
XACML Policies for Exclusive Resource Usage

Vijayant Dhankhar, Saket Kaushik, and Duminda Wijesekera

Department of Information & Software Engineering
George Mason University
Fairfax, VA 22030, U.S.A

{vdhankha | skaushik | dwijesek}@gmu.edu

Abstract

The extensible access control markup language (XACML) is the standard ac-
cess control policy specification language of the World Wide Web. XACML does
not provide exclusive accesses to globally resources, and we do so by enhancing
the policy execution framework with locking.

1 Introduction
The extensible access control markup language (XACML) [17] is the standard lan-
guage to specify accesses to resources available on the world wide web. However,
XACML normative specifications lack necessary syntax to specify exclusive access to
resources, and no exforcement framework provides so. Given that new web services
can be constructed by composing and orchestrating existing ones using languages such
as BPEL [15]), concurrent request for resources on the WWW can occur. For exam-
ple, updating an XML schema requires exclusive write access. We enahnce XACML
syntax and enforcement mechanism using locks.

Perils of not using a synchronization mechanism (such as the dirty read [20] in
distributed systems) in exclusive accesses are well known. Consequently, we advo-
cate to make a distinction in granting exclusive access and non-exclusive accesses by
access controllers. Thus we add appropriate syntax to XACML and an enfofrcement
mechanism using locks. Consequently, if and when granted, the access control pol-
icy is aware that such permissions are exclusive. This enrichment to XACML has no
relationship to application level concurrency control, but not surprisingly, due to the
enforced semantic distinction between exclusive and non exclusive acccesse, aids in
enforcing separation of duty principles [11, 8, 9, 19].

To enforce enhanced XACML policies, we add a lock manager to the policy en-
forcement module and require that all globally accessible resource register with unique
lock manager. In order to ensure starvation avoidence, we assume that resource re-
questers give up such resource after their usage - although this is beging made policy
driven in our ongoing work.

The rest of the paper is organized as follows. Section 2 has related work. Section 3
presents sample Use Cases for exclusive access. Syntactic extensions to XACML ap-

pear in Section 4 and Section 5 details the architectural enhancements and some imple-
mentation details. Section 8 concludes the paper.

2 Related Work
Motivated by a desire to to introduce trust-based, context-aware access control frame-
work for Web Service invocations, including support for RBAC sessions, Bhatti et al.,
et al. [4, 6, 5, 7] define X-RBAC and X-GTRBAC models for access control frame-
works for Web Services, respectively based on RBAC [11] and GTRBAC [13] models
of access control. However, they do not provide mechanisms to enforce dynamic sep-
aration of duty (DSoD) policies, which exists in current XACML RBAC profile [16].
Cardea by Lepro et al [14] offers a dynamic access control system for the Web, where
the dynamism means that the request is not bound to local identities at runtime, but
instead uses a remote requester’s context instead. However, Cardea does not explicitly
address concurrent access to exclusively used resources nor dynamic separation of duty
policies.

3 Use Cases, Misuse Cases and Requirements
Although some existing work on Web Services orchestration argues the need to lock
shared resources [3, 12], to the best of our knowledge they only reserving syntax for
locks [3]. Following Use Cases show the need.

confirm/deny

Client

Vacation Packages

Airlines

Hotel

search

query RESULTS

SEARCH

select Result

Vacation Planning Service

bank Confirmation
resultprocess

payment

Figure 1: Vacation Planning Service

3.1 Use Case 1: exclusive access

Consider an example, vacation planning service (VPlanner) that reserves hotel rooms
and air tickets for its clients, whose workflow is given in figure 1 [22]. As seen, this
interactive service is used to first searches for available rooms and air tickets for spec-
ified dates and destinations and presents various alternatives to its clients, from which
the latter chooses alternative for reservations. The service then initiates a monetary
transfer request to the credit granting agency. On success, the room(s) and air tickets
are reserved and aborted otherwise. An efficient implementation should invoke air-
line and hotel room searches concurrently, while, work-flow dependencies require that
monetary transfer request should wait till other parts of the procedure are complete.

Now, suppose two clients are searching for reservations from the VPlanner and are
shown the same tickets and hotel rooms. This is potentially dangerous because both
can choose the same room or ticket, where simultaneous requests can deadlock two

BPEL server processes. One way of avoiding this situation is to not offer a second
client the choices while a precedent client s in the process of reserving a package - thus
requiring the VPlanner to lock rooms and tickets during ongoing reservations, referred
to as tentative locking of resources in the Web Services literature [3].

