
An algebra for composing ontologies

Saket Kaushik1, Csilla Farkas2, Duminda Wijesekera1, and Paul Ammann1

1Department of Information & Software Engineering, George Mason University, Fairfax, VA
22030, U.S.A,{skaushik|dwijesek|pammann}@gmu.edu

2Department of Computer Science and Engineering, University of South Carolina, Columbia, SC
29208 USA, farkas@cse.sc.edu

Abstract
Ontologies are used as a means of expressing agreements to a
vocabulary shared by a community in a coherent and consistent
manner. As it happens in the Internet, ontologies are created by
community members in a decentralized manner, requiring that
they be merged before being used by the community. We de-
velop an algabra to do so in the Resource Discription Framework
(RDF). To provide formal semantics of the proposed algebraic
operators, we type a fragment of the RDF syntax.

1 Introduction
Ontologies, considered as specifications of conceptualiza-
tions are designed for the purpose of enabling knowledge
sharing and reuse [15]. Rooted in Philosophy as a sys-
tematic theory ofexistencethat specifies the entities that
exist and relationships among existing objects, they are
used in artificial intelligence and the world wide web as
descriptions of domains of discourses that consists of enti-
ties and their relationships. Consequently, anontological
commitmentis an agreement to use a vocabulary shared in
a community in a coherent and consistent manner. Natu-
rally, with the objective of the Semantic Web to have self
describing, machine understandable and operable data, it
relies on ontologies to specify domains of discourse.

Because data offered and consumed on the Seman-
tic Web are consideredresources, their semantics is ex-
pressed by specifying meta relations between web ob-
jects through ontologies, referred to as theResource De-
scription Framework(RDF), to be summarized shortly.
Because the world wide web is a collection of indepen-
dently maintained web sites without centralized control
or agreement, their domain knowledge, captured by var-
ious domain experts, need to be combined, compared,
contrasted and operated upon during web-based compu-
tations. Therefore, one of the core challenges identified
for the Semantic Web involves decentralization and reuse
of ontological conceptualization [18]

Several approaches exist thatcombineindependently-
developed ontologies. Klein’s survey [18] presents an
excellent overview of the problems in this domain. For

instance, Klein discussesmismatchof conceptualization
in multiple ontologies, where difference in syntax, ex-
pressivity, and semantics of the representation are prob-
lematic. As an example, consider the ontologies in fig-
ure 1. The three ontologies, named A, B and C, describe
an auto-maker’s products. Ontologies A and B are taken
from Chalupsky’s web page [6] with minor variations in
property names, while ontology C has been composed by
us for structural comparisons with his examples. Clearly,
each differs from the other in its conceptualization. Sev-
eral pertinent questions can be asked about the different
conceptualizations, like – does any one ontology subsume
another? Are the ontologiesstructurallyconsistent? Can
they be combined in some way to yield a common sin-
gle ontology? Many researchers have proposed ways to
address such mismatches. In fact, there is an abundance
of combinatorial techniques with seemingly similar ter-
minology for the combination schemes, such as – align-
ment, merging, integrating, combining, mapping, articu-
lation, translating, transforming,etc.However, they don’t
provide a comparison of their scheme with existing tech-
niques.

In addition to mismatch, another important problem to
be solved while combining ontologies is the automation
of the process. Techniques that rely strongly on human
input are able to score better on precision, but, are less
scalable and labor intensive as compared to methods that
rely strongly on automation. Automation usually requires
approximations to resolve different types of mismatches.
However, the problem of effectively measuring the differ-
ence between each approach still remains open. In this
paper we propose an approach to solve this problem in
the following way. First, we propose an algebra for com-
position of ontologies. Next, we compare existing com-
bination techniques to elucidate how each of them differs
from the ideal case.

Apart from mismatch of conceptualization, and from a
practical viewpoint, a central problem in ontology combi-
nation is to translate multiple, independently-developed,

Ontology BOntology A

Vehicle

HMMWV

max−slope−range

Wheeled Vehicle

Tracked Vehicle

M60M151

Angle Range 60−45

Ontology C

M−151

M−60 Tracked

Automotive Device

traction−type

traction−type

category category

model model model

45

traction−type

traction−type

max−gradient

Automotive Device

M−151

M−60 Tracked

Wheeled

model

model

model

model

series

series

HMM−WV

max−gradient model

Wheeled

45

Figure 1: Syntactic and conceptualization mismatch

heterogenous sources of meta-information into a common
syntax, or acommon data model. Among other things, a
correct translation should be semantically consistent and
expressive enough to capture all the statements in the orig-
inal ontology. The second important problem is tomerge
schema and instances that refer to thesamereal-world en-
tity captured by multiple ontologies. Consider, for exam-
ple, the city ‘Arlington, TX’ that is captured by an RDF
ontology as ‘&r1’ and by the CIA fact-book as ‘&r2’.
These two instances must be identified in some way to
represent the same real-world entity in order to combine
information in the two ontologies that represent the do-
main of cities in the real-world.

Because RDF is the base language of most higher level
Semantic Web languages, the common data model must at
least support RDF syntactic elements. However, RDF al-
lows considerable freedom of expression prompting many
higher level languages to restrict features that it doesn’t
support. In our case, we model all features of RDF except
the RDF collections, and, as will be shown shortly, our
semantics is a higher order version of RDFS(FA) [27].

Several existing techniques solve the problem of merg-
ing ontologies. However, as will be shown, a majority
of these techniques either involve an approximate merg-
ing (like ontomorph [7], Chimaera [20], FCA-merge [34],
etc.) or are incomplete (like ONION [22]). Therefore, it is
impossible to compare and contrast to what degree the on-
tologies have been merged. This is where our major con-
tribution lies. We formally define a syntax and semantics
for various combinations of ontologies that we are aware
of in literature. This step involves introduction of several
algebraic operators like union, intersection, merge,etc.

In order to formalize the algebra of combinators, we
first present a recursive finite typing of RDF sans collec-
tions for expressing ontologies expressed in heterogenous

languages. Second, we construct an well-founded alge-
braic scheme over a universe of ontologies that respects
well known algebraic operations and identities. Third, we
show how existing ontology combination schemes can be
expressed in our algebraic language.

Because entity-relationship model of Peter Chen [9]
has the objective of modeling entities and their rela-
tionships relevant to a data modeler, schematic descrip-
tions of ontologies and database schema share some com-
mon properties. Therefore, in its formalization, merg-
ing independently-developed ontologies bears some sim-
ilarity the the well studied database integration prob-
lem [2, 10, 29]. In addition, combination of databases in
federations, also called federated database management
systems (abbrev. FDBMS – for more details see [32])
have been well studied and can be leveraged upon. Fi-
nally, nested relations [24], originally designed for re-
dundancy removal, bear stark similarities toreified RDF
schema, and are relevant in our context. We develop our
algebra with a view on solutions to well-known problems
in the database literature.

The rest of the paper is organized as follows. In Sec-
tion 2 and 3 we formalize RDF as a collection of higher
typed objects and their properties. Section 4 defines ho-
momorphisms between ontologies; in Section 5 we show
how homomorphisms can be represented as ontologies in
the same universe. In Section 6 we define basic algebraic
operations and give their properties. Comparison of our
algebra to existing algebras in the literature is given in
Section 7. We conclude in Section 8.

2 The Resource Description Framework
The Semantic Web consists of a layered architecture [5]
of web languages. The lowest layer of this stack is Uni-
code/URI layer on which the XML andxmlschema are
built. The next layer has RDF(S), which defines both the

2

syntax and semantics of subsequent layers. Consequently,
languages above the layer of RDF, such as OWLetc., are
built on top of RDF(S).

RDF specify meta-information aboutresources, i.e.,
entities that can be uniquely identified, where the objec-
tives of providing them are to enable machine process-
ing and sharing meta-information about resources. Such
meta information about resources are specified in RDF us-
ing binary properties between resources. RDF does so
by using the syntax oftriples where the subject (the first
component of the triple) is related by the property (the
second component of the triple) to the object (the third
component). An RDF schema can be extended further
throughreification,that specify binary properties between
triples. RDF(S) or RDF Schema is RDFs vocabulary de-
scription language. It has syntax to describe concepts and
resources through meta-classes such asrdfs:Class ,
rdf:type , etc., and relationships between resources
throughrdf:property . These meta classes are used
to specify properties of user defined schema. RDF(S) vo-
cabulary descriptions are written in RDF using a set of
language primitives, described in [3].

3 Formalizing RDF

We formalize RDF as a collection of higher typed ob-
jects and binary relations among them, subjected to the
restriction that containers and collections of RDF like
rdf:bag, rdf:alt , etc.are not interpreted.

In our semantics, we interpret classes and properties
as well founded sets in ZF set theory [19] with a name.
Consequently, as in imperative programming languages,
a class has a name, a location – given by its URI an uni-
versal address space, and elements. As a result, syntactic
elements that are equal by name are also equal by loca-
tion.

Definition 1 (Ontology [3]).

Primitive classes and properties: SupposeU be a universe of
objects. LetC0 ⊆ P(U) andP0 ⊆ (C0 × C0). Then any
c ∈ C0 is said to be a primitive class and anyp ∈ P0 said
to be a primitive binary property overU .

