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Abstract. We introduce the problem of query consolidation, which seeks
to interpret a set of disparate queries submitted to independent data-
bases with a single “global” query. This problem has multiple applica-
tions, from improving database design to protecting information from a
seemingly innocuous set of apparently unrelated queries. The problem
exhibits attractive duality with the much-researched problem of query
decomposition, which has been addressed intensively in the context of
multidatabase environments: How to decompose a query submitted to a
virtual database into a set of local queries that are evaluated in individ-
ual databases. We set the new problem in the architecture of a canonical
multidatabase system, using it in the “reverse direction”. The process in-
corporates two steps where multiplicity of solutions must be considered:
At one point the system must infer the most likely set of equi-joins for a
set of relations; at another point it must discover the most likely selection
constraints that would be applied to a relation. In each case we develop
a procedure that ranks solutions according to their perceived likelihood.
The final result is therefore a ranked list of suggested consolidations.

1 Introduction

Consider an individual who submits a set of queries to different databases, and
then, off-line, consolidates the information obtained in a “big answer” of some
sort. Because the information this user requires is dispersed over multiple data-
bases, the user is forced into a laborious process of submitting individual queries
to different databases and then correlating and assembling the information off-
line. Discovering a single interpretation for his entire query set may help suggest
how information could be reorganized to facilitate similar tasks in the future. In-
deed, the main argument for constructing virtual databases has always been to
provide in a single source all the information necessary for a particular task [16].
Thus, discovering interpretations for distributed query sets may suggest useful
reorganizations and consolidations, either physical or virtual.

As an analogy, consider a shopping center with multiple stores, and assume
that an analysis of sale records shows that within a small time interval, the same



customer purchased a box of candy in one store, gift-wrapping paper in another,
and a greeting card in a third. A global interpretation of this local information
may suggest that service could be improved if these three items where to be sold
in the same store. Similarly, query consolidation may suggest redesign of available
information sources to correspond more efficiently to popular information needs.

A different, though not entirely unrelated, reason for interpreting query sets,
in either the distributed or centralized cases, is user inexperience or ignorance.
In the distributed case, the user might be submitting a set of queries to different
databases and correlating them off-line, when the same goal could be achieved by
accessing a single database. In the centralized case, the user might be submitting
a set of small queries and assembling them off-line, when the same goal could
be achieved with a single query, perhaps using a feature of which the user is not
aware. A query consolidation analysis may suggest flaws in the way the system
is advertised or in the training of its users. This application is reminiscent of
other systems that track user behavior and suggest improvements, such as office
software or on-line stores.

Returning to the analogy of the shopping center, the reason for the individual
purchases could be that the customer may be trying to hide his overall purpose.
Accordingly, a possible application of query consolidation is surveillance and
security: A consolidated query discloses the intentions of the user posing the
queries. While the elucidation of these intentions from consolidated queries is a
task for human experts, a query consolidation system can do the preparatory
work. Since there could be a large number of users each with multiple queries,
the function of the query consolidator will be to sift through the logs, compile
likely consolidations, and present them to the expert for judgement. A variety of
options are available: The expert can focus on a single user and get a listing of
interests during a time period. Alternatively, trends can be analyzed across many
sources looking for intentions shared by a group of users. Query consolidation
can also be useful as a detection mechanism when the possible intentions and
the global queries that imply them are known in advance. Then, an operator
can set up the system so that certain information is on a watch-list and any
consolidation of queries that significantly overlaps that information is flagged
automatically by the system, along with the users who posed these queries. An
earlier attempt at security-inspired query consolidation, albeit using a different
approach, can be found in [2].

We propose to address the problem of interpreting distributed sets of queries,
by using the well-researched architecture of virtual databases [17]. Briefly, a vir-
tual database architecture integrates a set of local databases by means of a global
database scheme which is mapped into the local databases. A query submitted
to the virtual database (based on the global scheme) is decomposed into queries
against the local databases, and the corresponding answers are assembled in an
answer to the original query. The entire process is transparent to the user.

Query decomposition is summarized thusly: Given a global query Q, find local
queries Q1, . . . , Qn and an assembly expression E such that Q = E(Q1, . . . , Qn).



For our purpose here of interpreting a set of local queries, we adopt the same
architecture, but consider a process that is the reverse of query decomposition,
and which we name query consolidation: Given local queries Q1, . . . , Qn, find a
global query Q and expression E, such that the query decomposition procedure
will decompose Q into Q1, . . . , Qn using E, so that Q = E(Q1, . . . , Qn).

