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Abstract. Clustering suffers from the curse of dimensionality, and similarity func-
tions that use all input features with equal relevance may not be effective. We
introduce an algorithm that discovers clusters in subspaces spanned by different
combinations of dimensions via local weightings of features. This approach avoids the
risk of loss of information encountered in global dimensionality reduction techniques,
and does not assume any data distribution model. Our method associates to each
cluster a weight vector, whose values capture the relevance of features within the
corresponding cluster. We experimentally demonstrate the gain in perfomance our
method achieves with respect to competitive methods, using both synthetic and real
datasets. In particular, our results show the feasibility of the proposed technique to
perform simultaneous clustering of genes and conditions in gene expression data,
and clustering of very high dimensional data such as text data.

Keywords: subspace clustering, dimensionality reduction, local feature relevance,
gene expression data, text data.

1. Introduction

The clustering problem concerns the discovery of homogeneous groups
of data according to a certain similarity measure. It has been studied
extensively in statistics (Arabie and Hubert, 1996), machine learning
(Cheeseman and Stutz, 1996; Michalski and Stepp, 1996), and database
communities (Ng and Han, 1994; Ester et al., 1995; Zhang et al., 1996).

Given a set of multivariate data, (partitional) clustering finds a par-
tition of the points into clusters such that the points within a cluster
are more similar to each other than to points in different clusters. The
popular K-means or K-medoids methods compute one representative
point per cluster, and assign each object to the cluster with the closest
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representative, so that the sum of the squared differences between the
objects and their representatives is minimized. Finding a set of repre-
sentative vectors for clouds of multi-dimensional data is an important
issue in data compression, signal coding, pattern classification, and
function approximation tasks.

Clustering suffers from the curse of dimensionality problem in high
dimensional spaces. In high dimensional spaces, it is highly likely that,
for any given pair of points within the same cluster, there exist at least
a few dimensions on which the points are far apart from each other.
As a consequence, distance functions that equally use all input features
may not be effective.

Furthermore, several clusters may exist in different subspaces,
comprised of different combinations of features. In many real world
problems, in fact, some points are correlated with respect to a given
set of dimensions, and others are correlated with respect to different
dimensions. Each dimension could be relevant to at least one of the
clusters.

The problem of high dimensionality could be addressed by requiring
the user to specify a subspace (i.e., subset of dimensions) for cluster
analysis. However, the identification of subspaces by the user is an error-
prone process. More importantly, correlations that identify clusters in
the data are likely not to be known by the user. Indeed, we desire such
correlations, and induced subspaces, to be part of the findings of the
clustering process itself.

An alternative solution to high dimensional settings consists in
reducing the dimensionality of the input space. Traditional feature
selection algorithms select certain dimensions in advance. Methods such
as Principal Component Analysis (PCA) (or Karhunen-Loeve transfor-
mation) (Duda and Hart, 1973; Fukunaga, 1990) transform the original
input space into a lower dimensional space by constructing dimensions
that are linear combinations of the given features, and are ordered
by nonincreasing variance. While PCA may succeed in reducing the
dimensionality, it has major drawbacks. The new dimensions can be
difficult to interpret, making it hard to understand clusters in relation
to the original space. Furthermore, all global dimensionality reduction
techniques (like PCA) are not effective in identifying clusters that may
exist in different subspaces. In this situation, in fact, since data across
clusters manifest different correlations with features, it may not always
be feasible to prune off too many dimensions without incurring a loss of
crucial information. This is because each dimension could be relevant
to at least one of the clusters.

These limitations of global dimensionality reduction techniques sug-
gest that, to capture the local correlations of data, a proper feature
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selection procedure should operate locally in input space. Local feature
selection allows to embed different distance measures in different re-
gions of the input space; such distance metrics reflect local correlations
of data. In this paper we propose a soft feature selection procedure
that assigns (local) weights to features according to the local corre-
lations of data along each dimension. Dimensions along which data
are loosely correlated receive a small weight, that has the effect of
elongating distances along that dimension. Features along which data
are strongly correlated receive a large weight, that has the effect of
constricting distances along that dimension. Figure 1 gives a simple
example. The left plot depicts two clusters of data elongated along
the x and y dimensions. The right plot shows the same clusters, where
within-cluster distances between points are computed using the respec-
tive local weights generated by our algorithm. The weight values reflect
local correlations of data, and reshape each cluster as a dense spherical
cloud. This directional local reshaping of distances better separates
clusters, and allows for the discovery of different patterns in different
subspaces of the original input space.
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Figure 1. (Left) Clusters in original input space. (Right) Clusters transformed by
local weights.

1.1. Our Contribution

An earlier version of this work appeared in (Domeniconi et al., 2004).
However, this paper is a substantial extension, which includes (as new
material) a new derivation and motivation of the proposed algorithm,
a proof of convergence of our approach, a variety of experiments, com-
parisons, and analysis using high-dimensional text and gene expression
data. Specifically, the contributions of this paper are as follows:

1. We formalize the problem of finding different clusters in different
subspaces. Our algorithm (Locally Adaptive Clustering, or LAC)
discovers clusters in subspaces spanned by different combinations
of dimensions via local weightings of features. This approach avoids
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the risk of loss of information encountered in global dimensionality
reduction techniques.

2. The output of our algorithm is twofold. It provides a partition of
the data, so that the points in each set of the partition constitute
a cluster. In addition, each set is associated with a weight vector,
whose values give information of the degree of relevance of features
for each partition.

3. We formally prove that our algorithm converges to a local minimum
of the associated error function, and experimentally demonstrate
the gain in perfomance we achieve with our method. In particular,
our results show the feasibility of the proposed technique to perform
simultaneous clustering of genes and conditions in gene expression
data, and clustering of very high dimensional data such as text
data.

2. Related Work

Local dimensionality reduction approaches for the purpose of efficiently
indexing high dimensional spaces have been recently discussed in the
database literature (Keogh et al., 2001; Chakrabarti and Mehrotra,
2000; Thomasian et al., 1998). Applying global dimensionality re-
duction techniques when data are not globally correlated can cause
significant loss of distance information, resulting in a large number
of false positives and hence a high query cost. The general approach
adopted by the authors is to find local correlations in the data, and
perform dimensionality reduction on the locally correlated clusters
individually. For example, in (Chakrabarti and Mehrotra, 2000), the
authors first construct spacial clusters in the original input space using
a simple tecnique that resembles K-means. Principal component analy-
sis is then performed on each spatial cluster individually to obtain the
principal components.

In general, the efficacy of these methods depends on how the clus-
tering problem is addressed in the first place in the original feature
space. A potential serious problem with such techniques is the lack of
data to locally perform PCA on each cluster to derive the principal
components. Moreover, for clustering purposes, the new dimensions
may be difficult to interpret, making it hard to understand clusters in
relation to the original space.