Classes and properties of finite type:SupposeCn andPn are
respectively classes and properties of typen. Then, classes
and properties of type(n + 1) are those that satisfy
Cn+1 ⊆ P(Cn)∪Pn, andPn+1 ⊆ (Cn+1×Cn+1). That
is, in addition to classes of type n, classes of type(n + 1)
may include properties of typen as elements. Collectively,
the sequence of sets, i.e.,

⋃
i≥0 Ci is called a schema.

Schema Naming: We use a set of class namesCNAMES
for schema, and a functionCN :

⋃
n≥0(Cn ∪

Pn) 7→CNAMES - a naming function from
⋃

n≥0(Cn ∪
Pn) to the name setCNAMES. Also, CNAMES =⋃

i≥0 CNAMEi whereCNAMEi is the setCi ∪ Pi el-
ements are mapped to.

Instances: A classc belonging to typeCn is representedc ::
Cn and a propertyp of typePn is represented asp :: Pn.
For any such classc and propertyp of typeCn, Pn (resp.),
any memberx being a member ofc :: Cn is represented as
x ∈ c :: Cn and pair of instances(y, z) related through
the propertyp :: Pn is represented as(y, z) ∈ p :: Pn.
The set of instances of typen is namedIn and the set of
all instances is namedI. Note that whenever the type is
apparent, we drop ‘::’ from the representation.

Instance Naming: We use a set of namesINAMES for in-
stances, and a functionIN : I 7→ INAMES said
to be a naming function fromI to INAMES. Also,
INAMES =

⋃
i≥0 INAMEi where elements inIi∪Pi

are mapped to the setINAMEi.

Ontology An ontologyO is a tuple〈C,P, CN , I, IN〉 where
C =

⋃
n≥0 Cn is a set of classes,P =

⋃
n≥0 Pn are the

properties andI is the set of instances.

Definition 1 defines Ontologies consisting of enti-
ties and relationships among them as recursively defined
classes and relationships respectively. The base case of
the recursion defines thebaseclass and theirproperties.
In that base case of the recursive definition, the collection
of base classesC0 are given axiomatically. That is they
can be chosen without any other restrictions, and have
to be given a name in some arbitrarily chosen, but fixed
thereafter, collection of symbols referred to asCNAME .
In case of RDF, these are chosen to be the collection of
URIs. Every class inC0 has the semantics as some col-
lection of named objects chosen out of a universeU with
a name chosen from a class of instancesINAME . Rela-
tionships between classes inC0 are defined as a collec-
tion of axiomatically chosen binary relationships given
by P0. That is, properties ofP0 are chosen binary rela-
tionships between objects ofC0 with names chosen from
CNAMES.

The inductive step of definition 1 chooses next class of
objects - that isC1 named subsets - to be all objects of
C0 and all named binary properties ofP0. That makes
every property ofP0 an object of the next classC1. The
properties of second stage - that isP1 - are defined as
suitably chosen named binary relations amongC1. This
application of the inductive step follows the same pattern
for all stages.

This definition has several desirable properties. The
first is that, because properties of a (lower) level become
classes of the immediately higher class, properties among
such properties - i.e. higher level properties - can be speci-
fied in the next level. Secondly, because RDF does not ex-
plicitly define classes and properties, and allows the user
to define them, the type definition does not provide type
constructors. Thirdly, when a classc of Cn becomes a
class ofCn+1, the name thatc is assigned is carried over
to the next level. Similarly, a propertyp at levelPn is also
on object inCn+1 and therefore has a name assigned at

3

OpN

DocumentOperation

Department

Client Org ServiceOrg

Manager Server

Audit Maintain

has

works owns

OpnRep Report

subOpn DocTypeprogress

OpnInfo

Employee

actsOn

assignedTo

Services

Create

serviceAction

permits

createPDF

creates

isA

manages

Figure 2: Document service schema

Pn that we take at the next level as well. Fourthly, due to
the relationshipsCn ⊂ Cn+1 andPn ⊂ Cn+1, any class
c of Cn and a propertyp of Pn are also classes ofCn+1.
We now provide some examples of our definition.

Example 1. Consider a document service schema in
which client organizations buy document creation, han-
dling and maintenance services from service organiza-
tions for the operations performed by departments in the
client organization. Created documents are owned by the
creating department. Document handling itself is orga-
nized into a host of services like report creation, mainte-
nance and validation. A partial schema (without mainte-
nance and audit relations) is pictured in figure 2. This
schema amply demonstrates the ideas expressed in the
definitions above, and is discussed next.

The figure pictures following type 0 class names, i.e.,
the set CN (C0) = {ClientOrg, Department, Opera-
tion, Document, OpN, Report, ServiceOrg, Services, Em-
ployee, Audit, Create, Maintain, Manager, Server}. These
are identified by the nodes (small circles) in the figure,
i.e., this set is constructed from names given to nodes in
figure 2. The typeC0 nodes represent base ontological
concepts. They are related to each other through typeP0

properties, i.e., binary relations that relate two base con-
cepts. TypeP0 properties in the diagram are named from
the set (i.e.,CN (P0)) {has, works, owns, OpnInfo, sub-
Opn, OpnRep, DocType, serviceSet, employees, creates,
actsOn}.

Next is the beginning of the recursive step in the defini-
tion of recursive countable types. With typesC0 andP0

defined, we begin constructing typesC1 andP1. TypeC1

classes are the unionC0 ∪ P0. In other words, at level
1 all schema elements from the previous level are treated
as concepts. Therefore, typeP1 properties can relate any
subsets of elements over typeC0 or typeP0. Thus, all
possibleP1 properties are a subset of(C1 × C1). The set
P1 in the shown schema includes the following property
names:{progress, assignedTo, createPDF, serviceAction,
isA}. Similarly, elements of higher types are defined re-
cursively. We list the different (named) typed elements
next:

Type C0

C0 = {ClientOrg, Department, Operation, Document,
OpN, Report, ServiceOrg, Services, Employee, Audit, Cre-
ate, Maintain, Manager, Server}

Type P0

• has:ClientOrg :: C0 7→ Department :: C0

• works:Department :: C0 7→ Operation :: C0

• owns:Department :: C0 7→ Document :: C0

• OpnInfo:Operation :: C0 7→ Document :: C0

• subOpn:Operation :: C0 7→ OpN :: C0

• OpnRep:Opn :: C0 7→ Report :: C0

• DocType:Document :: C0 7→ Report :: C0

• serviceSet:ServiceOrg :: C0 7→ Services :: C0

• employs:ServiceOrg :: C0 7→ Employee :: C0

• creates:Server :: C0 7→ Report :: C0

• actsOn:Employee :: C0 7→ Document :: C0

4

Each property of typeP0 relates concepts of typeC0.
Thus, ‘has’ identifies departments in a client organiza-
tion; ‘works’ relates operations to departments; while ‘em-
ploys’ relates employees to the service organization.

Type C1

C1 = P(C0) ∪ P0.

Type P1

• progress:OpnInfo :: P0 7→ OpnRep :: P0

• assignedTo:OpnRep :: P0 7→ Server :: C0

• createPDF:Create :: C0 7→ creates :: P0

• serviceAction:Services :: C0 7→ actsOn :: P0

• isA:actsOn :: P0 7→ creates :: P0

TypePi(i > 0) properties have a different utility, i.e., they
relate ‘constructed’ concepts. For example, the property
‘progress’ relates the binary relation between ‘operation’
and ‘document’, i.e., ‘OpnInfo’, with the binary relation
between a suboperation and its report. In other words,
here it is specializing the property ‘OpnInfo’. Similarly,
the property ‘assignedTo’ relates the binary relation be-
tween operation and its report to the report creator.

Type C2

C2 = P(C1) ∪ P1.

Type P2

• manages:Manager :: C0 7→ assignedTo :: P1

• permits:serviceAction :: P1 7→ createPDF ::
P1

TypeP2 properties shown here are ‘manages’ and ‘per-
mits’. ‘manages’ relates aC0 element (Manager) to aP1

relation (assignedTo). Here, the intention is to capture the
scenario where ‘Servers’ are not working for a ‘Manager’
exclusively, instead, they work with different managers on
different document services. Similarly, ‘permit’ property
relates ‘serviceAction’ property to a create action, i.e.,
‘createPDF’, in the sense that a particular service action
must first be allowed.

Definition 1 allows for expression of higher types, i.e.,
C3, P3, C4, P4, However, the given schema is re-
stricted to type 2 elements. Instances of the schema are
constructed using therdf:type property but are not
pictured in figure 2. Together the schema and its instance
complete an ontology.

Our definition of an ontology may appear to be different
from RDF specification [16] of an ontology. However, by
allowing the set of instances,i.e., I to be empty, the two
definitions can be made to converge. Thus, ontologies are
named nested unary and binary schema [24] sanskeys.
Because ontologies are sometimes modeled as connected
graphs withc :: Ci, i ≥ 0 elements as nodes,p :: Pi as
edges andI as the set of instances, paths in ontologies
have been defined. Our definition of ontologies can be
used to define (typed) paths as follows.