3.2 Use Case 2: enforcing dynamic constraints
Example 1 (DSoD [8]). Consider a DSoD constraint an employee cannot invoke role 1 in
a session if another role, role 2, is already invoked in some other session. Assuming a data
structure maintained by the system ‘sessions’ with following XML schema:

<user id="ID">
<sessions>
<session id="123123">

<role name="role1"/>
<role name="role3"/>

</session> ...
</sessions>

</user>

An abbreviated DSoD XACML policy as follows:

1<Rule RuleId="DSoD:role1-role2:requirements" Effect="Deny">
2 <!-- SoD Rule for Example 1 (begin) -->
3 <Target>
4 <Subjects>
5 <AnySubject/>
6 </Subjects>
7 <Resources>
8 <AnyResource/>
9 </Resources>

10 <Actions>
11 <Action>
12 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
13 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">activate-role</AttributeValue>
14 <ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names

:tc:xacml:1.0:action:action-id"/>
15 </ActionMatch>
16 </Action>
17 </Actions>
18 </Target>
19 <!-- SOD check -->
20 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:seperationOfDutyCheck">
21 <!-- sessions -->
22 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:getSubjectSessions">
23 <!-- subject-id -->
24 <AttributeSelector RequestContextPath="//Request/Subject/Attribute[1]/AttributeValue/text()" DataType="http:/

/www.w3.org/2001/XMLSchema#string"/>
25 </Apply>
26 <!-- role-id -->
27 <AttributeSelector RequestContextPath="//Request/Resource/Attribute[2]/AttributeValue/text()" DataType="http://

www.w3.org/2001/XMLSchema#string"/>
28 <!-- comma delimited set of conflicting roles -->
29 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">role1,role2</AttributeValue>
30 </Condition>
31</Rule>

Policy 1: DSoD policy

Example 1 above is a DSoD policy expressed in terms of the XACML RBAC pro-
file [16], where as stated in lines 20-30, role 1 and role 2 cannot be co-activated. How-
ever, this policy is not currently enforceable because XACML enforcement does not
consider concurrent requests. To be fair, the XACML RBAC profile out sources the
process of enabling roles to the Role Enablement Authority module.

3.3 Use Case 3: enforcing history based constraints

This use case enables evaluation of history based constraints in XACML specifying
that current access to a resource is contingent upon the history of earlier accesses. A
classic example is that of a Chinese Wall policy [8], expressed in XACML in example
2.

Example 2 (Chinese Wall [8]). Consider the following history-based constraint – an em-
ployee cannot service a request from company B if (s)he has already serviced a request by com-
pany A. We assume the existence of a system resource – service-history, as the following:

<employee accountId="emp-ID">
<service-history>
<service-id="svc-id" >

<client-id>client-id</client>
<completed>date</completed>

</service-id>
</service-history>

</employee>

An abbreviated XACML policy that specifies history based constraint is as follows:

1 <Policy xmlns= ...
2 PolicyId="ChineseWall:Policy"
3 RuleCombiningAlgId="&rule-combine;deny-overrides">
4 <Rule RuleId="CW:COI-A-vs-B:" Effect="Deny">
5 <Target>
6 <Subjects>
7 <Subject>
8 <SubjectMatch
9 MatchId="&function;checkHistory">>

10 <AttributeValue
11 DataType="&xml;anyURI">
12 Company-A
13 </AttributeValue>
14 <SubjectAttributeDesignator
15 AttributeId="&history;service-history"
16 DataType="&xml;anyURI"/>
17 </SubjectMatch>
18 </Subject>
19 </Subjects>
20 <Resources>
21 <AnyResource/>
22 </Resources>
23 <Actions>
24 <Action>
25 <ActionMatch
26 MatchId="&function;anyURI-equal">
27 <AttributeValue
28 DataType="&xml;anyURI">
29 &actions;serviceRequest
30 </AttributeValue>
31 <ActionAttributeDesignator
32 AttributeId="&action;action-id"
33 DataType="&xml;anyURI"/>
34 </ActionMatch>
35 </Action>
36 </Actions>
37 </Target>
38 </Rule>
39 </Policy>

Policy 2: Chinese Wall policy

Example 2 above shows a conflict of interest XACML policy stating that an em-
ployee cannot service a request from company B if (s)he has already serviced a request
from company A. The policy enforcement mechanism should check the history of ser-
vice (lines 6-19) before authorizing any request involving company B. If the service
history update operation is interleaved with service checkHistory operation, an incor-
rect authorization may execute. Clearly, this requires that read/write access to history
of employee service records be synchronized for correct evaluation of the policy, and
is not enforced currently.

Our design enables the following Use cases:

Secure registration of resources: A resource may register itself to a unique lock man-
ager.

PIP

9a. Resource

Manager
Lock

Key
Bold: additions

requester 2.Access request

PAP

PEP

1. Policy

3. Request

6. atrb query

8. Attributes

4.Request

11.decision
10.Response

12. Response

13. Obligations
Access

Resource

Subjects Environment

Obligations
service

Context
handlerPDP

7a sub. atrbs
7b. env. atrbs

7c. resource atrbs

9b. Update
5a,5b,5c Request

9c.acquireLock

Figure 2: Extended XACML data flow diagram

Secure deregistration of resources: Only a resource is able to securely deregister it-
self from the lock manager.

Exclusive access /relinquish resources: Exclusive use of a resource must be granted
to a uniques requester at a time.

3.4 Preventing Misuse Cases

Our design prevents following Misuse Cases:

Registering a resource with multiple lock managers: An exclusively usable resource
being registered with multiple lock managers, referred to as atomic registration.

Spoofing a resource: Others (de)registering an exclusively accessible resource.

Preventing simultaneous exclusive access: Multiple requesters simultaneous access-
ing an exclusively usable resource.