The problem of finding different clusters in different subspaces of the
original input space has been addressed in (Agrawal et al., 1998). The
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authors use a density based approach to identify clusters. The algorithm
(CLIQUE) proceeds from lower to higher dimensionality subspaces and
discovers dense regions in each subspace. To approximate the density
of the points, the input space is partitioned into cells by dividing each
dimension into the same number ξ of equal length intervals. For a
given set of dimensions, the cross product of the corresponding intervals
(one for each dimension in the set) is called a unit in the respective
subspace. A unit is dense if the number of points it contains is above
a given threshold τ . Both ξ and τ are parameters defined by the user.
The algorithm finds all dense units in each k-dimensional subspace by
building from the dense units of (k−1)-dimensional subspaces, and then
connects them to describe the clusters as union of maximal rectangles.

While the work in (Agrawal et al., 1998) successfully introduces a
methodology for looking at different subspaces for different clusters, it
does not compute a partitioning of the data into disjoint groups. The
reported dense regions largely overlap, since for a given dense region all
its projections on lower dimensionality subspaces are also dense, and
they all get reported. On the other hand, for many applications such
as customer segmentation and trend analysis, a partition of the data is
desirable since it provides a clear interpretability of the results.

Recently (Procopiuc et al., 2002), another density-based projective
clustering algorithm (DOC/FastDOC) has been proposed. This ap-
proach requires the maximum distance between attribute values (i.e.
maximum width of the bounding hypercubes) as parameter in input,
and pursues an optimality criterion defined in terms of density of each
cluster in its corresponding subspace. A Monte Carlo procedure is then
developed to approximate with high probability an optimal projective
cluster. In practice it may be difficult to set the parameters of DOC,
as each relevant attribute can have a different local variance.

(Dy and Brodley, 2000) also addresses the problem of feature se-
lection to find clusters hidden in high dimensional data. The authors
search through feature subset spaces, evaluating each subset by first
clustering in the corresponding subspace, and then evaluating the re-
sulting clusters and feature subset using the chosen feature selection
criterion. The two feature selection criteria investigated are the scat-
ter separability used in discriminant analysis (Fukunaga, 1990), and
a maximum likelihood criterion. A sequential forward greedy strategy
(Fukunaga, 1990) is employed to search through possible feature sub-
sets. We observe that dimensionality reduction is performed globally
in this case. Therefore, the technique in (Dy and Brodley, 2000) is
expected to be effective when a dataset contains some relevant features
and some irrelevant (noisy) ones, across all clusters.
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The problem of finding different clusters in different subspaces is also
addressed in (Aggarwal et al., 1999). The proposed algorithm (PRO-
jected CLUStering) seeks subsets of dimensions such that the points
are closely clustered in the corresponding spanned subspaces. Both the
number of clusters and the average number of dimensions per cluster
are user-defined parameters. PROCLUS starts with choosing a random
set of medoids, and then progressively improves the quality of medoids
by performing an iterative hill climbing procedure that discards the
’bad’ medoids from the current set. In order to find the set of dimen-
sions that matter the most for each cluster, the algorithm selects the
dimensions along which the points have the smallest average distance
from the current medoid. ORCLUS (Aggarwal and Yu, 2000) modifies
the PROCLUS algorithm by adding a merging process of clusters, and
selecting for each cluster principal components instead of attributes.

In contrast to the PROCLUS algorithm, our method does not re-
quire to specify the average number of dimensions to be kept per cluster.
For each cluster, in fact, all features are taken into consideration, but
properly weighted. The PROCLUS algorithm is more prone to loss of
information if the number of dimensions is not properly chosen. For
example, if data of two clusters in two dimensions are distributed as
in Figure 1 (Left), PROCLUS may find that feature x is the most
important for cluster 0, and feature y is the most important for cluster
1. But projecting cluster 1 along the y dimension doesn’t allow to
properly separate points of the two clusters. We avoid this problem
by keeping both dimensions for both clusters, and properly weighting
distances along each feature within each cluster.

The problem of feature weighting in K-means clustering has been
addressed in (Modha and Spangler, 2003). Each data point is repre-
sented as a collection of vectors, with “homogeneous” features within
each measurement space. The objective is to determine one (global)
weight value for each feature space. The optimality criterion pursued
is the minimization of the (Fisher) ratio between the average within-
cluster distortion and the average between-cluster distortion. However,
the proposed method does not learn optimal weights from the data.
Instead, different weight value combinations are ran through a K-
means-like algorithm, and the combination that results in the lowest
Fisher ratio is chosen. We also observe that the weights as defined in
(Modha and Spangler, 2003) are global, in constrast to ours which are
local to each cluster.

Recently (Dhillon et al., 2003), a theoretical formulation of sub-
space clustering based on information theory has been introduced. The
data contingency matrix (e.g., document-word co-occurrence matrix) is
seen as an empirical joint probability distribution of two discrete ran-



Locally Adaptive Metrics for Clustering High Dimensional Data 7

dom variables. Subspace clustering is then formulated as a constrained
optimization problem where the objective is to maximize the mutual
information between the clustered random variables.

Generative approaches have also been developed for local dimen-
sionality reduction and clustering. The approach in (Ghahramani and
Hinton, 1996) makes use of maximum likelihood factor analysis to
model local correlations between features. The resulting generative
model obeys the distribution of a mixture of factor analyzers. An
expectation-maximization algorithm is presented for fitting the param-
eters of the mixture of factor analyzers. The choice of the number of
factor analyzers, and the number of factors in each analyzer (that drives
the dimensionality reduction) remain an important open issue for the
approach in (Ghahramani and Hinton, 1996).

(Tipping and Bishop, 1999) extends the single PCA model to a
mixture of local linear sub-models to capture nonlinear structure in
the data. A mixture of principal component analyzers model is derived
as a solution to a maximum-likelihood problem. An EM algorithm is
formulated to estimate the parameters.

While the methods in (Ghahramani and Hinton, 1996; Tipping and
Bishop, 1999), as well as the standard mixture of Gaussians technique,
are generative and parametric, our approach can be seen as an attempt
to directly estimate from the data local correlations between features.
Furthermore, both mixture models in (Ghahramani and Hinton, 1996;
Tipping and Bishop, 1999) inherit the soft clustering component of the
EM update equations. On the contrary, LAC computes a partitioning
of the data into disjoint groups. As previously mentioned, for many
data mining applications a partition of the data is desirable since it
provides a clear interpretability of the results. We finally observe that,
while mixture of Gaussians models, with arbitrary covariance matrices,
could in principle capture local correlations along any directions, lack
of data to locally estimate full covariance matrices in high dimensional
spaces is a serious problem in practice.

2.1. Biclustering of Gene Expression Data

Microarray technology is one of the latest breakthroughs in experi-
mental molecular biology. Gene expression data are generated by DNA
chips and other microarray techniques, and they are often presented as
matrices of expression levels of genes under different conditions (e.g.,
environment, individuals, tissues). Each row corresponds to a gene, and
each column represents a condition under which the gene is developed.