Definition 2 (Path).

Directed Typed Path An n-edged directed typed path is a triple
〈u1, πt, un+1〉 whereui :: Cj (for somej ≥ 0), i ∈
[1, n + 1] and πt is a sequence of n edges given by
〈CN (e1), . . . , CN (en)〉, whereek :: Pj , k ∈ [1, n] and
e1 = u1 7→ u2, . . ., en = un 7→ un+1. Each property in
a path is related through≺ relation, i.e.,ei ≺ ei+1. The
reflexive transitive closure of≺ (≺∗) arranges every pair
of properties inπt in a partial order.

Directed path An n-edged directed path is a triple
〈u1, πd, un+1〉 whereui ∈

⋃
j c :: Cj , i ∈ [1, n + 1]

and πd is a sequence of n edges given by
〈CN (e1), . . . , CN (en)〉, whereek ∈ p :: Pj , k ∈ [1, n]
ande1 = u1 7→ u2, . . ., en = un 7→ un+1

We abuse the syntax at times by relating paths as
〈CN (u1), π, CN (un+1)〉 instead of〈u1, π, un+1〉.

3.1 Limited RDF Semantics

In this section we briefly describe our semantics for
named ontologies of finite types. Our semantics is closest
to those of RDFS(FA) [27], where we build a hierarchy of
named sets. In order to do so we start with a universe,i.e.,
a set of URI’s (denotedURI) and other constants, sayB
asurelements, i.e., those atomic elements that do not have
any further set theoretical structure to them)[1, 19]. Our
hierarchical universe is built as follows:

C0 and P0:

C0 = {(u, b) : u ∈ URI andb ∈ B}
P0 = {(u, (B, B′)) : u ∈ URI andB, B′ ⊆ Base}

Cn+1 and Pn+1: SupposeCn andPn have been defined. Let
Un = {x : ∃u ∈ URI(u, x) ∈ Cn}. Then define

Cn+1 = {(u, B) : u ∈ URI andB ⊆ P(Un)}
Pn+1 = {(u, (B, B′)) : u ∈ URI andB, B′ ⊆ P(Un)}

Notice that every strata of the universe consists of or-
dered pairs, where the first component is a URI, denot-
ing the name, and the second component is a set. Con-
sequently, in the inductive stepUn recreates the base el-
ements from the previous step. The level of the nestings
in the construction of the set indicates the level of the uni-
verse. That is, a set withn nesting is at leveln. Also
notice that, stripped out of the name, a class at leveln
becomes an element at leveln + 1. The main reason for
introducing names (somewhat artificially, we agree) is to
make the distinction between name (intensional) equal-
ity and extensional equality, because in ZF set theory, set
equality is extensional. We use this stratified named uni-
verse to interpret our ontology and RDF syntax as follows:

Definition 3 (Semantic mappingJ K).
Universe:

1. SupposeU is the universe as defined in definition 1.

5

2. Let J Ku : U 7→ B be the surjective mapping that
maps the constants in the syntax to a setB of urele-
ments over which the syntax is interpreted.

3. Let J KIname : INAMES 7→ URI be a mapping
of RDF names to URIs.

4. Let J KIname : CNAMES 7→ URI be a mapping
of RDF names to URIs.

Mapping instances: Every instancei with namea is mapped
asJ(a, i)K = (JiKINAMES , JiKu).

Mapping classes: For every classc :: Cn nameda is mapped
asJ(a, c)K = (JaKCNAMES , JcK) whereJcK is constructed
by replacing everyu ∈ U in c with JuK.

Mapping properties: For every propertyp :: Pn nameda is
mapped asJ(a, p)K = (JaKCNAMES , JpK) whereJpK is
constructed by substituting everyu ∈ U in p with JuK.

Interpreting rdf:type : We say thatJ rdf:typex = yK iff x =
(a, b), y = (p, q) andJbK ∈ JqK.

Interpreting rdfs:subClassOf : We say that Jx
rdfs:subClassOfyK iff x = (a, b), y = (p, q) and
JbK ⊆ JqK.

Interpreting names: The name of an object or a propertyx is
defined as the first coordinate ofJxK.

Interpreting intensional equality: x is said to be intensionally
equal toy (writtenx =int y) iff JxK = JyK

Interpreting schema equality: x is said to be structurally
equal toy, written x = y iff (a, b) = JxK, (p, q) = JyK
andb = q.

The reason we say that our interpretation of RDF is lim-
ited because, as [12], stratified RDF semantics is more re-
strictive than RDF MT [27].

4 Homomorphisms
This section defines homomorphisms between ontologies.
That is, structure preserving mapping between ontolo-
gies. We do so in order to analyze various existing def-
initions of connectionsin the literature in light of struc-
ture preserving mappings, and calibrate them against the
latter with respect to preserving structure. For example
E-connections [14], that introduce subsumption relation-
ships between ontologies do not preserve all structural
properties, although commonly used functional mappings
such as alignment, translation,etc., preserve some struc-
ture. Our definition of ontological homomorphisms fol-
lows.

Definition 4 (Ontological homomorphism).

Schema homomorphismAn ontological schema homomor-
phism from ontologyA = (CA,PA, CNA, IA, INA) to
ontologyB = (CB ,PB , CNB , IB , INB) is a pair of
mappings(fC , fP) that satisfy:

1. fC(CA
n) ⊆ CB

n and

2. fP (P A
n) ⊆ P B

n satisfy

Ontology A Ontology B
m

em
be

rs
hi

p m
em

be
rs

hi
p

m
em

be
rs

hi
p

C11

P

I

P

f

f

f

g

g

g

C

C

P

P

C

C

P

P

I

C

12

12

11

1

2

1

2

C

I21

21

I

C

22

22

m
em

be
rs

hi
p

(f ,f ,g ,g)C CP P

Figure 3: Schema and instance homomorphisms

3. If pA::(cA, c′A) thenfP (pA)::(fC(cA), fC(c′A)).

Furthermore, ifCN (ca) = CN (fC(ca)) for everyca ∈
CA and CN (pa) = CN (fP (pa)) for everypa ∈ P A,
then we say that it is a name preserving homomorphism,
or an intensional schema homomorphism.

Instance homomorphism: An ontological instance homomor-
phism is a quadruple(fC , fP , gC , gP) where(fC , fP) is
a schema homomorphism andgC , gP are functions that
satisfy:

1. gC(x) ∈ fC(c :: CA
n) for every elementx ∈ c ::

CA) for some classc,

2. (gC(x), gC(y)) ∈ fP (p :: P A
n) for every pair of

elements(x, y) ∈ p :: P A
n .

Furthermore, if(fC , fP) is an intensional schema homo-
morphism that satisfyIN (xa) = IN (gC(xa)) for every
xa ∈ ca :: CA, then we say that it is a name preserving
homomorphism or an intensional instance homomorphism.

Using standard terminology, we say that a schema ho-
momorphism is class-wise, property-wise or completely
injective iff fC , fP or bothfC andfP are injective map-
pings, respectively. Analogously, an instance homomor-
phism is said to be injective if(fC , fP) is injective as a
schema homomorphism and the mappingsgC , gP or both
gC andgP are injective. An analogous notation is used for
surjective homomorphisms. A homomorphism to itself is
referred to as an endomorphism.

As stated in definition 4, an ontological schema homo-
morphism maps classes and properties of a source ontol-
ogy to classes and properties of the target ontology with
the same type. An instance homomorphism maps ele-
ments of the source class to elements of a target class and

6

a property instances of the source ontology is mapped to
the same type of property instance in the target ontology
so that if a pair of elements in a source class satisfy the
property instance in the source ontology, then the image
of the elements of the class instances satisfy the image of
the property instance in the target ontology. Notice that
intensional or name preserving homomorphisms are also
homomorphisms that preserve the names in addition.

As an explanation of the definition of homomorphism,
consider the ontology sketched in Figure 3. The homo-
morphism maps the classes and properties of the source
ontologyA to those of the the target ontologyB using
the functionfC , fP respectively and their instances using
functionsgC , gP respectively as follows:

fC: fC(C11) = C21, fC(C12) = C22,

fP: fP (P1) = P2,

(gC,gP): SupposeI11 ∈ C11, I12 ∈ C12, I21 ∈ C21,
and I22 ∈ C22 and the only instances of these
classes. Then(gC , gP) maps instances and their
properties asI21 = gC(I11), I22 = gC(I12) and
gP (I11, I12 = (I21, I21).

We now give an example homomorphism form the on-
tologies in figure 1.

Example 2 (homomorphisms).Consider the ontologies
in figure 1 describing automotive devices. All the three
ontologiesA, B andC describe the same real-world enti-
ties (schema component of the three ontologies is missing
in the figure shown, but is easy to construct or visualize.
Therefore we ignore it in the rest of this example). Assum-
ing that they are independently developed, location-wise,
concepts, properties and instances inA, B andC are dis-
joint. We attempt to reconcile the difference in concep-
tualization (and syntax if need be) with a homomorphism
betweenA andB.