4 Enhancing the XACML syntax
Because, our solution for exclusive usage is locking, we enhance XACML syntax for
locks. Each of the following elements are specified within <Rule/>, <Policy/>
and <PolicySet/> elements of XACML.

– <PreAction /> specifies a set of locks to be acquired before rule evaluation.

<AcquireLocks /> specifies a set of locks to be acquired and is a sub element of
<PreAction/> element, where the <AcquireLock> sub element specifies an
individual lock.

– <PostAction /> identifies a set of actions to be performed after (a) rule evaluation
leads to a permitted request, (b) rule evaluation leads to a denied request. The set of
actions may include releasing locks or updating system resources. For different evaluation
results multiple <PostAction /> elements may be defined.

Effect attribute indicate the effect of a post action, as discussed above.

<Updates /> specifies updates to be performed in a <PostAction/>. <Update>
sub element specifies an individual change.

<ReleaseLocks /> specifies a set of locks to release and is a sub element of <PostAction/>
element. <ReleaseLock> sub element specifies an individual lock.

Introduced elements specify lock acquisition prerequisite for evaluating a rule and
post evaluation steps to be taken. The following example policy extends policy 1 with
proposed syntactic enhancements.

1<Rule RuleId="DSoD:role1-role2:requirements" Effect="Deny">
2 <PreAction>
3 <AquireLocks>
4 <AquireLock>
5 <!-- sessions -->
6 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:getSubjectSessions">
7 <!-- subject-id -->
8 <AttributeSelector RequestContextPath="//Request/Subject/Attribute[1]/AttributeValue/text()" DataType="

http://www.w3.org/2001/XMLSchema#string"/>
9 </Apply>

10 </AquireLock>
11 .
12 .
13 .
14 </AquireLocks>
15 </PreAction>
16 .
17 . <!-- DSoD Rule in Example 1 -->
18 .
19 <PostAction Effect="Permit">
20 <Updates>
21 <Update>
22 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:addRoleToSession">
23 <!-- role-id -->
24 <AttributeSelector RequestContextPath="//Request/Resource/Attribute[2]/AttributeValue/text()" DataType="

http://www.w3.org/2001/XMLSchema#string"/>
25 <!-- session-id -->
26 <AttributeSelector RequestContextPath="//Request/Resource/Attribute[3]/AttributeValue/text()" DataType="

http://www.w3.org/2001/XMLSchema#string"/>
27 <!-- sessions -->
28 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:getSubjectSessions">
29 <!-- subject-id -->
30 <AttributeSelector RequestContextPath="//Request/Subject/Attribute[1]/AttributeValue/text()" DataType="

http://www.w3.org/2001/XMLSchema#string"/>
31 </Apply>
32 </Apply>
33 </Update>
34 .
35 .
36 .
37 </Updates>
38 <ReleaseLocks>
39 <ReleaseLock>
40 <!-- sessions -->
41 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:getSubjectSessions">
42 <!-- subject-id -->
43 <AttributeSelector RequestContextPath="//Request/Subject/Attribute[1]/AttributeValue/text()" DataType="

http://www.w3.org/2001/XMLSchema#string"/>
44 </Apply>
45 </ReleaseLock>
46 .
47 .
48 .
49 </ReleaseLocks>
50 </PostAction>
51</Rule>

Policy 3: Enhancements to DSoD policy

The PreAction element in lines (3-12) of policy 3 above states that before evalu-
ating a rule in the DSoD policy, the user session must be locked (lines 5-10). Similarly,
PostAction element in lines (16-42) requires that after the policy has been evalu-
ated, the locks acquired earlier be released for future concurrency-free changes to user
sessions. We assume here that resources are not created during XACML evaluation
(they already exist and are registered with a lock manager), however their usage status,
i.e., open for read/write, etc., may be modified during a policy evaluation. For example,
an XACML evaluation can modify a log file, etc.

4.1 Implemented semantics of syntactic extensions

Postaction elements are intended to be evaluated in the following manner.

– Post action can only update resources for locks obtained at the corresponding
level or those obtained at the level of the container.

– If two rules within a policy require same lock then they must be acquired and
released at Policy level. Such locks are visible within all embedded rules. Sim-
ilarly, if a lock is acquired at the Policy Set level then it is visible to all
embedded policies.

– If a resource must be updated in multiple rules, then corresponding lock must be
acquired at their container level, i.e., Policy.

– Rule evaluation within a Policy element must be evaluated by a single thread
of execution.

– If locks are required at only the rule level, they must be released at the rule level
<PostAction/>, otherwise, they must be released at the <Policy/> level
<PostAction/>

4.2 XACML functions

In order to extend the policies with our syntactic extensions, we use the following
functions:

function:getSubjectSessions($subject-id as string) Accepts a subject-id as an input
and returns a bag of session objects used by this subject. If the subject’s ses-
sions have been acquired by PDP through exclusive access, i.e., locked, then the
sessions can be cached till the lock to the sessions is released.

function:addRoleToSession($role-id as string, $session-id as string, $sessions as bag)
Accepts role-id, session-id and a bag of sessions as input and it adds the passed
role to the particular session. Sessions data structure contains all the sessions
and session-id is used to locate the relevant session in the current implementa-
tion. More efficient implementations are possible.