Biologists are interested in finding set of genes showing strikingly
similar up-regulation and down-regulation under a set of conditions.
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To this extent, recently the concept of bicluster has been introduced
(Cheng and Church, 2000). A bicluster is a subset of genes and a sub-
set of conditions with a high similarity score. A particular score that
applies to expression data is the mean squared residue score (Cheng
and Church, 2000). Let I and J be subsets of genes and experiments
respectively. The pair (I, J) specifies a submatrix AIJ with a mean
squared residue score defined as follows:

H(I, J) =
1

|I||J |
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2, (1)

where aiJ = 1
|J |

∑
j∈J aij , aIj = 1

|I|
∑

i∈I aij, and aIJ =
1

|I||J |
∑

i∈I,j∈J aij . They represent the row and column means, and the
mean of the submatrix, respectively. The lowest score H(I, J) = 0
indicates that the gene expression levels fluctuate in unison. The aim
is then to find biclusters with low mean squared residue score (below a
certain threshold).

We observe that the mean squared residue score is minimized when
subsets of genes and experiments (or dimensions) are chosen so that the
gene vectors (i.e., rows of the resulting bicluster) are close to each other
with respect to the Euclidean distance. As a result, the LAC algorithm,
and other subspace clustering algorithms, are well suited to perform
simultaneous clustering of both genes and conditions in a microarray
data matrix. (Wang et al., 2002) introduces an algorithm (pCluster) for
clustering similar patterns, that has been applied to DNA microarray
data of a type of yeast. The pCluster model optimizes a criterion that is
different from the mean squared residue score, as it looks for coherent
patterns on a subset of dimensions (e.g., in an identified subspace,
objects reveal larger values for the second dimension than for the first).

3. Locally Adaptive Metrics for Clustering

We define what we call weighted cluster. Consider a set of points in
some space of dimensionality N . A weighted cluster C is a subset of
data points, together with a vector of weights w = (w1, . . . , wN ), such
that the points in C are closely clustered according to the L2 norm
distance weighted using w. The component wj measures the degree of
correlation of points in C along feature j. The problem becomes now
how to estimate the weight vector w for each cluster in the dataset.

In this setting, the concept of cluster is not based only on points, but
also involves a weighted distance metric, i.e., clusters are discovered in
spaces transformed by w. Each cluster is associated with its own w,
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that reflects the correlation of points in the cluster itself. The effect of
w is to transform distances so that the associated cluster is reshaped
into a dense hypersphere of points separated from other data.

In traditional clustering, the partition of a set of points is induced
by a set of representative vectors, also called centroids or centers. The
partition induced by discovering weighted clusters is formally defined
as follows.
Definition: Given a set S of D points x in the N -dimensional Eu-
clidean space, a set of k centers {c1, . . . , ck}, cj ∈ �N , j = 1, . . . , k,
coupled with a set of corresponding weight vectors {w1, . . . ,wk},
wj ∈ �N , j = 1, . . . , k, partition S into k sets {S1, . . . , Sk}:

Sj = {x|(
N∑

i=1

wji(xi − cji)2)1/2 < (
N∑

i=1

wli(xi − cli)2)1/2,∀l �= j}, (2)

where wji and cji represent the ith components of vectors wj and cj

respectively (ties are broken randomly).
The set of centers and weights is optimal with respect to the

Euclidean norm, if they minimize the error measure:

E1(C,W ) =
k∑

j=1

N∑

i=1

(wji
1

|Sj|
∑

x∈Sj

(cji − xi)2) (3)

subject to the constraints
∑

i wji = 1 ∀j. C and W are (N×k) matrices
whose column vectors are cj and wj respectively, i.e. C = [c1 . . . ck] and
W = [w1 . . .wk]. For shortness of notation, we set

Xji =
1

|Sj|
∑

x∈Sj

(cji − xi)2,

where |Sj| is the cardinality of set Sj . Xji represents the average dis-
tance from the centroid cj of points in cluster j along dimension i. The
solution

(C∗,W ∗) = argmin(C,W )E1(C,W )

will discover one dimensional clusters: it will put maximal (i.e., unit)
weight on the feature with smallest dispersion Xji within each cluster
j, and zero weight on all other features. Our objective, instead, is to
find weighted multidimensional clusters, where the unit weight gets
distributed among all features according to the respective dispersion
of data within each cluster. One way to achieve this goal is to add
the regularization term

∑N
i=1 wjilogwji

1, which represents the nega-
tive entropy of the weight distribution for each cluster (Friedman and

1 Different regularization terms lead to different weighting schemes.
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Meulman, 2002). It penalizes solutions with maximal (unit) weight on
the single feature with smallest dispersion within each cluster. The
resulting error function is

E2(C,W ) =
k∑

j=1

N∑

i=1

(wjiXji + hwjilogwji) (4)

subject to the same constraints
∑

i wji = 1 ∀j. The coefficient h ≥ 0 is a
parameter of the procedure; it controls the relative differences between
feature weights. In other words, h controls how much the distribution of
weight values will deviate from the uniform distribution. We can solve
this constrained optimization problem by introducing the Lagrange
multipliers λj (one for each constraint), and minimizing the resulting
(unconstrained now) error function

E(C,W ) =
k∑

j=1

N∑

i=1

(wjiXji + hwjilogwji) +
k∑

j=1

λj(1 −
N∑

i=1

wji) (5)

For a fixed partition P and fixed cji, we compute the optimal w∗
ji by

setting ∂E
∂wji

= 0 and ∂E
∂λj

= 0. We obtain:

∂E

∂wji
= Xji + hlogwji + h − λj = 0 (6)

∂E

∂λj
= 1 −

N∑

i=1

wji = 0 (7)

Solving equation (6) with respect to wji we obtain hlogwji = −Xji +
λj − h. Thus:

wji = exp(−Xji/h + (λj/h) − 1) = exp(−Xji/h)exp((λj/h) − 1)

=
exp(−Xji/h)
exp(1 − λj/h)

.

Substituting this expression in equation (7):

∂E

∂λj
= 1−

N∑

i=1

exp(−Xji/h)
exp(1 − λj/h)

= 1− 1
exp(−λj/h)

N∑

i=1

exp((−Xji/h) − 1) = 0.

Solving with respect to λj we obtain

λj = −hlog
N∑

i=1

exp((−Xji/h) − 1).



Locally Adaptive Metrics for Clustering High Dimensional Data 11

Thus, the optimal w∗
ji is

w∗
ji =

exp(−Xji/h)
exp(1 + log(

∑N
i=1 exp((−Xji/h) − 1)))

=
exp(−Xji/h)

∑N
i=1 exp(−Xji/h)

(8)

For a fixed partition P and fixed wji, we compute the optimal c∗ji by
setting ∂E

∂cji
= 0. We obtain:

∂E

∂cji
= wji

1
|Sj |2

∑

x∈Sj

(cji − xi) =
2wji

|Sj | (|Sj |cji −
∑

x∈Sj

xi) = 0.