First, we note that CA0 members ‘Vehicle’, ‘Tracked
Vehicle’ and ‘M 60’ are corresponding to ‘Automo-
tive Device’, ‘Tracked’ and ‘M-60’ classes in CB0 .
However, in A ‘model’ property is expressed as
〈Tracked V ehicle,M60〉, whereas inB corresponding
elements are related through property ‘traction-type’ as
〈M − 60, T racked〉. Clearly, a morphism between the
two ontologies will not preserve structure between the two
ontologies since the direction of the property is reversed.
However, it is possible to construct a homomorphism from
A to C as follows. (We only provide(gC , gP) morphisms

here).

gC(Vehicle) = Automotive Device

gC(Wheeled Vehicle) = Wheeled

gC(Tracked Vehicle) = Tracked

gC(M151) = M-151

gC(M60) = M-60

gC(HMMWV) = HMM-WV

gC(Angle Range 60-45) = 45

gP (category) = traction-type

gP (model) = model

gP (max-slope-range) = max-gradient

We now consider equality between ontologies.

Definition 5 (Equality).

Schema equality Two ontologies A =
(CA,PA, CNA, IA, INA) and B =
(CB ,PB , CNB , IB , INB) are said to be struc-
turally equal - expressedA ≡s B - iff there is a schema
isomorphism(fC , fP) fromA to B.

Instance equality Two ontologies A =
(CA,PA, CNA, IA, INA) and B =
(CB ,PB , CNB , IB , INB) are said to be instance-
wise equal - expressedA ≡I B - iff there is an instance
isomorphism(fC , fP , gC , gP) fromA to B.

Name equality Two structurally equal ontologies
A = (CA,PA, CNA, IA, INA) and B =
(CB ,PB , CNB , IB , INB) through the isomor-
phism (fC , fP) are said to be equal by name -
expressedA ≡N B - iff for every classc ∈ CA,
CN (c) = CN (fC(c)).

As stated, two ontologies are schema equal if classes
and properties between them are isomorphic. In addi-
tion when the schemas and relations are populated by in-
stances are bijective, then the two ontologies are said to
be instance equal. If a schema isomorphism between two
ontologies preserve names, the they are said to be name
equal.

5 Homomorphisms as ontologies
Ontological homomorphisms capture knowledge about
similarities between concepts, properties and instances
across ontologies within a universe. Consequently, they
specify or express relationships between existing ontolo-
gies or concepts and properties between them, and there-
fore can be represented in ontologies [15]. In this section
we show how this can be achieved by constructing homo-
morphisms as ontologies.

Definition 6 (Homomorphic ontology). Given ontolo-
gies A = (CA,PA, CNA, IA, INA), B = (CA,PB , CNB ,
IB , INB), and an instance homomorphism(fC , fP , gC , gP)
between them, their homomorphic ontologyHAB = (C, P,
CN, I, IN) is defined as:

7

C0: The set of primitive concepts is given by(domain(fC ∪
fP)∩(C0,A∪P0,A))∪(range(fC∪fP)∩(C0,B∪P0,B))

P0: The set of primitive properties P0 ⊆ (C0 × C0) where

P0 =

{p|p ∈ (fC ∪ fP) ∧ p ⊂ C0 × C0}
∪{πA|∃〈a, πA, b〉 ∈ A ∧ a, b ∈ C0}
∪{πB |∃〈a, πB , b〉 ∈ B ∧ a, b ∈ C0}

Cn+1: Cn+1 ⊆ P(Cn) ∪ Pn

Pn+1: Pn+1 ⊆ (Cn+1 × Cn+1)

CN Schema naming function is defined as CN:CNA ∪CNB ∪
{(fC ∪ fP) 7→ sameAs, π 7→ related, p :: Pn (n >
0) 7→ samePath}

I: Instances of classes and properties are provided by the origi-
nal ontologies, i.e., x∈ c :: C0,A∧ c :: C0 → x ∈ c :: C0.
Similarly, B contributes instances for C0. Property in-
stances are then defined in the standard manner.

IN: Instance naming is the union of the respective instance
naming function and new property name mappings, i.e.,
IN: INA ∪ INB ∪ {(gC ∪ gP) 7→ sameAs, π 7→
related, p :: Pn (n > 0) 7→ samePath}

Definition 6 precisely captures the knowledge regard-
ing alignmentof ontologies, as discussed in the litera-
ture [18, 20, 22, 26]. Classes and properties in ontology
A that are mapped to, respectively, classes and properties
in ontology B are cast as typeC0 classes in the homomor-
phic ontologyHAB . Mappings(fC , fP) (resp.(gC , gP)
for instances) constitute the level 0 binary properties be-
tween these level 0 concepts. Note that the information
that pairs of type C0 classes in ontology A (resp. B)
that are connected through a pathπA (resp.πB) are con-
nected inHAB . This captures structure from the origi-
nal ontology into the homomorphic ontology, allowing us
to mark the classes as ‘related’. Paths need not traverse
only through classes that are mapped. Further, similar
paths,i.e., πA, πB may be related through a binary prop-
erty, named ‘samePath’ – a P1 level property, and so on.

6 Algebraic operators and their properties
Sometimes independently developed and maintained on-
tologies need to be merged, suitably composed, compared
and contrasted in many ways in order do web-based com-
putations. In this section, we define these operations and
show their utility.

As ontologies consist of classes with relationships
among them and elements that populate the aforemen-
tioned, the first kind of operations we explore are the set
theoretical ones such as union, intersection, complement,
etc.However, due to having instances of classes and prop-
erties, all these operations exists at the schema and in-
stance levels. Another difference is the distinction be-
tween extensional and intensional equality, because RDF
uses the latter, and set theory uses the former, any set the-
oretical interpretation of algebraic operations need to find
suitable encodings to account for both.

Definition 7 (Set-based intensional operations).
Suppose A = (CA,PA, CNA, IA, INA) and B =
(CB ,PB , CNB , IB , INB) are two ontologies. Then define the

Intensional union of (A ∪B) as:

1. CA∪B
i = CA

i ∪CB
i for every typei. That is, for every

typei, all classes inCA
i andCB

i are taken together
for CA∪B

i

2. PA∪B
i = PA

i ∪ PB
i for every typei. That is, for

every typei, all properties inPA
i or PB

i are taken
together forPA∪B

i

3. CNA∪B = CNA ∪ CNB . That is, the names of the
classes and properties given from the componentsA
andB are the same taken to be the names assigned
in the ontologyA ∪B.

4. x ∈ c :: CA∪B
n iff x ∈ c :: CA

n or x ∈ c :: CB
n .

That is, an element belongs to a classc in CA∪B
n iff

it belongs to a constituent class ofc in CA
n or CB

n .

5. (x, y) ∈ p :: P A∪B
n iff (x, y) ∈ p :: P A

n or
(x, y) ∈ p :: P B

n That is, a subject object pair(x, y)
satisfy a propertyp in PA∪B

n iff (x, y) satisfy the
same property in eitherPA

n or PB
n .

Intensional intersection (A ∩B) as:

1. CA∩B
i = CA

i ∩ CB
i for every typei. That is, for

every typei, all classes common toCA
i andCB

i are
in CA∪B

i

2. PA∩B
i = PA

i ∩ PB
i for every typei. That is, for

every typei, properties common toPA
i andPB

i are
in PA∪B

i .

3. CNA∪B = CNA ∩ CNB . That is, the names of the
classes and properties given from the componentsA
andB are taken as the names inA ∩B.

4. x ∈ c :: CA∩B
n iff x ∈ c :: CA

n andx ∈ c :: CB
n .

That is, an element belongs to a classc in CA∩B
n iff

it belongs to the same classc in CA
n andCB

n .

5. (x, y) ∈ p :: P A∪B
n iff (x, y) ∈ p :: P A

n and
(x, y) ∈ p :: P B

n That is, a subject object pair(x, y)
satisfy a propertyp in PA∩B

n iff (x, y) satisfy the
same property in both ontologiesPA

n andPB
n .

Definition 7 defines intensional union and intersection.
They mimick the basic set theoretical operations of union
and intersection, interpreted as a class or a property be-
long to the union or the intersection iff they belong to ei-
ther or both constituents, but with a difference. The differ-
ence is that two classes in the constituents are considered
the same iff they are name-wise equal according to defi-
nition 5. The same holds for properties and instances of
classes and properties. This is the reason that in step (3) of
definition 7 does not create a name clash in using the same
name of classes/ properties that exists in both constituent
classes/properties. A similar definition can be given for
the difference of two ontologies that we omit here. Now
we give an example of ontological unions and intersec-
tions.

8

Example 3 (Ontology union/difference). Consider two
ontologiesOa,Ob ∈ U with some instancesIa andIb.
For the purposes of this example, we don’t distinguish be-
tween an element x and its name CN(x) or IN(x). LetOa

be given by following classes and properties:
Ca

0 = {university, school, employeeID},
P a

0 = {academics, employed}.
Here academics is of type (university, school) and em-
ployed::(school, employeeID). LetOb be given by follow-
ing schema elements:

Cb
0 = {organization, department, eid, site},

P b
0 ={subdivision, payroll, location} and

P b
1 = {reportsAt}.