The main obstacle here is that whereas query decomposition is usually a
function (it is a deterministic process in which each query generates a unique
decomposition), it is not injective. That is, there could be multiple global queries
Q1, . . . , Qm and corresponding expressions E1, . . . , Em, such that the query de-
composition procedure will decompose Qi into Q1, . . . , Qn using Ei (for 1 ≤ i ≤
m).

Our approach to this new problem can be sketched as follows. We assume
that the independent databases to which queries are submitted have been in-
corporated into a virtual database system. Under assumptions of sufficiency
(the given query set includes all the information necessary to achieve the goal)
and necessity (it includes only information necessary to achieve the goal) we
“reverse” the query decomposition process. The process incorporates two steps
where multiplicity of solutions must be considered: At one point the system must
infer the most likely set of equi-joins for a set of relations; at another point it
must discover the most likely selection constraints that would be applied to a
relation. In each case we develop a procedure that ranks solutions according to
their perceived likelihood. The final result is therefore a ranked list of suggested
consolidations.

The focus of this paper is on the definition of the new problem and its
applications, its setting in a virtual database architecture, and the methodology
of its solution; detailed discussions of the algorithms, the software prototype,
and results of experimentation are largely omitted, for reasons of space. The
paper is organized as follows. Section 3 provides the formal framework for this
work, Section 4 details the solution methodology, and Section 5 concludes with a
brief summary and discussion of work in progress. We begin with a brief review
of related work.

2 Background

The work presented in this paper draws from a diverse range of subjects, includ-
ing information integrating systems (multidatabase systems) and query decom-
position, join inference, and association analysis.

2.1 Information Integration Systems

An information integration system combines information from a heterogeneous
collection of autonomous information sources. The integrating site is often re-
ferred to as global, and the individual sources are termed local. There have been
many different models and architectures for information integration systems. Of
interest to us here are systems that follow the architecture of virtual databases.



A virtual database has a database scheme (a global scheme), but no database
instance. Instead, it has information that maps the global scheme into schemes
of local databases. The materialization of a global query is done by translating
the query into multiple subqueries to be materialized at the local sources and
shipped back to the integrator for assembly. Virtual databases can be classified
by the type of their global-local associations [8]. This classification distinguishes
between architectures in which the local database schemes are defined as views
of the global scheme (termed Local-as-View or LAV), and architectures in which
the global scheme is defined as views of the local schemes (termed Global-as-View
or GAV). An example of the former type are The Information Manifold [11]. Ex-
amples of the latter type are SIMS [4], TSIMMIS [7] and HERMES [22]. The
architecture of Multiplex [17] is more powerful in that it associates views of the
global schema with views of the local schema’s. This hybrid approach earned the
term GLAV.

A primary concern in virtual database systems is the process of query decom-
position: The translation of a global query to a set of local queries. The main
problem here is the need to rewrite queries defined over relations to queries
over views of these relations (this is especially difficult for LAV systems) [8].
Optimization is also challenging because statistical information on local data is
often unavailable. Finally, the decomposition procedure may have to account for
temporary unavailability of some data, or multiple, inconsistent copies of other
data [19, 18].

One of the main obstacles to the usability of relational databases among naive
users is the difficulty of performing joins. Much effort has been invested over the
years to simplify this operation, often by inferring joins “automatically”. An
early endeavour in this respect was the universal relation model [13]. The uni-
versal relation model attempts to make the joins among relations in a database
transparent by automatically traversing the scheme through join dependencies.
Another approach to the problem of identifying the join path intended by the
user assumes the path with the lowest cost tends to be the correct answer [23,
15]. Here, the cost is computed by reducing the problem to a minimum directed
cost Steiner tree problem and edge costs are defined in terms of the cardinality
of the relationship. The Discover system, described in [9], uses keyword-based
queries. Once the keywords are located in the various relations of the database,
these relations are connected through their primary-foreign key relationships.
Another query interface, INFER [14], generates and ranks the top-k join possi-
bilities and allows the user to select the one intended before materializing the
query. The results are ranked by prioritizing shorter join sequences over longer
ones and lossless joins over lossy joins.