Solving with respect to cji gives

c∗ji =
1

|Sj |
∑

x∈Sj

xi. (9)

Solution (8) puts increased weight on features along which the disper-
sion Xji is smaller, within each cluster. The degree of this increase
is controlled by the value h. Setting h = 0, places all weight on the
feature i with smallest Xji, whereas setting h = ∞ forces all fea-
tures to be given equal weight for each cluster j. By setting E0(C) =
1
N

∑k
j=1

∑N
i=1 Xji, we can formulate this result as follows.

Proposition: When h = 0, the error function E2 (4) reduces to E1

(3); when h = ∞, the error function E2 reduces to E0.

4. Locally Adaptive Clustering Algorithm

We need to provide a search strategy to find a partition P that identifies
the solution clusters. Our approach progressively improves the quality
of initial centroids and weights, by investigating the space near the
centers to estimate the dimensions that matter the most. Specifically,
we proceed as follows.

We start with well-scattered points in S as the k centroids: we
choose the first centroid at random, and select the others so that they
are far from one another, and from the first chosen center. We initially
set all weights to 1/N . Given the initial centroids cj , for j = 1, . . . , k,
we compute the corresponding sets Sj as given in the definition above.
We then compute the average distance Xji along each dimension from
the points in Sj to cj . The smaller Xji is, the larger is the correlation
of points along dimension i. We use the value Xji in an exponential
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weighting scheme to credit weights to features (and to clusters), as
given in equation (8). The exponential weighting is more sensitive
to changes in local feature relevance (Bottou and Vapnik, 1992) and
gives rise to better performance improvement. Note that the technique
is centroid-based because weightings depend on the centroid. The
computed weights are used to update the sets Sj, and therefore the
centroids’ coordinates as given in equation (9). The procedure is
iterated until convergence is reached. The resulting algorithm, that we
call LAC (Locally Adaptive Clustering), is summarized in the following.

Input: D points x ∈ RN , k, and h.

1. Start with k initial centroids c1, c2, . . . , ck;

2. Set wji = 1/N , for each centroid cj , j = 1, . . . , k and each feature
i = 1, . . . , N ;

3. For each centroid cj , and for each point x:

− Set Sj = {x|j = arg minl Lw(cl,x)},
where Lw(cl,x) = (

∑N
i=1 wli(cli − xi)2)1/2;

4. Compute new weights.
For each centroid cj , and for each feature i:

− Set Xji =
∑

x∈Sj
(cji − xi)2/|Sj |;

Set wji = exp(−Xji/h)∑N

l=1
exp(−Xjl/h)

;

5. For each centroid cj , and for each point x:

− Recompute Sj = {x|j = arg minl Lw(cl,x)};
6. Compute new centroids.

Set cj =
∑

x
x1Sj

(x)∑
x

1Sj
(x)

, for each j = 1, . . . , k, where 1S(.) is the

indicator function of set S;

7. Iterate 3,4,5,6 until convergence.

The sequential structure of the LAC algorithm is analogous to the
mathematics of the EM algorithm (Dempster et al., 1977; Wu, 1983).
The hidden variables are the assignments of the points to the centroids.
Step 3 constitutes the E step: it finds the values of the hidden variables
Sj given the previous values of the parameters wji and cji. The following
step (M step) consists in finding new matrices of weights and centroids
that minimize the error function with respect to the current estimation
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of hidden variables. It can be shown that the LAC algorithm converges
to a local minimum of the error function (5). The running time of one
iteration is O(kDN).

We point out that the LAC algorithm can identify a degenerate
solution, i.e. a partition with empty clusters, during any iteration. Al-
though we didn’t encounter this problem in our experiments, strategies
developed in the literature, such as the insertion strategy (Mladenović
and Brimberg, 1996), can be easily incorporated in our algorithm. In
particular, we can proceed as follows: if the number of non-empty clus-
ters in the current iteration of LAC is l < k, we can identify the l points
with the leargest (weighted) distance to their cluster’s centroid, and
form l new clusters with a single point in each of them. The resulting
non-degenerate solution is clearly better than the degenerate one since
the selected l points give the largest contributions to the cost function,
but it could possibly be improved. Therefore, the LAC iterations can
continue until convergence to a non-degenerate solution.

5. Convergence of the LAC Algorithm

In light of the remark made above on the analogy of LAC with EM
(Wu, 1983), here we prove that our algorithm converges to a solution
that is a local minimum of the error function (5). To obtain this result
we need to show that the error function decreases at each iteration of
the algorithm. By derivation of equations (8) and (9), Step 4 and Step
6 of the LAC algorithm perform a gradient descent over the surface of
the error function (5). We make use of this observation to show that
each iteration of the algorithm decreases the error function. We prove
the following theorem.
Theorem. The LAC algorithm converges to a local minimum of the
error function (5).
Proof. For a fixed partition P and fixed cji, the optimal w′

ji obtained
by setting ∂E

∂wji
= 0 and ∂E

∂λj
= 0 is:

w′
ji =

exp(−Xji/h)
∑N

l=1 exp(−Xjl/h)
(10)

as in Step 4 of the LAC algorithm.
For a fixed partition P and fixed wji, the optimal c′ji obtained by

setting ∂E
∂cji

= 0 is:

c′ji =
1

|Sj |
∑

x∈Sj

xi (11)
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as in Step 6 of the LAC algorithm.
The algorithm consists in repeatedly replacing wji and cji with w′

ji
and c′ji using equations (10) and (11), respectively. The value of the
error function E at completion of each iteration is EP1(C

′,W ′), where
we explicit the dependence of E on the partition of points P1 computed
in Step 5 of the algorithm. C ′ and W ′ are the matrices of the newly
computed centroids and weights. Since the new partition P ′ computed
in Step 3 of the successive iteration is by definition the best assignment
of points x to the centroids c′ji according to the weighted Euclidean
distance with weights w′

ji, we have the following inequality:

EP ′(C ′,W ′) − EP1(C
′,W ′) ≤ 0 (12)

Using this result, and the identities E(C ′,W ′) = EP ′(C ′,W ′) and
E(C,W ) = EP (C,W ), we can derive the following inequality:

E(C ′,W ′) − E(C,W ) = EP ′(C ′,W ′) − EP1(C
′,W ′)

+ EP1(C
′,W ′) − EP (C,W )

≤ EP1(C
′,W ′) − EP (C,W ) ≤ 0

where the last inequality is derived by using the definitions of w′
ji and

c′ji.
Thus, each iteration of the algorithm decreases the lower bounded

error function E (5) until the error reaches a fixed point where condi-
tions w∗′

j = w∗
j , c∗′j = c∗j ∀j are verified. The fixed points w∗

j and c∗j
give a local minimum of the error function E.