Here ‘subdivision’ relates ‘organization’ to ‘department’,
‘payroll’ relates ‘department’ to ‘eid’, ‘location’ relates
‘department’ to ‘site’ while ‘reportsAt’ relates ‘eid’ to ‘lo-
cation’. The unionOa∪b = Oa∪Ob is given by following
elements:

– Ca∪b
0 = Ca

0 ∪Cb
0 = {university, school, employeeID,

organization, department, eid, site}
– P a∪b

0 = P a
0 ∪P b

0 = {academics, employed, subdivi-
sion, payroll, location}

– P a∪b
1 = P a

1 ∪ P b
1 = {reportsAt}

– Ia∪b = Ia ∪ Ib

Next we show the intersection operation by calculating
Oa∪b ∩ Oa:

– C
(a∪b)∩a
0 = Ca∪b

0 ∩ Ca
0 = {organization, depart-

ment, eid, site}
– P

(a∪b)∩a
0 = P a∪b

0 ∩ P a
0 = { subdivision, payroll,

location}
– P

(a∪b)∩a
1 = P a∪b

1 ∩ P a
1 = {reportsAt}

– I(a∪b)∩a = Ia∪b ∩ Ia ¤

Next we define the notion of substructure among on-
tologies, that we refer to as asub-ontologyas follows.

Definition 8 (Sub-ontologies).

Substructures: An ontologyA = (CA,PA, CNA, IA, INA)
is said to be a schema subontology of an ontologyB =
(CB ,PB , CNB , IB , INB), denoted byA vS B iff
CA ⊆ CB , PA ⊆ PB , CNA = CNB ¹ CA.

Intensional substructures: In addition, ifx ∈ c :: CA implies
x ∈ c :: CB and (x, y) ∈ p :: PA implies(x, y) ∈ p ::
PB , we say thatB is an intensional sub ontology ofA,
and is denotedA vI B.

Clearly, the relationsvS andvI are partial orders.
Consequently, any sub ontology of an ontology is itself
an ontology, implying that all its paths originating in the
sub ontology only reach entities within the sub ontology.

Example 4 (Subontologies).Consider again the ontolo-
gies in example 3. We compareOa∪b with Oa to show
that Oa vS Oa∪b. We first note thatCa ⊆ Ca∪b, i.e.,
Ca

0 ⊂ Ca∪b
0 and Ca

1 ⊂ Ca∪b
1 (and since there are no

Pa
1 properties, therefore, the relation holds for all subse-

quent types). Similarly, on inspectionPa ⊆ Pa∪b and
CN a = CN a∪b ¹ Ca ¤

We now use the sub ontologies to definequotienton-
tologies that are obtained by abstracting an entire sub on-
tology of a a super ontology to a single entity. This con-
cept is the same as the contraction of a graph [11], and has
the same meaning in the graph semantics of RDF.

Definition 9 (Quotient ontology). Suppose B =
(CB ,PB , CNB , IB , INB) is a schema sub ontology ofA =
(CA,PA, CNA, IA, INA) . Then we define the quotient ontol-
ogyA/B, say(C, P, CN, I, IN) as follows.

C = CA \ CB ∪ {c∗} wherec∗ /∈ CA

P =

{
PA \ PB ∪ {p∗ :: c1 × c∗ | p :: c1 × c2 andc2 ∈ CB}
∪{p∗ :: c∗ × c2 | p :: c1 × c2 andc1 ∈ CB}

CN(x) =

{
CNA(x) if x ∈ CA \ CB ,

n if x=c* where n /∈ CN (CB) is a new name

The intuition captured in definition 9 is that the entire
sub ontologyB is shrunk to a single entity in the quotient
ontology, and therefore the properties that relates any en-
tity in CA \ CB relates to this single (shrunk) entity in the
quotient ontologyA/B. This construction directly mir-
rors the contraction operation in graphs, and captures the
intent of quotients they are defined in algebra or topology.

We now follow this trend and defineproductsof on-
tologies, where the intent invert the contraction induced
by taking a quotient, and thereforeexpandthe original on-
tology. Towards that end taking a quotient resulted in two
things: first, all entities in the sub ontology were identified
as onenewentity, and all properties that involved those
entities were now associated with thisnewentity. Thus
to reverse the effect of a quotient, we select a point, that
we call a pivot point that we replace with another ontol-
ogy and re-direct all properties associated with the previ-
ous pivot point to all other entities of the second ontology.
Our formal definition follows.

Definition 10 (Pivoted product of ontologies).Suppose
A = (CA, P A, CNA, IA, INA) and B = (CB , P B , CNB ,
IB , INB) are schema ontologies andc∗ ∈ CA a class inA.
Then we define the product ofA andB pivoted aroundc∗, say

9

(C, P, CN, I, IN), denoted byAbc∗cB as follows.

C = CA \ {c∗} ∪ CB

P =

P A \ {p ∈ P A | domain(p) = c∗ ∨
range(p) = c∗} ∪⋃{pc′ | ∃p ∈ P A, domain(p) = c∗,

domain(pc′) = c′ andc′ ∈ CB} ∪⋃{pc′ | ∃p ∈ P A, range(p) = c∗,

range(pc′) = c′ andc′ ∈ CB}

CN(x) =

CNB(x) if x ∈ P B

CNA(x) if x ∈ P A, dom(x) 6= c∗,

range(x) 6= c∗

nc′ wherenc′ is a new name forc′ ∈ CB

Thus, the pivoted cartesian product of two ontologies
collects the entities sans the pivot point of its two con-
stituents as the entities of the pivot product. Then it re-
places every property that has the pivot point with a set
of newrelations that relates the entity that is not the pivot
point to every entity in the second ontology. The objec-
tive here is to ensure that the pivoted product produces the
maximal possible properties between the entities that are
not the pivot and the elements replacing the pivot, stated
and proved in the next lemma.

Lemma 6.1 (Quotient-Product theorem).SupposeB =
(CB , PB , CNB , IB , INB) is a schema sub ontology of
the ontologyA = (CA, PA, CNA, IA, INA), A/B =
(C,P, CN, I, IN) is their quotient andc ∈ C is some
entity inC, c 6∈ CA. Then the following holds.

A vS (A/B)bccB
Proof Sketch: Let O = A/BbccB. We give the proof
by showing that AvS O, i.e., CA ⊆ CO, PA ⊆ PO,
CNA = CNO ¹ CA.

By definition, CX/Y = CX\CY ∪ {c∗} (c∗ 6∈ CX)
andCXbccY = CX\c ∪ CY . ThereforeCO = CA\CB ∪
{c∗}\{c} ∪ CB = CA ∪ {c∗}\{c}. Now, sincec 6∈ CA,
thereforeCA ⊆ CO. Similarly, computingPO, CNO we
can show in a straightforward manner thatPA ⊆ PO,
CNA = CNO ¹ CA. ¥
Example 5 (Quotient/Product). Quotient and pivot
product operations can contract and expand RDF graphs,
therefore, ideal for scenarios where domain information
from several sources need to combined into a single ontol-
ogy [13, 35]. For instance, consider the case where infor-
mation about different types of vehicles, like, cars (mak-
ers: Ford, GM); trucks (makers: Ford, Toyota) and buses
(maker: Mitsubishi) need to be combined or distributed.
Using a modular approach, a design decision is made to
incorporate individual ontologies into atop ontology. In
the most simplistic case, we define acore vehicle ontol-
ogy as:
C0 = {Auto, Car, Truck, Bus} and

P0 = {autoType}
The property ‘autoType’ relates ‘Auto’ to ‘Car’, ‘Truck’
and ‘Bus’. Next assume eachdomain ontology expresses
the domain knowledge as a separate ontology. Now, using
pivot product on the elements ‘Car’, ‘Truck’ and ‘Bus’ the
domain ontologies can be combined with the core ontol-
ogy. For example, ‘Car’ ontology can capture details on
gasoline based internal combustion engines, say a multi-
point injection or number of cylinders for different makers
or their models, whereas, ‘Bus’ ontology captures details
on compression based internal combustion engines, while
a truck ontology can accommodate both. As an illustra-
tion, consider following types with members and the re-
sulting schema with usual meanings.

C CC
0 = {Cname, gasEngine, cylinders, injctMech}; PC

0 =
{eType, hasCyl, hasInjctn}

B CB
0 = {Bname, cmpEngine, compRatio, displacement};

PB
0 = {detail, hasRatio, hasdispt}

T CT
0 = {Tname, Engine, horsePower}; PT

0 = {EngDetail,
power}

A product of core and domain ontologies can be com-
puted, and would involve ‘car’, ‘truck’ and ‘bus’ replaced
by C, T and B respectively. Similarly, in a reversal of
steps, taking a quotient of the combined ontology with re-
spect any domain ontology would give the combined on-
tology sans the particular domain ontology. Quotients
can also be computed with respect to any other substruc-
ture of the combined ontology.

We now use morphisms to define merge operation
that constructs a new ontology from the ontologies that
contain the image and co-image of a homomorphism.
As usual, we differentiate between schema merging and
merging of the the complete ontology. Merge operations
have two other flavors: the intensional merge,i.e., equat-
ing classes, instances and properties related through a ho-
momorphism, and the extensional merge,i.e., equating
ontological elements based on their structures. Both types
of merge involve fusing the equated elements, while main-
taining the graph structures in both the component ontolo-
gies. We first define afusedclass, property and instance
before defining the operations.

