

7 Testers” Experience influenced by requirements coverage.

8 Test methods complemented with testing of fixed faults and
faults from operation.

9 Testers’ Experience.
10 Testers’ Experience.
11 Testers’ Experience influence by a business perspective.
12 Testers’ Experience.

Table 17: Selection of new test cases in a project.

key-areas. For each key-area, the number of levels are indicated by the letters after each key-area
name. In each case “A” represents the lowest level, but in some cases it is possible to be less mature
than required for the “A”-level. This is denoted with a dash.

The TPI ranks can be viewed as a summary of the results of this study.

O Details of subset of TPI Model

The following parts of the TPI model [KP99] were used when analyzing the data.

0.1 Test Strategy - key area 1

A Strategy for single high level test
Product risks are assessed. Different test depth are applied depending on risk. One or more
test specification techniques are used to support the different test depths. Different test depths
apply both to test and re-test.

org. \ TC Reuse \ On what grounds? ‘

1 No -

2 Yes The amount of change in each system part.

3 Yes Word of mouth from developers - what has changed.
4 Yes Course-grained prio, but no specific strategy

5 Yes All test cases that can be reused.

6 Yes All test cases that increase requirements coverage.

7 Yes All test cases that increase requirements coverage.

8 Yes All test cases that can be used.

9 Yes Based on testers experience.

10 Yes Based on testers experience and requirement traceability.
11 Yes As much as possible, based on testers experience.

12 Yes As much as possible, based on testers experience.

Table 18: Reuse of test cases from old projects.

B Combined strategy for high-level tests
Coordination between different high-level tests (system, acceptance, production etc). Coordi-
nated strategy put in writing. Coordinated strategy influences explicit test strategies for each
level. Deviations from the test strategies are reported.

C Combined strategy for high-level tests and low-level tests or evaluation
Coordination between high-level tests and low-level tests or evaluation. Coordinated strat-
egy put in writing. Coordinated strategy influences explicit test strategies for each level.
Deviations from the test strategies are reported.

D Combined strategy for all test and evaluation levels
Coordination between high-level tests, low-level tests and evaluation. Coordinated strategy
put in writing. Coordinated strategy influences explicit test strategies for each level. Devia-
tions from the test strategies are reported.

0.2 Life-cycle Model - key area 2

A Planning, Specification, Execution
For the testing, at least the phases planning, specification, and execution are distinguishable.

B Planning, Preparation, Specification, Execution, Completion
For the testing, at least the phases planning, preparation, specification, execution, and com-
pletion are distinguishable.

’ org. \ TC Storage

Do not keep test cases

Database

Paper based test specifications

Paper based test specifications

Paper based, version controlled, test specifications.
Paper based, version controlled, test specifications.
Paper based, version controlled, test specifications.
Database

Paper based test specifications

Paper based test specifications

Paper based, version controlled, test specifications.
Database

O 0| | O O x| W DN+~

—| =
el]

—_
(\]

Table 19: Means of test case storage.

0.3 Moment of Involvement - key area 3

A Completion of test basis
The testing phase starts simultaneously with or earlier than the completion of the test basis
(specifications).

B Start of test basis
The testing phase starts simultaneously with or earlier than the start of the test basis (speci-
fications).

C Start of requirements definition
The testing phase starts simultaneously with or earlier than the phase in which the require-
ments are defined.

D Project initiation
When the project is started the activity testing is also started.

0.4 Test Specification Techniques - key area 5

A Informal techniques
Test cases are specified by means of a described technique. The technique requires the test
cases to contain at least starting situation, action, and expected results.

organization
Item 1 |2]3[4][5]6] 7][8]9]10] 11 [12
Sensible Name N/A | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes Yes
Unique Id N/A | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | indirect | No
Revision N/A | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | indirect | Yes
Priority N/A | Yes | Yes | No | No | No | Yes | Yes | Yes | Yes No No
Author N/A | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes Yes
Goal N/A | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes No Yes
Purpose N/A | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes No Yes
Configuration Reqs | N/A | Yes | No | Yes | No | Yes | Yes | Yes | Yes | Yes Yes Yes
Precondition N/A | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes No Yes
Action(s) N/A | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes
Result(s) N/A | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes
Postcondition N/A | No | No | No | No | No | Yes | No | Yes | Yes No Yes
Type of Test Case | N/A | Yes | No | No | Yes | Yes | Yes | Yes | No | Yes Yes No
TC Passing Criteria | N/A | No | No | Yes | No | Yes | No | No | No | Yes No Yes

Table 20: Contents of stored test cases.

Formal techniques

In addition to informal techniques, formal techniques are also used, providing unambiguous
ways of getting from test basis to test cases. Test coverage relative to the test basis can be
determined. The testware is reusable.

0.5 Metrics - key area 7

A

Project metrics (product)

Project input metrics are recorded, e.g., used resources, performed activities, size, and com-
plexity of tested system. Project output metrics are recorded e.g., test cases, test progress,
and number of defects. Metrics are used in test reporting.