6. Experimental Evaluation

In our experiments we have designed five different simulated datasets to
compare the competitive algorithms under different conditions. Clus-
ters are distributed according to multivariate gaussians with different
mean and standard deviation vectors. We have tested problems with
two and three clusters up to 50 dimensions. For each problem, we
have generated five or ten training datasets, and for each of them an
independent test set. In the following we report accuracy and perfor-
mance results obtained via 5(10)-fold cross-validation comparing LAC,
PROCLUS, DOC, K-means, and EM (Dempster et al., 1977) (mixture
of Gaussians with diagonal - EM(d) - and full - EM(f) - covariance
matrices). Among the subspace clustering techniques available in the
literature, we chose PROCLUS (Aggarwal et al., 1999) and DOC (Pro-
copiuc et al., 2002) since, as the LAC algorithm, they also compute a
partition of the data. On the contrary, the CLIQUE technique (Agrawal
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et al., 1998) allows overlapping between clusters, and thus its results
are not directly comparable with ours.

Error rates are computed according to the confusion matrices that
are also reported. For LAC we tested the integer values from 1 to 11
for the parameter 1/h, and report the best error rates achieved. The
k centroids are initialized by choosing well-scattered points among the
given data. The mean vectors and covariance matrices provided by
K-means are used to initialize the parameters of EM.

6.1. Simulated Data

1. Example1. The dataset consists of N = 2 input features and k = 3
clusters. All three clusters are distributed according to multivariate
gaussians. Mean vector and standard deviations for one cluster are
(2, 0) and (4, 1) respectively. For the second cluster the vectors are
(10, 0) and (1, 4), and for the third are (18, 0) and (4, 1). Table I shows
the results for this problem. We generated 60000 data points, and
performed 10-fold cross-validation with 30000 training data and 30000
testing data.
2. Example2. This dataset consists of N = 30 input features and
k = 2 clusters. Both clusters are distributed according to multivariate
gaussians. Mean vector and standard deviations for one cluster are
(1, . . . , 1) and (10, 5, 10, 5, . . . , 10, 5), respectively. For the other cluster
the vectors are (2, 1, . . . , 1) and (5, 10, 5, 10, . . . , 5, 10). Table I shows
the results for this problem. We generated 10000 data points, and
performed 10-fold cross-validation with 5000 training and 5000 testing
data.
3. Example3. This dataset consists of N = 50 input features and
k = 2 clusters. Both clusters are distributed according to multivari-
ate gaussians. Mean vector and standard deviations for one cluster
are (1, . . . , 1) and (20, 10, 20, 10, . . . , 20, 10), respectively. For the other
cluster the vectors are (2, 1, . . . , 1) and (10, 20, 10, 20, . . . , 10, 20). Table
I shows the results for this problem. We generated 10000 data points,
and performed 10-fold cross-validation with 5000 training data and
5000 testing data.
4. Example4. This dataset consists of off-axis oriented clusters, with
N = 2 and k = 2. Figure 3 shows the distribution of the points for this
dataset. We generated 20000 data points, and performed 5-fold-cross-
validation with 10000 training data and 10000 testing data. Table I
shows the results.
5. Example5. This dataset consists again of off-axis oriented two di-
mensional clusters. This dataset contains three clusters, as Figure 4
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depicts. We generated 30000 data points, and performed 5-fold-cross-
validation with 15000 training data and 15000 testing data. Table I
shows the results.

6.2. Real Data

We used ten real datasets. The OQ-letter, Wisconsin breast cancer,
Pima Indians Diabete, and Sonar data are taken from the UCI Ma-
chine Learning Repository. The Image data set is obtained from the
MIT Media Lab. We used three high dimensional text datasets: Clas-
sic3, Spam2000, and Spam5996. The documents in each dataset were
preprocessed by eliminating stop words (based on a stop words list),
and stemming words to their root source. We use as feature values
for the vector space model the frequency of the terms in the corre-
sponding document. The Classic3 dataset is a collection of abstracts
from three categories: MEDLINE (abstracts from medical journals),
CISI (abstracts from IR papers), CRANFIELD (abstracts from aero-
dynamics papers). The Spam data belong to the Email-1431 dataset.
This dataset consists of emails falling into three categories: conference
(370), jobs (272), and spam (786). We run two different experiments
with this dataset. In one case we reduce the dimensionality to 2000
terms (Spam2000), in the second case to 5996 (Spam5996). In both
cases we consider two clusters by merging the conference and jobs mails
into one group (non-spam). The characteristics of these eight datasets
are as follows. OQ: D = 1536, N = 16, k = 2; Breast: D = 683,
N = 9, k = 2; Pima: D = 768, N = 8, k = 2; Image: D = 640, N = 16,
k = 15; Sonar: D = 208, N = 60, k = 2; Classic3: D = 3893, N = 3302,
k = 3; Spam2000: D = 1428, N = 2000, k = 2; Spam5996: D = 1428,
N = 5996, k = 2. To study whether our projected clustering algorithm
is applicable to gene expression profiles, we used two datasets: the B-
cell lymphoma (Alizadeh et al., 2000) and the DNA microarray of gene
expression profiles in hereditary breast cancer (Hedenfalk et al., 2001).
The lymphoma dataset contains 96 samples, each with 4026 expression
values. We clustered the samples with the expression values of the
genes as attributes (4026 dimensions). The samples are categorized
into 9 classes according to the category of mRNA sample studied. We
used the class labels to compute error rates, according to the confusion
matrices. We also experiment our algorithm with a DNA microarray
dataset (Hedenfalk et al., 2001). The microarray contains expression
levels of 3226 genes under 22 conditions. We clustered the genes with
the expression values of the samples as attributes (22 dimensions). The
dataset is presented as a matrix: each row corresponds to a gene, and
each column represents a condition under which the gene is developed.
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Table I. Average error rates for simulated data.

LAC PROCLUS K-means DOC EM (d) EM (f)

Ex1 11.4±0.3 13.8±0.7 24.2±0.5 35.2± 2.2 5.1 ± 0.4 5.1 ± 0.4

Ex2 0.5±0.4 27.9±9.8 48.4±1.1 no clusters 0.6 ±0.3 0.8 ±0.3

Ex3 0.08±0.1 21.6±5.3 48.1±1.1 no clusters 0.0 ±0.1 25.5 ±0.2

Ex4 4.8±0.4 7.1±0.7 7.7±0.7 22.7± 5.9 4.8 ± 0.2 2.3 ± 0.2

Ex5 7.7±0.3 7.0±2.0 18.7±2.7 16.5± 3.9 6.0 ± 0.2 2.3 ± 0.2

Average 4.9 15.5 29.4 24.8 3.3 7.2

Biologists are interested in finding set of genes showing strikingly
similar up-regulation and down-regulation under a set of conditions.
Since class labels are not available for this dataset, we utilize the mean
squared residue score as defined in (1) to assess the quality of the
clusters detected by LAC and PROCLUS algorithms. The lowest score
value 0 indicates that the gene expression levels fluctuate in unison.
The aim is to find biclusters with low mean squared residue score (in
general, below a certain threshold).

Table II. Average number of iterations.