5 The extended architecture
Figure 2 shows the existing XACML execution model with data flow for policy control
[17]. The data flow begins with the Policy Administration Point (PAP) that authors the
policies evaluated by the XACML framework, shown in Flow 1. Next, access requests
(Flow 2), initiated by resource requesters, are intercepted by the Policy Enforcement
Point (PEP). PEP forwards them, Flow 3, to the Context Handler (CH) with optional
requester attributes and environmental conditions required for processing. Context han-
dler has following three functions:

– Flow 4: Translate access requests into a format understood by the Policy Deci-
sion Point (PDP).

– Flow 10: Generate the context for policy evaluation (response to Flow 5), by
gathering resource and requester attributes along with the current state of the
system from the policy information point (PIP) (Flow 6,7,8 and 9), and pass
them to the PDP.

– Flow 12: Receive policy decisions from the PDP and translate them back to the
PEP.

PDP evaluates an XACML policy applicable to the access request and accompany-
ing context. If the evaluation fails, the access is denied, and granted otherwise. This
decision is made available to the context handler (Flow 11) and relayed to the PEP for
enforcement.

Figure 2 shows the extended XACML data flow diagram that introduces a lock man-
ager (LM) to augment XACML access control decisions. Lock Manager is an entity
that grants and revokes locks for accessing resources registered with itself, requiring
extra data flows in the extended framework as follows:

Flow 5b: Update System Request (USR) Update system request may be initiated by
the PDP to update system resources for setting up an access. For instance, en-
abling a role may require that user session – a system resource – be updated with
the role added.

Flow 5c: Create Lock Request (CRL) This request is initiated by the PDP on behalf
of the requesting process – whenever the requesting process asks for exclusive
access to an available resource. This is finally refined to acquireLock operation
(9c.), where, the lock is owned by the requesting process.

Flow 10: Response to PDP queries (overloaded) We reuse the response sent by the
context handler to the PDP queries for sending USR and CRL responses in ad-
dition to resource query response.

Flow 9b: Resource update, 9b. The PEP upon enforcing the access control decision,
updates an internal resource for a log of accesses. This data flow ensures that
XACML policies can now support access control decisions based on history of
resource usage.

Flow 9c: AcquireLock, 9c. Instructs the LM to invoke a lock on behalf of a requester.
Based on the availability of a resource, this operation may succeed or fail.

As in normative XACML specification, here we assume that all attributes have
been authenticated (using attribute certificate authenticity) prior to policy evaluation.
We discuss the additional complexity due to these addition later in section 5.2. First,
we describe the Lock Manager design.

5.1 Lock Manager (LM)

The Lock Manager (see figure 2) is a privileged process that, at any given time, has only
a single instance running. Lock Manager maintains and creates locks for resources it
manages. The functionality of the Lock Manager that provides and maintains locks is
summarized below:

Lock Acquisition Simple lock acquisition method is used to obtain simple lock on a
resource. This can be used for history-based policies.

Lock Verification Simple lock verification method can be used to verify the validity
of the simple lock, that is, the lock is recognized by the lock manager as being
owned by the rightful owner. s

Release Lock Release lock method is used to relinquish active locks.

5.1.1 Lock acquisition

Lock acquisition is an atomic operation that cannot be interleaved. That is, testing if a
lock is available and acquiring it, should both be done in a single atomic operation, akin
to the unix test&set operation [21]. The LM implements a Service, called acquire-
Lock, to achieve this. We associate two strings – requesterId and resourceId
– with the acquireLock operation. These strings can be qualified names or URIs of
network entities. Lock acquisition requests must be initiated and mediated by XACML
policies to ensure that entities with privileges to acquire lock alone will get their re-
quests serviced. The actual call is made by the lock manager within an synchronized
critical section (as shown in section 6).

5.1.2 Releasing a lock

Lock revocation is an atomic process implemented as the service releaseLock. As
before, releaseLock is a secure operation (akin to kernel primitive in unix), that is
implemented by the LM privileged process. Again, XACML policies are required to
ascertain whether a release lock request is valid, i.e., only those release requests that
are initiated on the behest of corresponding lock owners are serviced.

5.1.3 Verifying a lock

verifyLock operation verifies the validity of a lock presented to it when it is ‘in-
voked’ for usage. The execution model states that for every resource update must be
preceded by a call to verifyLock.

verifyLock is invoked by the resource manager for verifying the validity of a
lock. This is essential to ensure that resource update request is a valid and the update
has been generated by the entity that ‘holds’ a corresponding lock. The execution

Key:
Bold font: additions

PDP Handler

Request Handler

Attribute Request

3. Incoming Request 12. Response

PDP

PEP

5a. Attribute Query

4.Request Notice

10. Query response

11. Response Context

3. Receive request

12. Prepare response

i. Preliminary lock(s) on
system resource(s)

4. Request Notice
5a. Attribute Query

10. Attribute, Lock
5c. Create Lock request

11. Response

8. PIP Response
6. PIP attribute query

Resources

PIP

9a. Resource content
9b. Resource update

9c. AcquireLock

6. Attribute Query

8. Attribute

9a. Resource content

ii. Release system locks
iii Update other resources
iv Communicate response

5b. Update System

5c. CreateLock
9b. Resource update

9c. AcquireLock

Update System

Lock Request

PostProcessor

Preprocessor

5b. Update System request

Context Handler

Figure 3: Context Handler

model is that a requester gets the lock and at the time of resource usage, it presents the
locking permission to the manager of that resource, that in turn verifies the validity of
the presenter claim with the lock manager and or PDP.