Project metrics (process)

At least two of the following metrics should be monitored: Defect find-effectiveness, defect
find-efficiency, test coverage level, testware defects, and perception of quality. Metrics are
used in test reporting.

System metrics
The metrics from level A and B are recorded also for development, maintenance and pro-

organization

Type of Metric 1 [2[3[4][5]6]7][8]9]10]11] 12
used resources N/A | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | N/A
performed activities N/A | No | Yes | Yes | No | Yes | Yes | No | No | Yes | Yes | N/A
size and complexity N/A | Yes | Yes | Yes | No | No | Yes | No | No | No | No | N/A
of tested system

test products N/A | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | No | No | N/A
test progress N/A | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | N/A
number of defects N/A | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | N/A
defect find-effectiveness N/A | Yes | No | Yes | No | No | No | No | Yes | No | No | N/A
defect find-efficiency N/A | No | No | Yes | No | No | Yes | Yes | No | No | No | N/A
test coverage N/A | No | Yes | Yes | No | Yes | Yes | No | No | Yes | No | N/A
testware defects N/A | No | No | Yes | No | No | No | No | No | Yes | No | N/A
perception of quality N/A | No | No | Yes | No | No | Yes | Yes | Yes | No | No | N/A
found faults in production | N/A | Yes | No | No | No | Yes | No | Yes | No | Yes | Yes | N/A
effectiveness of maintenance | N/A | No | No | No | No | Yes | No | No | No | No | Yes | N/A
efficiency of maintenance N/A | No | No | No | No | Yes | No | No | No | No | Yes | N/A
collection and comparison N/A | No | No | Yes | No | No | No | Yes | No | Yes | Yes | N/A
of metrics across

different products

Table 21: Types of collected and used metrics.

duction. Metrics are used in the assessment of the effectiveness and efficiency of the test

process.

D Organization metrics (>1 system)
Organization-wide mutually comparable metrics are maintained for the already mentioned
data. Metrics are used in assessing the effectiveness and efficiency of the separated test
processes, to achieve an optimization of the generic test methodology and future test process.

0.6 Test Functions and Training - key area 12

A Test managers and testers
The test personnel consists of at least a test manager and some testers.
responsibilities are defined. The test personnel has specific test training. For the acceptance

testing, expertise in the subject matter is available to the testers.

The tasks and

organization

Test Phase 3/4[5]6]7[8]9][11]12
Pre-execution (%) | 10 | 35| 0 [10| 5 [40 |10 [20| O
component (%) O |55 |5013|0|10[10]0
integration (%) 50 0300|010 0] 0]20
system (%) 2514060 | 40 | 60 | 35 | 10 | 60 | 80
acceptance (%) 0105 |0]|5 |15/7010] 0

Table 22: Relative amount of testing across different test phases. Orgs 3 and 4 have some field
testing in addition to the reported data.

organization
1]/2[3[4]|5[6]7]|8]9][10a|10b]11]12
Planning (%) 51201 6 |10 5 | 10|10 30|20 | 10 10 | 10 | 20
Preparation (%) | 10 | 40 | 28 | 50 | 15 | 60 | 20 | 30 | 60 | 10 70 | 50 | 20
Execution (%) 85140166 |40 | 80 | 30| 70 |40 | 20| 80 20 | 40 | 60

Table 23: Relative amount of time spent in system testing on planning, preparation and execution.

B Methodical, Technical, and Functional support of test process, testware, and in-
frastructure
Methodical support is a separate activity. Technical support is a separate activity. Functional
support is a separate activity. Management of test process is a separate activity. Management
of testware is a separate activity. Management of test infrastructure is a separate activity.
The responsible persons have sufficient knowledge. Time for these activities is planned.

C Formal internal quality assurance
An internal QA plan for testing is formulated. The QA person has no other tasks in the test
team. The results of the QA activities are used for further improvement of the test process.
The QA person has sufficient knowledge and experience.

0.7 Unused key areas

The following key areas (number and name) were unused in this study.
4 Estimating and Planning
6 Static Test Techniques

8 Test Tools

organization

key-area 2‘3‘4‘5‘6\7‘8‘9‘10 1‘12
1. Test Strategy (A-D) -/ -|B|-|-/AIB|A|C| - | -
2. Life-cycle Model (A-B) AJ/AA|-|A/AB|A|A| - | -
3. Moment of Involvement (A-D) cC/|C|/D|/A|C|/D|C|D|D D
5. Test Specification Techniques (A-B) -|A|B|-|AJA|B|A|A| - | -
7. Metrics (A-D) AJA|B|-|A|B|A|JA|A | - | -
12. Test Functions and Training (A-C) -JA|/B|-|ABAJA|A| - | -

Table 24: Partial TPI assessment of the surveyed companies

9 Test Environment

10 Office Environment

11 Commitment and Motivation

13 Scope of Methodology

14 Communication

15 Reporting

16 Defect Management

17 Testware Management

18 Test Process Management

19 Evaluation

20 Low-level Testing