LAC PROCLUS K-means EM(d)

Ex1 7.2 6.7 16.8 22.4

Ex2 3.2 2.0 16.1 6.3

Ex3 3.0 4.4 19.4 6.0

Ex4 7.0 6.4 8.0 5.6

Ex5 7.8 9.8 15.2 27.6

Average 5.6 5.9 15.1 13.6

6.3. Results on Simulated Data

The performance results reported in Table I clearly demonstrate the
large gain in performance obtained by the LAC algorithm with respect
to PROCLUS and K-means with high dimensional data. The good
performance of LAC on Examples 4 and 5 shows that our algorithm is
able to detect clusters folded in subspaces not necessarily aligned with
the input axes. Figures 5 and 6 illustrate the results obtained with
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Table III. Dimensions selected by PROCLUS.

C0 C1 C2

Ex1 2,1 2,1 2,1

Ex2 8,30 19,15,21,1,27,23 -

Ex3 50,16 50,16,17,18,21,22,23,19,11,3 -

Ex4 1,2 2,1 -

Ex5 1,2 2,1 1,2
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Figure 2. Example2: Error rate of PROCLUS versus Average number of dimensions.

Table IV. Confusion matrices for Example1.

LAC C0 (input) C1 (input) C2 (input)

C0 (output) 8315 0 15

C1 (output) 1676 10000 1712

C2 (output) 9 0 8273

PROCLUS C0 (input) C1 (input) C2 (input)

C0 (output) 7938 0 7

C1 (output) 2057 10000 2066

C2 (output) 5 0 7927

K-means C0 (input) C1 (input) C2 (input)

C0 (output) 9440 4686 400

C1 (output) 411 3953 266

C2 (output) 149 1361 9334
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Table V. LAC: Weight values for Ex-
ample1.

Cluster Std1 Std2 w1 w2

C0 4 1 0.46 0.54

C1 1 4 0.99 0.01

C2 4 1 0.45 0.55

LAC and K-means, respectively, on Example 5. The large error rates
of K-means for the 30 and 50 dimensional datasets (Examples 2 and
3) show how ineffective a distance function that equally use all input
features can be in high dimensional spaces. Example 1, 2, and 3 offer
optimal conditions for EM(d); Example 4 and 5 are optimal for EM(f).
As a consequence, EM(d) and EM(f) provide best error rates in such
respective cases. Nevertheless, LAC gives error rates similar to EM(d)
under conditions which are optimal for the latter, especially in higher
dimensions. The large error rate of EM(f) for Example 3 shows the
difficulty of estimating full covariance matrices in higher dimensions.

PROCLUS requires the average number of dimensions per cluster
as parameter in input; its value has to be at least two. We have cross-
validated this parameter and report the best error rates obtained in
Table I. PROCLUS is able to select highly relevant features for datasets
in low dimensions, but fails to do so in higher dimensions, as the large
error rates for Examples 2 and 3 show. Table III shows the dimensions
selected by PROCLUS for each dataset and each cluster. Figure 2 plots
the error rate as a function of the average number of dimensions per
cluster, obtained by running PROCLUS on Example 2. The best error
rate (27.9%) is achieved in correspondence of the value four. The error
rate worsens for larger values of the average number of dimensions.
Figure 2 shows that the performance of PROCLUS is highly sensi-
tive to the value of its input parameter. If the average number of
dimensions is erroneously estimated, the performance of PROCLUS
significantly worsens. This can be a serious problem with real data,
when the required parameter value is most likely unknown.

We set the parameters of DOC as suggested in (Procopiuc et al.,
2002). DOC failed to find any clusters in the high dimensional examples.
It is particularly hard to set the input parameters of DOC, as local
variances of features are unknown in practice.

Table II shows the average number of iterations performed by LAC,
K-means, and EM(d) to achieve convergence, and by PROCLUS to
achieve the termination criterion. For each problem, the rate of con-
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vergence of LAC is superior to the rate of K-means: on Examples 1
through 5 the speed-ups are 2.3, 5.0, 6.5, 1.1, and 1.9 respectively. The
number of iterations performed by LAC and PROCLUS is close for
each problem, and the running time of an iteration of both algorithms
is O(kDN) (where k is the number of clusters, D is the number of data
points, and N the number of dimensions). The faster rate of conver-
gence achieved by the LAC algorithm with respect to K-means (and
EM(d)) is motivated by the exponential weighting scheme provided by
equation (8), which gives the optimal weight values w∗

ji. Variations of
the within-cluster dispersions Xji (along each dimension i) are expo-
nentially reflected into the corresponding weight values wji. Thus the
(exponential) weights are more sensitive (than quadratic or linear ones,
for example) to changes in local feature relevance. As a consequence, a
minimum value of the error function (5) can be reached in less iterations
than the corresponding unweighted cost function minimized by the
K-means algorithm.

To further test the accuracy of the algorithms, for each problem
we have computed the confusion matrices. The entry (i, j) in each
confusion matrix is equal to the number of points assigned to output
cluster i, that were generated as part of input cluster j. We also report
the average weight values per cluster obtained over the runs conducted
in our experiments. Results are reported in Tables IV-XI.

Tables V, IX, and XI show that there is a perfect correspondence
between the weight values of each cluster and the correlation patterns
of data within the same cluster. This is of great importance for ap-
plications that require not only a good partitioning of data, but also
information to what features are relevant for each partition.

As expected, the resulting weight values for one cluster depends on
the configurations of other clusters as well. If clusters have the same
standard deviation along one dimension i, they receive almost identical
weights for measuring distances along that feature. This is informative
of the fact that feature i is equally relevant for both partitions. On the
other hand, weight values are largely differentiated when two clusters
have different standard deviation values along the same dimension i,
implying different degree of relevance of feature i for the two partitions
(see for example Table V).

6.4. Results on Real Data

Table XII reports the error rates obtained on the nine real datasets
with class labels. For LAC we fixed the value of the parameter 1/h
to 9 (this value gave in general good results with the simulated data).
We ran PROCLUS with input parameter values from 2 to N for each
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dataset, and report the best error rate obtained in each case. For the
Lymphoma (4026 dimensions), Classic3 (3302 dimensions), Spam2000
(2000 dimensions), and Spam5996 (5996 dimensions) we tested several
input parameter values of PROCLUS, and found the best result at
3500, 350, 170, and 300 respectively. LAC gives the best error rate
in seven out of the nine datasets. LAC outperforms PROCLUS and
EM(d) in each dataset. EM does not perform well in general, and
particularly in higher dimensions. This is likely due to the non-Gaussian
distributions of real data. EM(f) (Netlab library for Matlab) failed to
run to completion on the very high dimensional data due to memory
problems. In three cases (Breast, Pima, Image), LAC and K-means
have very similar error rates. For these sets, LAC did not find local
structures in the data, and credited approximately equal weights to
features. K-means performs poorly on the OQ and Sonar data. The
enhanced performance given by the subspace clustering techniques in
these two cases suggest that data are likely to be locally correlated.
This seems to be true also for the Lymphoma data. The LAC algorithm
did extremely well on the three high dimensional text data (Classic3,
Spam2000, and Spam5996), which demostrate the capability of LAC
in finding meaningful local structure in high dimensional spaces. This
result suggests that an analysis of the weights credited to terms can
guide the automatic identification of class-specific keywords, and thus
the process of label assignment to clusters.