5.1.4 Registering with a single LM

Registration of a resource with a single lock manager is a basic design requirement. We
achieve this by requiring an attribute certificate. That is, each resource is assigned (by
a local certificate authority) an X.509 attribute certificate [10] that ties the resource to a
single Lock Manager. (We assume readers are familiar with X.509 attribute certificates.
Additional information on these may be found in RFC 3281). During the registration
and deregistration phase, this attribute certificate serves the dual purpose of:

1. Authenticating the resource to the Lock Manager

2. Identifying resource’s handling lock manager.

5.2 Extensions to the context handler

In this section we present two extensions required to a context handler to support the
additional use cases, namely, resource pool bootstrapping, termination and mainte-
nance, i.e., performing atomic registration, atomic deregistration, etc., and extending
the business logic for additional functionality.

5.2.1 Resource pool maintenance

Here we extend the design of a context handler to support lock manager bootstrapping
and maintenance of the resource pool. The algorithms in this section are written in
pseudo code, with ‘–>’ symbol indicating a call to a sub-module within the context
handler.

Secure registration of resources
One of the stated misuses is multiple registration of a resource with one or more

lock managers. It is possible that multiple concurrent registration requests are invoked
by a resource. To prevent the misuse, we need to ensure that only one among many
such requests succeeds. To do so, we introduce the secure registration of resource
procedure. Secure registration begins with a registration request by a resource. The
input message to this request identifies (a) the resource, and (b) the lock manager, by
an attribute certificate. This request is serviced according to the sequence of steps given
in figure 3, shown in algorithm 1 below.

1 register(R,C,LM)
2 Inputs: R(resource), C(certificate), LM(lock manager)
3 Output: Lock information, Exception
4
5 Translate request to XML document
6 Pass translated XML to PDP Handler
7 -->Invoke PDP to verify R,C and LM
8 if (decision == accept)
9 Lock Request for lock to global.lock

10 -->Acquire lock to global.lock
11 Update System Request for variable
12 -->Create variable lock.R
13 if (lock.R NOT IN global.lock)//
14 Assign lock.R.subjectID = ""
15 Insert lock.R in global.lock
16 Assign message = lock.R
17 Hand request to PostProcessor
18 -->Lock Request for release lock
19 -->Release lock
20 Return request+message to Request Handler
21 else
22 Assign exception = Already Registered
23 Hand Request to PostProcessor
24 -->Lock Request for release lock
25 -->Release lock
26 Return request+exception to Request Handler
27 else
28 Assign exception = Invalid Request
29 Hand the request to PostProcessor
30 -->Return request+exception to Request Handler

Algorithm 1: Secure Registration

The register method accepts three inputs – R, the registering resource; C, its
attribute certificate, and LM, the Lock Manager. This request is handed to the ‘Request
handler’ module of CH by the PEP (line 5). The request handler translates the request
into XML and hands it to PDP handler for further processing (line 6). The PDP handler
invokes the PDP and processes the response (lines 7,8). If the decision is accept, a lock
is acquired (lines 9,10) and an update request is fired (line 11). Based on the success
of this call, lock is release and the relevant message is returned to the request handler
(lines 18-26). If PDP denies the register request, an appropriate response is constructed
as well (line 27-30).

Secure deregistration of resources
Similar to secure registration, deregistration of a resource requires locking support.

This is because of consistency requirements – a lock resource should not be deregis-
tered while in use. The process flow is as follows:

1 deregister(R,C,LM)
2 Inputs: R(resource), C(certificate), LM(lock manager)
3 Output: boolean, Exception
4
5 Translate request to XML document
6 Pass translated XML to PDP Handler
7 -->Invoke PDP to verify R,C and LM
8 if (decision == accept)
9 Lock Request for lock to global.lock

10 -->Acquire lock to global.lock
11 if (acquirelock()== false)
12 Assign exception = In use // no waiting!!
13 Hand request to PostProcessor
14 -->Send request+exception to Request Handler
15 else
16 if(lock.R IN global.lock && lock.R.subjectId="")
17 Update System Request
18 -->Assign global.lock = global.lock -lock.R
19 Assign message = true
20 Hand request to PostProcessor
21 -->Lock Request for release lock
22 -->Release Lock // will succeed
23 Return request+message to Request Handler
24 else
25 Assign exception = Does not exist/In use
26 Hand Request to PostProcessor
27 -->Lock Request for release lock
28 -->Release lock
29 Return request+exception to Request Handler
30 else
31 Assign exception = Invalid Request
32 Hand the request to PostProcessor
33 -->Return request+exception to Request Handler

Algorithm 2: Secure Deregistration

Similar to the register method deregister accepts the same three inputs
and securely removes the resource from LM. The difference here is that the update
request removes the lock from global lock data structure in a critical section (line 18).