Definition 11 (Fused Elements).SupposeA = (CA, P A,
CNA, IA, INA) and B = (CB , P B , CNB , IB , INB) are
schema ontologies and(fC , fP , gC , gP) be a morphism from A
to B. Then for every pair of classes, properties or instances re-
lated through the homomorphism we say that they are intension-
ally equal up to the homomorphism, i.e., c::CA =mrph fC(c),
p::PA =mrph fP (p), etc. (In the following, we omit subscript of
= symbol to reduce clutter). Each component of the pair can be
mapped to a fused set as follows.

Fused ClasszC : If c::CA = fC(c) = d::CB , then zC(c)
= zC(d) = {c,d} and CN(zC(c)) = CN(zC(d)) =
{CNA(c),CNB(d)}

10

Fused PropertyzP : If p::PA = fC(p) = q::PB , thenzP (c)
= zP (d) = {p,q} and CN(zP (p)) = CN(zP (q)) =
{CNA(p),CNB(q)}

Fused InstancezI : If x ∈ c :: CA (respp :: P A) = gC(c)
(resp gP (p))= y ∈ d :: CB (resp q :: P B), then
zI(x) = zI(y) = {x,y} and CN(zI(x)) = CN(zI(y))
={CNA(x),CNB(y)}

Definition 12 (Intensional merge).

Schema Merge SupposeA = (CA, P A, CNA, IA, INA)
andB = (CB , P B , CNB , IB , INB) are schema ontolo-
gies and(fC , fP) be a schema morphism from A to B.
Then we define the intensional schema merge of A and B,
say (C, P, CN, I, IN), denoted A⊕ B, as follows:

C1 = {c :: CA|∃d :: CB , d = fC(c)}
C = (CA ∪ CB \ C1)) ∪zC(C1)

P1 = {p|p = c1 × c2, (c1 ∨ c2 ∈ dom(fC) ∪ ran(fC))}

P2 = {p|

p = c1 × c∗2 ∧ ∃p = c1 × c2 ∧ c2 ∈
dom(fC) ∪ ran(fC) andc∗2 = zC(c2)

p = c∗1 × c2 ∧ ∃p = c1 × c2 ∧ c1 ∈
dom(fC) ∪ ran(fC) andc∗1 = zC(c1)

p = c∗1 × c∗2 ∧ ∃p = c1 × c2 ∧ c1, c2 ∈
dom(fC) ∪ ran(fC) andc∗1 = zC(c1)

c∗2 = zC(c2)

P3 = {p|p ∈ (dom(fP) ∪ ran(fP))}
P4 = {zP (p)|p ∈ (dom(fP) ∪ ran(fP))}
P = (P A ∪ P B ∪ P2 ∪ P4) \ (P1 ∪ P3)

CN(x) =

CNA(x) if x ∈ CA ∧ x 6∈ dom(fC)

CNB(x) if x ∈ CB ∧ x 6∈ ran(fC)

CNA(x) if x ∈ P A ∧ x 6∈ dom(fP)

CNB(x) if x ∈ P B ∧ x 6∈ ran(fP)

CN(zC(x)) if x ∈ (dom(fC) ∪ ran(fC))

CN(zP (x)) if x ∈ (dom(fP) ∪ ran(fP))

I =

x ∈ c :: CA if x ∈ c :: CA ∧ x 6∈ dom(fC)

x ∈ c :: CB if x ∈ c :: CB ∧ x 6∈ ran(fC)

x ∈ z(c) if x ∈ c :: CA ∧ x ∈ dom(fC)

x ∈ z(c) if x ∈ c :: CB ∧ x ∈ ran(fC)

IN = IN

Instance Merge In this case, the morphism is an instance ho-
momorphism, therefore, IA, IB , and INA, INB are fused in
a similar manner using gC and gP instead. The instance
merge is represented as A⊗ B.

Definition 12 captures the cases where homomor-
phisms or mappings are used to identify ‘similar’ ele-
ments across ontologies and then fused together to yield
a single ontology. Essentially, this involves replacing a
class in either ontology by its fused class, a property by its
fused property and an instance by its fused instance. Also,
all the properties that were earlier connecting classes that

are now fused have to be reconnected to the fused class in
the merged ontology. The above definition achieves this
by identifying those properties and replacing them.

Next we define the extensional flavor of merge oper-
ation. Here, elements of an ontology,i.e., classes, and
properties areequatedbased on their structure. In other
words, classes and properties are equalup to their ex-
tensions. Clearly, this means that the two ontologies ei-
ther share the same instances or their instances have al-
ready been fused using some other means. We define
extensionally fused elements using(ΓC , ΓP) mappings.
In other words, if c::CA = d::CB , i.e., c and d are struc-
turally equal, then they are fused together. Similarly,
structural equality can be used to define fused elements
for properties. As expected,ΓC(c) = ΓC(d) = {c, d}
with CN(ΓC(c)) = CN(ΓC(d)) = {CNA(c), CNB(d)}. ΓP

achieves fusion for properties.

Definition 13 (Extensional merge). SupposeA = (CA,
P A, CNA, I, IN) andB = (CB , P B , CNB , I, IN) are on-
tologies. We define the extensional merge of A and B, say (C, P,
CN, I, IN), denoted A] B, as follows:

C1 = {c|
{

c :: CA,∃d :: CB , c = d}
c :: CB ,∃d :: CA, c = d}

C = (CA ∪ CB ∪ ΓC(C1)) \ C1

P1 = {p|p = c1 × c2, (c1 ∈ C1 ∨ c2 ∈ C1)}

P2 = {p|

p = c1 × c∗2 ∧ ∃p = c1 × c2 ∧ c2 ∈ C1

andc∗2 = ΓC(c2)

p = c∗1 × c2 ∧ ∃p = c1 × c2 ∧ c1 ∈ C1

andc∗1 = ΓC(c1)

p = c∗1 × c∗2 ∧ ∃p = c1 × c2 ∧ c1, c2 ∈ C1

andc∗1 = ΓC(c1), c
∗
2 = ΓC(c2)

P3 = {p|
{

p :: P A,∃p′ :: P B s.t.p = p′}
p :: P B ,∃p′ :: P A s.t.p = p′}

P4 = {ΓP (p)|p ∈ P3}
P = (P A ∪ P B ∪ P2 ∪ P4) \ (P1 ∪ P3)

CN(x) =

CNA(x) if x ∈ CA ∧ x 6∈ C1

CNB(x) if x ∈ CB ∧ x 6∈ C1

CNA(x) if x ∈ P A ∧ x 6∈ P3

CNB(x) if x ∈ P B ∧ x 6∈ P3

CN(zC(x)) if x ∈ C1

CN(zP (x)) if x ∈ P3

In addition, if x∈ c::CA then x∈ ΓC (c) or if x ∈ d::CB then x
∈ ΓC (d). Finally, IN remains unchanged.

Example 6 (Schema Merge).Consider again the ontolo-
giesOa andOb introduced in example 3. Following list
recaps the schema elements in each ontology:

– Ca
0 = {university, school, employeeID}

– P a
0 = {academics, employed}

11

– Cb
0 = {organization, department, eid, site}

– P b
0 = {subdivision, payroll, location}

– P b
1 = {reportsAt}

Assume next a scenario where an organization wishes to
share university data on employees in different schools.
The schema need to be merged according to the following
understanding:

• employeeID inOa is the same as eid inOb

• employed inOa is the same as payroll inOb

• school inOa is the same as department inOb

Using these rules a homomorphism is constructed with
following mappings:

fC(school) = department

fC(employeeID) = eid

fP (employed) = payroll

Fused classes and properties are given as

zC(school) = {school, department}
= zC(department)

zC(employeeID) = {employeeID, eid}
= zC(eid)

zP (employed) = {employed, payroll}
= zP (payroll)

Based on the equivalence classes, it is easy to see that
the mergeOa ⊕Ob is given as:

– Ca⊕b
0 = {university, {school, department},

{employeeID, eid}, organization, site}
– P a⊕b

0 = {academics,{employed, payroll}, subdivi-
sion, location}

– P a⊕b
1 = {reportsAt} ¤

6.1 Algebraic properties

In this section we explore simple algebraic properties of
the operations introduced in the previous section. We be-
gin with the usual laws of union, complement and inter-
section, i.e., commutative union, commutative intersec-
tion, distributive union, distributive intersection,etc.

Lemma 6.2. For all ontologies A, B and C∈ U, the fol-
lowing statements hold:

1. commutative union: A∪ B = B ∪ A

2. associative union: A∪ (B∪ C) = (A ∪ B)∪ C

3. commutative intersection: A∩ B = B ∩ A

4. associative intersection: A∩ (B∩ C) = (A ∩ B)∩ C

5. distributive union: A∪ (B∩ C) = (A ∪ B)∩ (A∪ C)

6. distributive intersection: A∩ (B∪ C) = (A ∩ B)∪ (A∩ C)

7. Absorption: A∩ (A∪ B) = A

8. Absorption: A∪ (A∩ B) = A

Proof Sketch:
1. By definition, A ∪ B = 〈CA∪B ,PA∪B , CNA∪B ,
IA∪B , INA∪B〉, with CNA∪B = CNA ∪ CNB and
INA∪B = INA ∪ INB . Also by definition,CA∪B is
given (inductively) byCA∪B

i = CA
i ∪CB

i , andPA∪B by
P A∪B

i = P A
i ∪P B

i . Similarly,IA∪B = IA∪IB . But, by
the commutativity of set union, each of the sets obtained
are the equal to those obtained byB ∪A.