The DOC algorithm performed poorly, and failed to find any clusters
on the very high dimensional data (Lymphoma, Classic3, Spam2000,
and Spam5996). We did extensive testing for different parameter values,
and report the best error rates in Table XII. For the OQ data, we tested
width values from 0.1 to 3.4 (at steps of 0.1). (The two actual clusters
in this dataset have standard deviation values along input features in
the ranges (0.7, 3.2) and (0.95, 3.2).) The best result obtained reported
one cluster only, and 63.0% error rate. We also tried a larger width
value (6), and obtained one cluster again, and error rate 54.0%. For
the Sonar data we obtained the best result reporting two clusters for
a width value of 0.5. Though, the error rate is still very high (65%).
We tested several other values (larger and smaller), but they all failed
to finding any cluster in the data. (The two actual clusters in this
dataset have standard deviation values along input features in the
ranges (0.005, 0.266) and (0.0036, 0.28).) These results clearly show the
difficulty of using the DOC algorithm in practice.

We capture robustness of a technique by computing the ratio bm

of its error rate em and the smallest error rate over all methods being
compared in a particular example: bm = em/min1≤k≤4 ek. Thus, the
best method m∗ for an example has bm∗ = 1, and all other methods



22 Carlotta Domeniconi et al.

have larger values bm ≥ 1, for m �= m∗. The larger the value of bm, the
worse the performance of method m is in relation to the best one for
that example, among the methods being compared. The distribution
of the bm values for each method m over all the examples, therefore,
seems to be a good indicator concerning its robustness. For example, if a
particular method has an error rate close to the best in every problem,
its bm values should be densely distributed around the value 1. Any
method whose b value distribution deviates from this ideal distribution
reflect its lack of robustness. Figure 10 plots the distribution of bm

for each method over the six real datasets OQ, Breast, Pima, Image,
Sonar and Lymphoma. For scaling issues, we plot the distribution of
bm for each method over the three text data separately in Figure 11.
For each method (LAC, PROCLUS, K-means, EM(d)) we stack the six
bm values. (We did not consider DOC since it failed to find reasonable
patterns in most cases.) LAC is the most robust technique among the
methods compared. In particular, Figure 11 graphically depicts the
strikingly superior performance of LAC over the text data with respect
to the competitive techniques.

To investigate the false positive and false negative rates on the spam
data we show the corresponding confusion matrices in Tables XIII and
XIV. In both cases, LAC has low false positive (FP ) and low false
negative (FN) rates. On Spam2000: FP = 0.26%, FN = 2.3% On
Spam5996: FP = 2.66%, FN = 7.85%. PROCLUS discovers, to some
extent, the structure of the two groups for Spam2000 (FP = 18.8%,
FN = 35.1%), but fails completely for Spam5996. This result confirms
our findings with the simulated data, i.e., PROCLUS fails to select
relevant features in high dimensions. In both cases, K-means and EM(d)
are unable to discover the two groups in the data: almost all emails are
clustered in a single group. In Figures 7-9 we plot the error rate of LAC
as a function of the input parameter h for the three text datasets used
in our experiments. As expected, the accuracy of the LAC algorithm
is sensitive to the value of h; nevertheless, a good performance was
achieved across the range of values tested ( 1

h = 1, 3, 5, 7, 9, 11).
We run the LAC and PROCLUS algorithms using the microarray

data and small values of k (k = 3 and k = 4). Tables XV and XVI show
sizes, scores, and dimensions of the biclusters detected by LAC and
PROCLUS. For this dataset, DOC was not able to find any clusters. For
LAC we have selected the dimensions with the largest weights (1/h is
fixed to 9). For k = 3, within each cluster four or five conditions received
significant larger weight than the remaining ones. Hence, we selected
those dimensions. By taking into consideration this result, we run PRO-
CLUS with five as value of its input parameter. For k = 4, within two
clusters five conditions receive again considerably larger weight than
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the others. The remaining two clusters contain fewer genes, and all
conditions receive equal weights. Since no correlation was found among
the conditions in these two cases, we have “labeled” the corresponding
tuples as outliers.

Different combinations of conditions are selected for different biclus-
ters, as also expected from a biological perspective. Some conditions are
often selected, by both LAC and PROCLUS (e.g., conditions 7,8, and
9). The mean squared residue scores of the biclusters produced by LAC
are consistently low, as desired. On the contrary, PROCLUS provides
some clusters with higher scores (C1 in both Tables XV and XVI).

In general, the weighting of dimensions provides a convenient scheme
to properly tune the results. That is: by ranking the dimensions accord-
ing to their weight, we can keep adding to a cluster the dimension that
minimizes the increase in score. Thus, given an upper bound on the
score, we can obtain the largest set of dimensions that satisfies the
given bound.

To assess the biological significance of generated clusters we used a
biological data mart (developed by our collaborator biologists), that
employs an agent framework to maintain knowledge from external
databases. Significant themes were observed in some of these groups.
For example, one cluster (shown in Table XVII) contains a number of
cell cycle genes. The terms for cell cycle regulation all score high. As
with all cancers, BRCA1- and BRCA2-related tumors involve the loss
of control over cell growth and proliferation, thus the presence of strong
cell-cycle components in the clustering is expected.

7. Conclusions and Future Work

We have formalized the problem of finding different clusters in different
subspaces. Our algorithm discovers clusters in subspaces spanned by
different combinations of dimensions via local weightings of features.
This approach avoids the risk of loss of information encountered in
global dimensionality reduction techniques.

The output of our algorithm is twofold. It provides a partition of
the data, so that the points in each set of the partition constitute a
cluster. In addition, each set is associated with a weight vector, whose
values give information of the degree of relevance of features for each
partition. Our experiments show that there is a perfect correspondence
between the weight values of each cluster and local correlations of data.

We have formally proved that our algorithm converges to a local
minimum of the associated error function, and experimentally demon-
strated the gain in perfomance we achieve with our method in high
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dimensional spaces with clusters folded in subspaces spanned by differ-
ent combinations of features. In addition, we have shown the feasibility
of our technique to discover “good” biclusters in microarray gene
expression data.

The LAC algorithm performed extremely well on the three high
dimensional text data (Classic3, Spam2000, and Spam5996). In our
future work we will further investigate the use of LAC for keyword
identification of unlabeled documents. An analysis of the weights cred-
ited to terms can guide the automatic identification of class-specific
keywords, and thus the process of label assignment to clusters. These
findings can have a relevant impact for the retrieval of information in
content-based indexed documents.