Association analysis or association rule mining has been an active field
for more than a decade. Association analysis mines a set of transactions in
a database to find rules that generalize the associations among the items in
the transactions. The major problem in association analysis has been the
complexity of finding frequent item sets in a set of transactions. While finding
individual items occurring frequently in the orders is rather trivial, when all



possible sets that can be built from these items are considered, the problem is
time consuming indeed. Hence, association analysis algorithms all aim to prune
the search space to manageable proportions. Most of these algorithms are based
on the fact that the frequency of occurrence of a set of items is anti-monotone
with respect to its subsets. Apriori [3], is an example of a breadth-first counting
algorithm. It is the first algorithm to utilize the anti-monotone property of
support. Apriori works in a breadth-first manner, counting each level in one
pass of the transaction database. It is therefore possible to prune any k-item sets
without counting them if any of their subsets are infrequent. If one requires only
the maximal frequent item sets, depth-first analysis tends to be faster in finding
the pruning boundary. Also, with maximal frequent item sets look-aheads and
neighbor branch pruning is also possible. A good example of an algorithm that
exploits these advantages is MAFIA [6].

3 Formal Framework

The formal framework for this research consists of three parts: (1) A statement
of the problem, (2) a description of a “generic” virtual database architecture
and query decomposition procedure, and (3) assumptions on the sufficiency and
necessity of the given queries for the overall goal.

3.1 The Problem

A virtual database architecture consists of a set of local databases D1, . . . , Dn,
a global database scheme D, and a mapping of the global scheme into the local
databases. The main service of this architecture is query decomposition:

Given a global query Q, find local queries
Q1, . . . , Qn and expression E such that Q =
E(Q1, . . . , Qn).

Query decomposition can be viewed as a function that assigns each query Q a
unique set of queries Q1, . . . , Qn and suitable assembly expression E.

The problem of query consolidation, which is the subject of this paper, is
defined as the reverse of the query decomposition problem:

Given local queries Q1, . . . , Qn, find global query
Q and expression E such that the query decompo-
sition procedure will decompose Q into Q1, . . . , Qn

using E, so that Q = E(Q1, . . . , Qn).

The solution to the problem as stated is not unique. That is, there could be
multiple global queries Q1, . . . , Qm and corresponding expressions E1, . . . , Em,
such that the query decomposition procedure will decompose Qi into Q1, . . . , Qn

using Ei (for 1 ≤ i ≤ m). We address this issue in Section 3.3.



3.2 The Multiplex Model for Virtual Databases

To solve the query consolidation problem we must adopt a virtual database
model. Many different architectures have been proposed for virtual databases,
and we adopt the Multiplex architecture [17]. The advantages of Multiplex that
are attractive include its simplicity and generality. Simplicity is due to the fact
that Multiplex assumes that all databases are in the well-known relational model,
without introducing any new concepts or structures. Generality is achieved by
the method in which the global and local databases are associated, namely by
arbitrary view pairs.

We begin by defining the language for all queries and views. We assume the
subset of the relational algebra defined by the operators selection, projection
and Cartesian product (SPC)1, with selections that are purely conjunctive. Al-
though this family of queries is a restricted subset of the algebra (i.e., it excludes
union, difference, non-conjunctive selections), it is often considered adequately
expressive for the large portion of queries used in the real world [12]. In has been
shown that any expression in this language can be written in the form2:

Q = πAσC(R1 ×R2 × . . .×Rn) (1)

Assuming expressions in this form often simplifies discussions and proofs.
A Multiplex database is:

1. A global database scheme D,
2. A set D1, . . . , Dn of local database schemes, and their associated database

instances d1, . . . , dn, and
3. A set (V1, U1), . . . , (Vm, Um) of view pairs, where each Vi is a view of the

global scheme D, and each Ui is a view of one of the local schemes.

Thus, the global database scheme D has no associated database instance. In-
stead, there is a collection of views of this scheme that are materialized using
the corresponding local views, i.e., the instance of the global view Vj is materi-
alized by the instance of the view Uj (in the appropriate local database).

Assume a virtual database as previously defined, and let Q be a query sub-
mitted to its scheme D. The decomposition of Q can be outlined in this 7-step
procedure:

1. Create a global relation scheme R for the Cartesian product operations in
Q.

2. Determine the views Vj that are relevant to Q (i.e., overlap with Q).
3. Construct queries Qi to retrieve from the corresponding local views Uj the

parts that are relevant to Q.
4. Evaluate Qi in the local databases, obtaining answers Ai.
5. Extend Ai with nulls, creating instances Āi of scheme R.
6. Coalesce the instances Āi to a single instance Ā.
1 Or, equivalently, selection projection, join, rename (SPJR).
2 See [1] for proof.



7. Apply Q’s selection and projection operators, yielding an answer A to the
query Q.

As described in step 3, the local query Qi retrieves only part of the view Uj .
If this cannot be accomplished due to local limitations, then Qi would have to
retrieve all of Ui, and the answer Ai would have to be processed to extract the
part relevant to Q.