Similarly, rest of the proofs are shown by the analogous proper-
ties of sets.

Lemma 6.3 (Merge). For A,B and C∈ U, the following
identities hold:

1. If homomorphisms are injective then following operations
are commutative:
• A⊕ B = B⊕ A
• A⊗ B = B⊗ A
• A] B = B] A

2. Idempotence:
• A⊕ A = A
• A⊗ A = A
• A] A = A

Proof Sketch:

1. Commutativity:Since homomorphisms are injective,
and surjective on the set of elements that is a restric-
tion to the image of the homomorphism. More pre-
cisely

c
fC−−→ d

then

d
f−1

C−−−→ c

HencezC(c) = zC(d) = {c,d} for both fC and
f−1
C . Similarly, fused properties and instances are

the same for injective homomorphisms. Secondly,
domain(fC) = range(f−1

C); range(fC) = domain(f−1
C).

Similar equality holds for fP , gC and gP . Therefore,
the set of fused classes, properties and instances is
identical for both L.H.S and R.H.S. Next, by defi-
nition, and set commutativity, the set of properties
of merged ontology in the L.H.S. is identical to the
set on the R.H.S. Same holds for the schema and in-
stance naming mappings. Therefore in each case,
i.e., ⊕,⊗,], the merged ontology on the L.H.S is
identical to the one on the R.H.S.

2. Idempotent: The homomorphism under considera-
tion is an endomorphism. Due to absorption in sets,
fused elements are identical to their counter images
underz or Γ. Also, an endomorphism is an isomor-
phism, therefore, by arguments given above the re-
sult holds for all three cases –⊕,⊗,]. ¥

12

Lemma 6.4 (Subontology).For ontologies A, B and C∈
U, following identities hold:

• If A v B thenA⊕ C v B ⊕ C

• If A v B thenA⊗ C v B ⊗ C

• If A v B thenA] C v B] C

Proof Sketch: By definition, Av B impliesCA ⊆ CB ,
PA ⊆ PB andCNACB ¹ CA. Therefore for each of the
three cases –⊕,⊗,], we must show that

CA op C ⊆ CB op C , P A op C ⊆ P B op Cand

CNA op C = CB op C ¹ CA op C

whereop substitutes for either of⊕,⊗ and]. Informally,
by definition for each operatorop, the set of classes in
merged ontology Aop C is CA ∪ CC \ (range(fC) ∪
domain(fC)) ∪ zC(A). By a similar token, andCA ⊆
CB , it is easily shown thatCA op C ⊆ CB op C . Simi-
larly, other parts are shown in a straightforward manner.
¥
7 Comparison with existing algebras

7.1 Query Algebras

Several proposals for RDF Query algebra exist and here
we compare our algebra to operators defined in earlier
works. Prominent ones include RQL [17], SquishQL [21],
TRIPLE [33], RDQL [31], SeRQL [4], SPARQL [30],
LAGAR [8], etc. We give an overview of operators in
some of these proposals and evaluate them with respect
to algebra presented here.

LAGAR supersedes most of the earlier proposals, so
next, we make detailed comparisons with this work. From
a similarities standpoint, both algebras consider only
closed operators that can be composed (we give additional
proofs of this statement). A basic difference between the
two algebras is in modeling of RDF. LAGAR employs
‘flat’ graphs, whereas as our graphs are layered to accom-
modate reified schemas. So, we support a larger class of
RDF graphs. Mappings between two LAGAR graphs are
sub-group isomorphisms,i.e., they preserve the structure
of mapped triples. Our mappings are relaxed to be non-
injective, but have to be properly typed. Thus, they can
themselves be captured as ontologies in the same universe
of ontologies. Next major difference is the absence of a
predefined universe of elements, therefore, interpretations
of admitted set-based operations are not well founded.
Specific comparisons follow.

(σ, π) Since LAGAR is a query algebra, it includes
the usualselectionandprojectionoperators, which
we don’t currently provide. These operators are
based onschema-assistedpattern graph matching
on the knowledge base and restricting the resul-
tant graphs to a set of output nodes. Since we in-
terpret primitiverdf properties, like,rdf:type ,

rdfs:subClassOf , we can compute semantic-
aware paths.

(×, join) For product two graphs are connected at their
rootsthrough a commonsuper node. In comparison,
our product is graph expansion operation, which can
be applied to any node of a schema. LAGAR uses
intensional equality forjoin operations, whereas, we
support multiple types of equality – name, structural
and location equality.

(union, intersection, difference) Union, intersection
and difference are defined as component-wise set
union of graphs with, presumably, intensional equal-
ity. However, the semantics of these operations
can possibly be non-well founded. In comparison,
our intensional union and intersection operators have
well-founded semantics.

(merge) Merge operation is defined as a union after re-
moval of ‘identical’ blank nodes from one of the
graphs. This amounts to deleting some properties in
one of the graphs before a (intensional) set union is
performed. In contrast, our merge operation relates
two ontologies through a homomorphism, and struc-
turally aligns or fuses them.

(Construction and functional operators) Inserting
nodes, edges, deleting them and changing their
values are termed as construction operators in
LAGAR. We model these through quotient and
product operations that add sets of nodes and edges
while preserving or recovering original structure.
Functional operators are not modeled.

Other related query algebra exist and we revisit only
specific portions that are different from LAGAR. For in-
stance, algebra proposed in SquishQL [21] is a subset of
RQL’s query algebra. Similarly, SeRQL [4] providesse-
lect andconstructoperators, which, essentially, provide
similar functionality as SquishQL. However, construct
can reverse the structure of some triples, and cause struc-
tural mismatches between the input and output graphs,
therefore, not modeled here. SeRQL supports reification
– same as us; and some schema-awareness in matching
path patterns, which we can support.

Finally, RQL’s query algebra provides a type system for
RDF, just like we do here. However, their type system
supports a very limited form ofreification, which they
call property refinement, whereas through our recursive
countable types we support it completely. Their algebra
consists of RDF counterparts of relational operators like
select, join, etc., most of which are subsumed in LAGAR.

7.2 Ontology Integration

In this section we compare the algebra we present to
existing ontology-combination implementations like Chi-
maera [20], Ontomorph [7], onion [22], Prompt [26],etc.

13

Each of the discussed techniques are semi-automatic ap-
proaches towards ontology merging or alignment and are
focussed at constructing software tools that can be used
to combineindependently developed ontologies. In con-
trast, the approach taken here is to develop a systematic
mathematical theory for ontology combination. Hence,
we ignore the engineering aspects and focus on the math-
ematical aspects only.

Smart [25] describes combination operations, without
formally defining them, as follows.Mergeis stated as an
operation that takes as input two schemas and computes
a single schema with similar classes and properties fused
together.Alignment, on the other hand, combines the two
input ontologies without fusing them together,i.e., the two
ontologies maintain their separate identities after align-
ment, with the addition ofbridgesor links built across
the two, identifying similar elements. Finally, they also
describe atranslationbetween ontologies,i.e., a schema
isomorphism. But, the authors discount the feasibility of
isomorphisms between ontologies. Each of these opera-
tions are formally defined and modeled by us. Smart (and
its descendant Prompt [26]) discovers ‘equal’ or similar
items algorithmically, through name matching,i.e., they
only use intensional equality theory. Operations on on-
tologies are restricted to primitive element copies, like
merge, shallow-copy, deep-copy,etc. In contrast, Chi-
maera proposes both intensional and extensional equality
criteria for discovering ‘equal’ elements, which we for-
mally define here. Again, they ignore structural details
and formalisms and focus mainly on strengthening their
matching algorithm.

The ONION project [22, 23] provides another alge-
bra for ontology composition. However, it is limited
in comparison to our algebra. These limitations include
the absence of a predefined universe that prevents well
founded interpretations of objects. ONION skirts this is-
sue by restricting to the syntax alone, without formally
going into the semantics of their proposed syntax. Also,
ONION does not accommodate reified schemas. A fun-
damental component of ONION is thearticulation ontol-
ogy that represents (subsumption) relationships between
the source ontologies. In essence, articulation ontology is
similar to our homomorphic ontologies, though:
• ONION allows subsumption relationships between

classes in the source ontologies, as well as their col-
lections. We do not model subsumption between
classes in different ontologies.

• ONION allowsHorn Clauserules for expressing re-
lationships between ontologies, without interpreting
them. We restrict to mappings only.

• We distinguish between schema and instance level
homomorphism and, consequently, between schema,
instance and name equality of source ontologies.
ONION does not address these issues.