5.2.2 Extending business logic

Gaining exclusive access to resources
Once a resource is registered, exclusive access to it can be guaranteed by a process

very similar to the above processes, as follows:

1 exclusiveAccess(R,S)
2 Input: R (resource), S (Subject)
3 Output: boolean, Exception
4
5 Translate request to XML document
6 Pass translated XML to Pre processor
7 -->Lock Request for lock to global.lock
8 -->Acquire lock to global.lock
9 if (acquireLock() == false)

10 Assign exception = In use // no wait
11 Hand Request to PostProcessor
12 -->Send Request+exception to Request Handler
13 else
14 Hand request to PDP Handler
15 -->Invoke PDP for authorizing S to R
16 -->Attribute Query for lock.R
17 -->Read lock.R
18 if(lock.R IN global.lock)
19 send lock.R to PDP
20 else
21 exception = resource unknown
22 Hand request to PostProcessor
23 -->Return Request+exception // to RH
24 if (decision == accept)
25 Update System Request
26 -->Assign lock.R.subjectId = S
27 Assign message = true //
28 Hand request to PostProcessor
29 -->Lock Request for release lock
30 -->Release Lock
31 Return request+message to Request Handler
32 else
33 Assign exception = Invalid Request
34 Hand the request to PostProcessor
35 -->Return request+exception to Request Handler

Algorithm 3: Exclusive access

The exclusiveAccess method invokes a similar CH workflow for granting
access to externally usable resources. The main difference here includes a call to the
pre processor module that acquires locks before beginning any PDP evaluation (lines
7-12). In addition, the PDP may query for lock attributes (lines 16-23). Finally, if the
request is granted, the lock manager is asked to update lock.R to indicate the new
owner (line 26).

Use resource: Exercising exclusive access, once a requester has gained such an ac-
cess to a resource, is a simple call to the resource (through the PEP). It is the resource’s
responsibility to ensure that the requester owns a valid lock to it. This is done by a
verifyLock call to the lock manager, of which the details are omitted due to lack of
space.

Guaranteeing dynamic/history-based constraints
Steps for enforcing dynamic constraints are as follows:

1 accessResource(R,S)
2 Inputs: R (resource), S (Subject)
3 Output: boolean, Exception
4
5 Translate request to XML document
6 Pass translated XML to Pre processor
7 -->Locate internal resources for the request
8 Lock Request for locks to all internal resources
9 -->while(more resources)

10 { Acquire lock } // locking phase
11 if (all locks acquired == false)
12 Assign exception = Cannot process // no wait
13 Hand Request to PostProcessor
14 -->Send Request+exception to Request Handler
15 else
16 Invoke PDP for authorizing S to R
17 Attribute Queries (optionally)
18 -->Read attribute
19 if(attribute present)
20 send attribute to PDP
21 else
22 exception = resource unknown
23 Hand request to PostProcessor
24 -->Send Request+exception to Request Handler
25 if (decision == accept)
26 Update System Request
27 -->while(more resources need updation)
28 { update ith resource }
29 Assign message = true //
30 Hand request to PostProcessor
31 -->Lock Request for releasing all locks
32 -->Release Lock
33 Return request+message to Request Handler
34 else
35 Assign exception = Invalid Request
36 Hand the request to PostProcessor
37 -->Return request+exception to Request Handler

Algorithm 4: Dynamic constraints

Release exclusive-use resource A resource requester can release a resource for which
it holds an exclusive use right. This again is a simple modification of algorithms pre-
sented above, of which the details are omitted due to lack of space.

6 Implementation
In this section we briefly present the salient features of our LM implementation. We
begin our discussion with LM-data structures to implement locks, followed by a sample
Java snippet and WSDL interaction to acquire locks.

1 <xs:element name="Lock"
2 type="xacml-context:LockType"/>
3 <xs:complexType name="LockType">
4 <xs:sequence>
5 <xs:element name="resourceId" type="xs:string"
6 minOccurs="1" maxOccurs="1"/>
7 <xs:element name="ownerId" type="xs:string"
8 minOccurs="0" maxOccurs="1"/>
9 </xs:sequence>

10 </xs:complexType>

Listing 1: The Lock Data Structure

Listing 1 shows the ‘LockType’ XML Schema (lines 3-10) that represents a lock for
a single shared resource. The data structure identifies the lock through a resourceID
and an ownerId. An available lock has ownerId as an empty string, while a locked
resource has a non-empty ownerId. Several such locks (one for each shared resource)
are stored in a global LM-data structure, called ‘GlobalLock’, i.e., a set of Locks,
shown next.