3.3 Assumptions on Sufficiency and Necessity

We interpret the consolidating query Q as the goal of the user in submitting the
queries Q1, . . . , Qn. This assumes that the user is not using information obtained
elsewhere to achieve his goal. In other words, we adopt a principle of sufficiency:
The information in the local queries Q1, . . . , Qn is sufficient to achieve the goal,
and hence can be approximated by an appropriate consolidation.

Recall that we characterized query decomposition as a procedure with a
unique outcome. Consider a simple global query that retrieves a single value
such as a person’s age. Obviously, there could be multiple correct decomposi-
tions. For example, the local query Qi could retrieve just the person’s age; or it
could retrieve that person’s entire tuple, and the expression E would project the
age; or it could retrieve the tuples of multiple persons and E would select that
person’s tuple and project the age. The guiding principle of the query decom-
position procedure is to retrieve from the local databases as little as possible,
taking advantage of the local system’s query processing capabilities. This re-
duces possible costs charged by the local database, as well as the costs and time
of transmitting the data. Hence, the decomposition adopted is one that optimizes
the process.

A similar principle will guide our query consolidation procedure. In the pre-
vious example, assume a given local query Qi that retrieves tuples of multiple
persons. From this, one could conclude a global query Q that needs all this in-
formation; or one that selects a single tuple from the set; or one that extracts
the age of a particular person. A principle that guides the query consolidation
procedure is that of necessity: All the information given in the queries is assumed
to be necessary for the global query. The consolidation necessity principle is sim-
ilar to the decomposition optimality principle: both assume that all information
extracted from local databases is necessary, either to answer Q (decomposition)
or to conclude Q (consolidation).

We note that both assumptions are at times unjustified. The user may have
some additional information that may be instrumental in achieving his goal. Or
he may submit non-optimal queries that retrieve unnecessary information (or
he may be dishonest, attempting to to hide his true goals). We discuss such
situations in Section 5 where we outline on-going and future work.

Note that while the necessity principle limits the problem space considerably,
it does not generate unique consolidations. This issue is addressed next.



4 Methodology

In rough strokes, our overall approach may be sketched as follows. We assume
a virtual database is available that integrates local databases D1, . . . , Dn in a
global scheme D. Given local queries Q1, . . . , Qn, we follow a procedure that
roughly reverses query decomposition:

1. For each local query Qi, determine the views Uj that are relevant (that
overlap with Qi).

2. Process the answers Ai to obtain the part Āi that is within Uj .
3. In the virtual database, materialize the corresponding views Vj with the

answers Ai.
4. Populate the relations Rk with materialized views Vj .

As described in steps 1 and 2, it is possible that a local query Qi would not be
contained in a local view Uj , causing some data to be discarded when global
structures are populated. As this will decrease the effectiveness of the consoli-
dation, we assume that all local queries are contained in mapped views.

Let Rk be the global relations populated by at least one view Vj . These
relations must now be joined meaningfully. If a view Vj joins two (or more) of
these relations, then a join is implied. Hence, the relations Ri are clustered with
implied joins, but the clusters still need to be joined.

Assume now that a decision has been made on the remaining joins. A single
relation scheme is thus obtained. If it includes attributes that are not in any
of the views Vj , they are removed. Denote the resulting scheme R. The global
query Q is assumed to be embedded in R.

We now consider processing R by selection and projection, as the canonical
representation of Q suggests (Equation 1). The necessity assumption implies
that this relation should not be subjected to any selections based on constants,
as these should have been done in the local queries. Similarly, the necessity
assumption implies that this relation should not be subjected to projections, as
these could have been done in the local queries as well.3

The multiplicity of possible consolidations is therefore due to two sources:

1. The given relations may be joined in different ways.
2. The resulting relation could be subjected to different global selections (selec-

tions that compare attributes retrieved from different local queries).

We handle these issues consecutively. First, we generate all the possible join
plans and rank them according to plausibility. Then, for each join plan, we
suggest possible global selections, ranking them as well.

3 Possibly, some join attributes may not be required in the ultimate query Q, but we
shall ignore this possibility for now.



4.1 Inferring Joins

Upon materializing the views Vj from the received answers Ai, and then popu-
lating the relations Rk with these views, we find that a view may be contained
in a relation, or several views may be contained in the same relation, or a view
may span several relations. Consider the example in Figure 1: V1 spans relations
R1 and R2, both V2 and V3 are contained in R3, and V4 is contained in R4.
The task now is to join the relations that received data; all other relations are
ignored.