ONION’s graphs can be transformed using primitive
node addition, node deletion, edge addition, and edge
deletion operations on graphs. In our approach, we
define more standard product and quotient operators to
fuse/extricate graphs to/from existing graphs. Next we an-
alyze their algebraic operations on graphs:

• Unary operatorsfilter andextractthat are similar to
relational algebra select, project operations. Cur-
rently we do not provide these operators.

• Binary operatorsintersect, union, differenceuse ar-
ticulation rulesAR to construct new ontologies.
More specifically,

– The intersection operation generates an articu-
lation ontology graph that contains nodes that
appear in articulation rules; edges in the source
ontologies that connect nodes appear in the ar-
ticulation rules; and the new edges generated
by the articulation rules. Union combines the
source ontologies while using an articulation to
‘equate’ nodes. Difference includes nodes and
edges of the first ontology that are not in the
second one.

– We define these operations as type-based in-
tersection of classes, properties, and instances,
where elements are equal (for finding dupli-
cates in a set) if they are name-wise equal. We
also support flavors of merge operation.

In our work, we can capture most of the expressed
operations and requirements algebraically. For instance,
we provide intensional and extensional schema (and in-
stance) merge operations for capturing merge operations
discussed above. Similarly, alignments, or articulations
are captured in homomorphic ontologies. In fact, ho-
momorphic ontologies capture much more information
that the earlier proposals miss. In addition, we describe
the standard intensional and extensional set union and
intersection operations, homomorphisms, substructures,
product and quotients. Thus, we supply a fairly well-
developed algebra for ontologies and show how these op-
erations are useful in real world applications.

8 Conclusion
In this paper we develop an algebra for composing on-
tologies. We review related work in detail in section 7,
but most of earlier proposals are focussed on the prac-
tical aspects of ontology combination, with limited the-
oretical or conceptual understanding of issues involved.
As a result, they fail to precisely state the details of the
combination operations they describe, even though con-
siderable work has undergone to formalize the underly-
ing objects they work with. Consequently, it is difficult
for a reader to realize the subtle differences between the

14

various combinatorial operations described in the litera-
ture. Hence, there is a need to develop a theoretical ba-
sis to precisely define combinatorial operations, allowing
consumers of knowledge representation to realize bene-
fits and drawbacks of each technique. Thus, with a set of
basic operations, like, intensional union/intersection, quo-
tients, intensional/extensional merge, pivot products,etc.,
readers can reduce any operation in the literature to the
combination of these basic operations.

In addition to filing this gap in knowledge representa-
tion, we also formally define countably reified RDF state-
ments. We achieve this task through a recursive count-
able type representation for reified statements that assigns
them layered semantics more general than the stratified
semantics presented by Pan and Horrocks [28]. Thus we
enhance the state of the art in formalizing RDF. It is our
hope that these contributions will help remove ambigui-
ties that currently exist in the field.

References

[1] P. Aczel. Non-well-founded sets, volume 14 ofLecture
Notes. CSLI, 1988. (See page 11).

[2] Y. Breitbart, P. L. Olson, and G. R. Thompson. Database
integration in a distributed heterogeneous database system.
In Proceedings of the Second International Conference
on Data Engineering, February 5-7, 1986, Los Angeles,
California, USA, pages 301–310. IEEE Computer Society,
1986.

[3] D. Brickley and R. Guha. Resource Description Frame-
work (RDF) Schema Specification 1.0: RDF schema.
W3C workding Draft, 2003.

[4] J. Broekstra and A. Kampman. Serql, a second generation
RDF query language. InSWAD-Europe Workshop on Se-
mantic Web Storage and Retrieval, Amsterdam, Nov 2004.

[5] T. Burners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, May 2001.

[6] H. Chalupsky. Ontomorph: A trans-
lation system for symbolic knowledge.
http://www.isi.edu/ hans/ontomorph/presentation/ on-
tomorph.html.

[7] H. Chalupsky. Ontomorph: A translation system of sym-
bolic logic. In KR2000: Principles of Knowledge repre-
sentation and reasoning, pages 471–482, 2000.

[8] L. Chen, A. Gupta, and M. E. Kurul. A semantic-aware
RDF query algebra. In12th International Conference on
Management of Data (COMAD), Hyderabad, Dec 2005.

[9] P. P. Chen. The Entity-Relationship Model - Toward a Uni-
fied View of Data. ACM Transactions on Database Sys-
tems (TODS), 1(1):9–36, 1976.

[10] U. Dayal and H.-Y. Hwang. View definition and general-
ization for database integration in a multidatabase system.
IEEE Transactions on Software Engineering, SE(10):628–
645, Nov 1984.

[11] R. Diestel.Graph Theory. Springer-Varlag, 1997. Gradu-
ate texts in Mathamatics 173.

[12] B. C. Grau. A possible simplification of the semantic web
architecture. InWWW 2004, pages 17–22. ACM, May

2004.
[13] B. C. Grau, I. Horrocks, O. Kutz, and U. Sattler. Will my

ontologies fit together? In2006 International Workshop
on Description Logics - DL2006, 2006.

[14] B. C. Grau, B. Parsia, and E. Sirin. Working with multi-
ple ontologies on the semantic web. InProceedings of the
Third Internatonal Semantic Web Conference (ISWC2004).
Volume 3298 Lecture Notes in Computer Science., 2004.

[15] T. Gruber. What is an ontology. available at http://www-
ksl.stanford.edu/kst/what-is-an-ontology.html.

[16] P. Hayes. RDF semantics. W3C workding Draft, February
2003.

[17] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plex-
ousakis, and M. Scholl. RQL: a declarative query language
for RDF. In11th international world wide web conference
(WWW02), pages 592–603, May 2002.

[18] M. Klein. Combining and relating ontologies: an anal-
ysis of problems and solutions. In A. Gomez-Perez,
M. Gruninger, H. Stuckenschmidt, and M. Uschold, ed-
itors, Workshop on Ontologies and Information Sharing,
IJCAI’01, Seattle, USA, Aug. 4–5, 2001.

[19] K. J. Kunen.Set Theory. North Holland, Reprint edition,
December 1983.

[20] D. L. McGuinness, R. Fikes, J. P. Rice, and S. Wilder. An
environment for merging and testing large ontologies. In
KR2000: Principles of Knowledge representation and rea-
soning, pages 483–493, 2000.

[21] L. Miller, A. Seaborne, and A. Reggiori. Three imple-
mentations of SquishQL, a simple RDF query language.
In International Semantic Web Conference (ISWC), pages
399–403, 2002.

[22] P. Mitra and G. Wiederhold.An Ontology-Composition
Algebra, pages 93–117. International Handbooks on Infor-
mation Systems. Springer-Verlag, handbook on ontologies
edition, 2004.

[23] P. Mitra, G. Wiederhold, and M. Kersten. A graph ori-
ented model for articulation of ontology interdependen-
cies. In Conference on extending database technology
(EDBT 2000), March 2000.

[24] W. Y. Mok. A comparative study of various nested normal
forms. Knowledge and Data Engineering, 14(2):369–385,
2002.

[25] N. Noy and M. Musen. Smart: Automated support for
ontology merging and alignment. InTwelth Workshop
on Knowledge Acquisition, Modeling, and Management,
Banff, Canada, 1999.

[26] N. F. Noy, M. A. Musen, and E. Shortliffe. PROMPT: algo-
rithm and tool for automated ontology merging and align-
ment. In17th National conference on artificial intelligence
(AAAI-2000), 2000.

[27] J. Pan and I. Horrocks. RDFS(FA) and RDF MT: Two
semantics for RDFS. In D. Fensel, K. Sycara, and J. My-
lopoulos, editors,Proc. of the 2003 International Seman-
tic Web Conference (ISWC 2003), number 2870 in Lecture
Notes in Computer Science, pages 30–46. Springer, 2003.

[28] J. Pan and I. Horrocks. RDFS(FA) and RDF MT: Two
semantics for RDFS. In2003 International Semantic Web
Conference (ISWC 2003), pages 30–46, 2003.

[29] C. Parent and S. Spaccapietra. Issues and approaches

15

of database integration.Communications of the ACM,
41(5es):166–178, May 1998.

[30] E. Prud’hommeaux and A. Seaborne. SPARQL query lan-
guage for RDF. http:/www.w3.org/TR/rdf-sparql-query,
Apr, 2005.

[31] A. Seaborne. A query language for RDF.
http:/www.w3.org/Submission/2004/SUBM-RDQL-
20040109, 2004.

[32] A. Sheth and J. Larson. Federated database systems
for managing distributed, heterogeneous, and autonomous
databases. ACM Computing Surveys, 22(3):183–236,
September 1990.

[33] M. Sintek and S. Decker. Triple, an RDF query, inference
and transformation language. InDeductive databases and
knowledge management (DDLP), 2001.

[34] G. Stumme and A. Maedche. FCA-MERGE: Bottom-up
merging of ontologies. InWorkshop on Ontologies and
Information Sharing, IJCAI’01, pages 225–234, 2001.

[35] R. Volz, D. Oberle, and A. Maedche. Towards a Modu-
larized Semantic Web. InWorkshop on Ontologies and
Semantic Interoperability, July 2002.

16