1 <xs:element name="GlobalLock"
2 type="xacml-context:GlobalLockType"/>
3<xs:complexType name="GlobalLockType">
4 <xs:sequence>
5 <xs:element ref="xacml-context:GlobalLockEntryType"
6 maxOccurs="unbounded"/>
7 </xs:sequence>
8</xs:complexType>

Listing 2: The Global Lock Data Structure

1 <xs:complexType name="GlobalLockEntryType">
2 <xs:sequence>
3 <xs:element name="resource" type="xacml-context:Resource"
4 minOccurs="1" maxOccurs="1"/>
5 <xs:element name="lock" type="xacml-context:Lock"
6 minOccurs="0" maxOccurs="1"/>
7 </xs:sequence>
8</xs:complexType>

Listing 3: The Global Lock Entry Type

The ‘Global Lock Entry Type’ data structure is essentially a means to store key-
value pairs, and more specifically, here is used to store a resource and its corresponding
lock.

1 <wsdl:message name="aquireLockRequest">
2 <wsdl:part name="correlationSet" element=
3 "xacml-context:CorrelationSet" />
4 <wsdl:part name="lock" element=
5 "xacml-context:Lock" />
6 </wsdl:message>
7
8 <wsdl:message name="lockResult">
9 <wsdl:part name="correlationSet" element=

10 "xacml-context:CorrelationSet" />
11 <wsdl:part name="result" element=
12 "xacml-context:LockResult" />
13 </wsdl:message>

Listing 4: Lock acquisition/response message

Listing 3 shows WSDL message definitions for ‘acquireLock’ request and the ‘re-
sult’ response.

1public class LockManager {
2
3// list of all the resources and locks
4public static Map GlobalLock = new HashMap();
5
6/**
7* Aquire a lock
8*/
9public static LockResult aquireLock (AquireLockRequest request) {

10
11 Lock lock = null;
12 boolean aquireSuccess = false;
13
14 // aquire global lock
15 synchronized (GlobalLock) {
16
17 // if lock already acquired or not registered then fail
18 if (GlobalLock.containsKey(request.getResourceId())) {
19 lock = GlobalLock.get(request.getResourceId());
20 if (lock==null) {
21 // if no locks exist on the resource
22 // then create a new resource
23 lock = new Lock();
24 lock.setOwnerId(request.getActorId());
25 lock.setResourceId(request.getResourceId());
26 GlobalLock.put(request.getResourceId(), lock);
27 aquireSuccess = true;
28 }
29 }
30
31 } // release the global lock
32
33 LockResult result = new LockResult();
34 if (!aquireSuccess) {
35 // couldnt aquire lock
36 result.setStatus("fail");
37 } else {
38 // lock aquired
39 result.setStatus("pass");
40 result.setLock(lock);
41 }
42 return result;
43}

Listing 5: AcquireLock method

Listing 5 shows a Java implementation of the AcquireLock method for ac-
quiring a lock to an existing resource. Java allows synchronization through exclusive
access to objects that we leverage upon in this implementation (line 17). In Line 16
we acquire exclusive access to the GlobalLock data structure till Line 33. In line 19
we check if the resource is registered with the Lock Manager. Line 21: We check if
the lock has already been granted, if not then we create a new Lock with the owner
and resource specified in request and add it to GlobalLock (Line 24-27). Finally af-
ter updating the GlobalLock we remove our exclusive access to it (Line 33) Line 35:
we create a result data structure. Line 36-43: we construct the result for the request
accordingly and return it in line 44.

7 Safety and Liveliness
Because we allow concurrent requests and locks to serialize access to ‘critical sections’
of the security monitor, we must ensure that we protect against stated (rather well-
known) misuses, requiring us to ensure liveliness and safety properties. In this section,
we informally argue that our framework ensures them.

Lemma 1. Given a resource poolR and a set of lock managers L, a resource Ri ∈ R
can only be registered with a single lock manager Lj ∈ L

Proof Sketch: Ensured by checking the attribute certificate mapping for Ri before reg-
istering it with any lock manager (algorithm 1, line 7). We assume a single certificate
authority to issue attribute certificates to all local resources.

Lemma 2. Given a resource Ri and a lock manager LK to which Ri can register itself,
register method ensures that Ri can be registered only once with LK .

Proof Sketch: register implementation (see algorithm 1) acquires a lock to global.lock
before updating it. This ensures that only a single registration request succeeds.

Lemma 3. Given a resource Ri and a lock manager LK to which Ri is registered,
deregister method ensures that only Ri can be deregister itself from LK .

Proof Sketch: deregister implementation (see algorithm 2) ensures this by check-
ing the attribute certificate (line 7).

Theorem 1 (Safety of the exclusive access:). Given an XACML policy P for exclu-
sive access to an available resource R and multiple concurrent access requests from
subjects Si, i ∈ [1, n] (i.e., exclusiveAccess(R, Si)), only one request from the
above set is authorized by P.

Proof: From lemma 1, the resource R is registered to a single lock manager, say
LK , and from lemma 2, there is a single lock, say lock.R, maintained by LK (in,
say global.lock data structure) corresponding to resource R. Now implementation of
exclusiveAccess (algorithm 3) ensures – (a) global.lock is locked (line 8) and
(b) lock.R is available (empty lock.R.subject string) (lines 16-19). The first step
ensures only a single access request gains access to lock.R and the second ensures that
the resource is available. Finally, (line 26) updates lock.R.subject string which
precludes any other access request from acquiring the same lock.

Theorem 2 (Safety of dynamic constraints:). Given an XACML policy P for dynamic
constraint for access to a resource and multiple conflicting access requests (accessResource(R, Si)),
then P authorizes only one request.