The LAC algorithm requires as input parameter the value of h,
which controls the strength of the incentive for clustering on more fea-
tures. To generate robust and stable solutions, new consensus subspace
clustering methods are under investigation by the authors. The major
difficulty is to find a consensus partition from the output partitions of
the contributing clusterings, so that an “improved” overall clustering of
the data is achieved. Since we are dealing with weighted clusters, proper
consensus functions that make use of the weight vectors associated with
the clusters will be investigated.

Table VI. Confusion matrices for Exam-
ple2.

LAC C0 (input) C1 (input)

C0 (output) 2486 13

C1 (output) 14 2487

PROCLUS C0 (input) C1 (input)

C0 (output) 1755 648

C1 (output) 745 1852

K-means C0 (input) C1 (input)

C0 (output) 1355 1273

C1 (output) 1145 1227
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Table VII. Confusion matrices for Exam-
ple3.

LAC C0 (input) C1 (input)

C0 (output) 2497 1

C1 (output) 3 2499

PROCLUS C0 (input) C1 (input)

C0 (output) 2098 676

C1 (output) 402 1824

K-means C0 (input) C1 (input)

C0 (output) 1267 1171

C1 (output) 1233 1329
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Figure 3. Example4: Two Gaussian clusters non-axis oriented in two dimensions.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

y

x

Cluster0
Cluster2
Cluster1

Figure 4. Example5: Three Gaussian clusters non-axis oriented in two dimensions.
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Figure 5. Example5: Clustering results of the LAC algorithm.
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Figure 6. Example5: Clustering results of K-means.

Table VIII. Confusion matrices for Exam-
ple4.

LAC C0 (input) C1 (input)

C0 (output) 4998 473

C1 (output) 2 4527

PROCLUS C0 (input) C1 (input)

C0 (output) 5000 714

C1 (output) 0 4286

K-means C0 (input) C1 (input)

C0 (output) 4956 724

C1 (output) 44 4276
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Table IX. LAC: Weight
values for Example4.

Cluster w1 w2

C0 0.99 0.01

C1 0.09 0.91

Table X. Confusion matrices for Example5.

LAC C0 (input) C1 (input) C2 (input)

C0 (output) 5000 622 0

C1 (output) 0 3844 0

C2 (output) 0 534 5000

PROCLUS C0 (input) C1 (input) C2 (input)

C0 (output) 5000 712 0

C1 (output) 0 4072 117

C2 (output) 0 216 4883

K-means C0 (input) C1 (input) C2 (input)

C0 (output) 4816 1018 0

C1 (output) 140 3982 1607

C2 (output) 44 0 3393

Table XI. LAC: Weight
values for Example5.

Cluster w1 w2

C0 0.92 0.08

C1 0.44 0.56

C2 0.94 0.06
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Table XII. Average error rates for real data.

LAC PROCLUS K-means DOC EM (d) EM (f)

OQ 30.9 31.6 47.1 54.0 40.0 43.8
Breast 4.5 5.7 4.5 32.9 5.3 5.4
Pima 29.6 33.1 28.9 42.7 33.7 34.9
Image 39.1 42.5 38.3 45.8 39.8 34.6
Sonar 38.5 39.9 46.6 65.0 44.5 44.3

Lymphoma 32.3 33.3 39.6 – 47.4 –
Classic3 2.6 48.2 62.4 – 59.2 –

Spam2000 1.2 28.0 44.7 – 36.6 –
Spam5996 5.1 44.5 44.9 – 44.8 –

Average 20.4 34.1 39.7 48.1 39.0 32.6

Table XIII. Confusion matrices for Spam2000.

LAC Spam (input) Non-spam (input)

Spam (output) 771 2

Non-spam (output) 15 640

PROCLUS Spam (input) Non-spam (input)

Spam (output) 502 116

Non-spam (output) 284 526

K-means Spam (input) Non-spam (input)

Spam (output) 786 639

Non-spam (output) 0 3

EM(d) Spam (input) Non-spam (input)

Spam (output) 781 517

Non-spam (output) 5 125
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Table XIV. Confusion matrices for Spam5996.

LAC Spam (input) Non-spam (input)

Spam (output) 733 20

Non-spam (output) 53 622

PROCLUS Spam (input) Non-spam (input)

Spam (output) 777 627

Non-spam (output) 9 15

K-means Spam (input) Non-spam (input)

Spam (output) 786 641

Non-spam (output) 0 1

EM(d) Spam (input) Non-spam (input)

Spam (output) 780 634

Non-spam (output) 6 8

Figure 7. Classic3 dataset: Error rate of LAC versus 1
h

parameter.

Figure 8. Spam2000 dataset: Error rate of LAC versus 1
h

parameter.
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Figure 9. Spam5996 dataset: Error rate of LAC versus 1
h

parameter.

Figure 10. Performance distributions over real datasets.

Figure 11. Performance distributions over text data.
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Table XV. Size, score and dimensions of the clusters
detected by LAC and PROCLUS algorithms on the
microarray data (k = 3).

k = 3 LAC PROCLUS

C0 (size, score) 1220×5, 11.98 1635×4, 9.41

dimensions 9,13,14,19,22 7,8,9,13

C1 (size, score) 1052×5, 1.07 1399×6, 48.18

dimensions 7,8,9,13,18 7,8,9,13,19,22

C2 (size, score) 954×4, 5.32 192×5, 2.33

dimensions 12,13,16,18 2,7,10,19,22

Table XVI. Size, score, and dimensions of the clusters
detected by LAC and PROCLUS algorithms on the
microarray data (k = 4).

k = 4 LAC PROCLUS

C0 (size, score) 1701×5, 4.52 1249×5, 3.90

dimensions 7,8,9,19,22 7,8,9,13,22

C1 (size, score) 1255×5, 3.75 1229×6, 42.74

dimensions 7,8,9,13,22 7,8,9,13,19,22

C2 (size, score) 162 outliers 730×4, 15.94

dimensions - 7,8,9,13

C3 (size, score) 108 outliers 18×5, 3.97

dimensions - 6,11,14,16,21
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Table XVII. Biological processes annotated in one cluster generated by the LAC algorithm.

Biological process z-score Biological process z-score

DNA damage checkpoint 7.4 purine nucleotide biosynthesis 4.1

nucleocytoplasmic transport 7.4 mRNA splicing 4.1

meiotic recombination 7.4 cell cycle 3.5

asymmetric cytokinesis 7.4 negative regulation of cell proliferation 3.4

purine base biosynthesis 7.4 induction of apoptosis by intracellular signals 2.8

GMP biosynthesis 5.1 oncogenesis 2.6

rRNA processing 5.1 G1/S transition of mitotic cell cycle 2.5

glutamine metabolism 5.1 protein kinase cascade 2.5

establishment and/or 5.1 central nervous system 4.4
maintenance of cell polarity development

gametogenesis 5.1 regulation of cell cycle 2.1

DNA replication 4.6 cell cycle arrest 4.4

glycogen metabolism 2.3
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