Proof: Similar to that of Theorem 1.

Theorem 3 (Liveliness1:). Given a resource R and an exclusive use access request by
subject S exclusiveAccess(R,S)), then policy evaluation will release locks to
all internal resources irrespective of the access control decision.

Proof Sketch: The proof is straightforward from the implementation of exclusiveAccess,
because the implementation releases all locks before the method terminates.

Theorem 4 (Liveliness2:). Given resources x, y and an exclusive use access requests
by subject S exclusiveAccess(x,S) followed by exclusiveAccess(y,S))
and concurrent exclusive use access requests by subject T exclusiveAccess(y,T)
followed by exclusiveAccess(x,T)), then at-least one of the exclusive access re-
quests is denied by policy evaluation and all locks acquired for that policy evaluation
are released.

Proof Sketch: The proof is straightforward from the implementation of exclusiveAccess,
because the implementation releases all locks before the method terminates.

Liveliness2 is achieved by the absence of while loops in acquire lock
method. This ensures that deadlocks for exclusive access don’t occur.

8 Conclusion
The current XACML framework has emerged as the default access control specifica-
tion language and enforcement mechanism for the applications supported by the World
Wide Web [1, 2, 18]. But XACML does not currently support three types of access
control use cases, viz., ensuring exclusive access to globally available resources, pre-
venting access to a resource given a concurrent conflicting use of another resource
(DSoD constraints), and preventing access to a resource given a history of conflicting
access (Chinese Wall constraints). In this paper we extend XACML syntax for sup-
porting the above-mentioned use cases. We enhance its framework with a new module,
called the lock manager, to realize the additional use cases, and also informally argue
that safety and liveliness properties are ensured by our implementation.

References
[1] Entrust. http://www.entrust.com/.
[2] Vordel. http://www.vordel.com/.
[3] B. Benatallah, F. Casasti, F. Toumani, and R. Hamadi. Conceptual modeling of web service

conversations. Technical Report HPL-2003-60, HP Laboratories Palo Alto, March 2003.
[4] R. Bhatti, E. Bertino, and A. Ghafoor. A trust-based context-aware access control model

for web services. In 2nd IEEE International Conference on Web Services (ICWS), July
2004.

[5] R. Bhatti, J. B. D. Joshi, E. Bertino, and A. Ghafoor. Access control in dynamic XML-
based web services using X-RBAC. In First International Conference on Web Services (
ICWS), June 2003.

[6] R. Bhatti, J. B. D. Joshi, E. Bertino, and A. Ghafoor. X-GTRBAC admin: A decentralized
administration model for enterprise-wide access control. In 9th ACM Symposium on Access
Control Models and Technologies (SACMAT), June 2005.

[7] R. Bhatti, J. B. D. Joshi, E. Bertino, and A. Ghafoor. X-GTRBAC:an xml-based policy
specification framework and architecture for enterprise-wide access control. ACM Trans-
actions on Information and System Security (TISSEC), 8(2), May 2005.

[8] D. Clark and D. Wilson. A comparison of commercial and military computer security
policies. In IEEE Symposium on Security and Privacy, pages 184–194, Oakland, April
1987.

[9] D. Clark and D. Wilson. Evolution of a model for computer integrity. In Eleventh National
Computer Security Conference, Baltimore, October 1988.

[10] S. Farrell and R. Housley. RFC 3281- an internet attribute certificate, April 2002.
[11] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed nist

standard for role-based access control. ACM Transactions on Information and System Se-
curity, 4(3):224–274, August 2001.

[12] S. Haddad, P. Moreaux, and S. Rampacek. Client synthesis for Web Services by way of a
timed semantics. In 8th International Conference on Enterprise Information Systems, May
2006. ICEIS 06.

[13] J. B. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-based access
control model. IEEE Transaction on Knowledge and Data Engineering, 17(1), January
2005.

[14] R. Lepro. Cardea: Dynamic access control in distributed systems. Technical Report NAS-
03-020, NASA Advanced Supercomputing (NAS) Division, NASA Ames Research Center,
Moffet Field, CA, Nov 2003.

[15] OASIS. Business process execution language for web services, May 2003.

[16] OASIS. Core and hierarchical role based access control (rbac) profile of xacml
v2.0. http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-rbac-profile1-spec-
os.pdf, Feb 2005.

[17] OASIS. Extensible access control markup language, Feb 2005.
[18] RFC 2753. A framework for policy-based admission control.
[19] R. S. Sandhu. A lattice interpretation of the chinese wall policy. In Proc. 15th NIST-NCSC

National Computer Security Conference, pages 329–339, 1992.
[20] A. S. Tanenbaum and M. v. Steen. Distributed Systems: Principles and Paradigms. Prentice

Hall, 2002.
[21] A. S. Tannenbaum. Modern operating systems. Prentice-Hall Inc., Englewood Cliffs, NJ,

1992.
[22] F. Tartanoglu, V. Issarny, N. Levy, and A. Romanovsky. Dependability in the web service

architecture. In ICSE Workshop on Architecting Dependable Systems, Orlando, FL, May
2002.