V1  

A1 A2

V2

A3 A4

V3

V4

R1 R2 R3 R4

Alternative Join Path

Discarded Join Path

Locked Join Path

Fig. 1. View Mapping and Join Paths

The global scheme contains information (essentially, foreign key constraints)
that establishes possible relationships among its relations. Figure 1 also shows
the relationships among the four relations. Initially, we ignore the relationships
that cannot be used because none of their attributes were materialized. These are
shown as dashed lines. Furthermore, any relations that are spanned by a single
view are considered to be joined unambiguously. Therefore, the join implied
by the spanning view is “locked” and all its alternatives (i.e., other join paths
between the two relations) are ignored. Thus, we obtain a graph in which vertices
are relations and edges are possible joins. The join graph for the example is given
in Figure 2. Locked joins are shown in bold lines.

A join plan is a tree that spans this graph.4 We can therefore obtain all the
possible join plans by enumerating the spanning trees in the join graph. To rank
these plans with respect to plausibility, we assign a score to each tree: We assign
a weight to each edge, and, as all spanning trees have the same number of edges,
the score of a tree is the sum of its edge weights. Mandatory edges indicating

4 Although join plans that include cycles are possible, we consider them to have low
plausibility.



R1 R2

R3 R4

Fig. 2. Join Graph

locked joins (such as the one between R1 and R2) are handled by merging their
two end vertices.

We now describe a method for assigning weights to edges, to indicate the
plausibility of the corresponding joins. Our fundamental assumption is that joins
over foreign keys are to be preferred, and when foreign key information is not
available, or when the data retrieved does not obey foreign key constraints,
extension-based relationships that most resemble foreign keys are to be pre-
ferred. Hence our method quantifies the levels to which attribute relationships
obey referential constraints. The method is based on the concept of entropy in
information theory.

Consider a relation R with attribute A, and let Dom(A) be the set of distinct
values in attribute A. The entropy of A is defined as

H(A) =
∑

i∈Dom(A)

−p(i) log2 p(i)

p(i) is simply the proportion of tuples in which it occurs. Intuitively, H(A)
measures the uniformity of the distribution of the values of A. Assuming n
distinct values, entropy ranges between 0 and log2(n). The maximal value cor-
responds to perfect uniformity of distribution (lowest information content); for
example, when dom(A) includes 4 distinct values, and each occurs 5 times, then
H(A) = log2(4) = 2. In this case, it is the number of bits required to represent
the values of dom(A). Hence, entropy is measured in bits. We define the entropy
of a relation R as the sum of the entropies of its attributes.

Assume now that attribute A is used to partition the tuples of R into several
non-overlapping sets (the tuples in each set have the same value of A), calculate
the entropy of each slice of the partition, and then average these slice entropies.
The value obtained is the average entropy of this partition by A:

HA(R) =

∑
i∈Dom(B) H(σA=i(R))

|Dom(B)|

In our case, assume attribute A participates in a join with an attribute from
another relation, say S.B. This join induces a partition of R by attribute A, and
the average partition entropy is therefore associated with that join. We refer to
this as posterior entropy. Finally, we combine the apriori entropy of R and its



posterior entropy in an expression that measures the relative entropy reduction,
or information gain, that can be attributed to the join:

IB(R) =
H(R)−HB(R)

H(R)

Note that a join between R and S on attributes A and B, respectively,
modifies the entropy of both R and S. That is, the join is associated with two
different information gain values: IB(R) and IA(S). We assign the higher of these
as the weight of the join edge.5

We illustrate these definitions with five short examples. Consider relations

R(A,B) = {(1, b1), (2, b2), (3, b3), (4, b4)}
S(A,C) = {(2, c1), (3, c2), (4, c3), (5, c4)}

and a join between R.A and S.A. It is a one-to-one matching and it results in
three tuples. Consider now the effect of the join on the entropy of S. Initially,
the entropy of the attributes of S are H(S.A) = 2 and H(S.C) = 2, and the
apriori entropy is therefore H(S) = H(S.A) + H(S.B) = 2 + 2 = 4. When the
join iterates over the four values of R.A it creates in S four slices: A = 1 creates
an empty slice, A = 2 creates {(2, c1)}, A = 3 creates {(3, c2)}, and A = 4
creates {(4, c3)}. Each slice has entropy 0 + 0 = 0, and the posterior entropy is
therefore HA(S) = (0+0+0+0)/4 = 0. Consequently, the information gain for
S from this join is IA(S) = (4− 0)/4 = 1. In this case, the information gain for
R from this join would be identical: IA(R) = 1.

As a second example, consider

R(A,B) = {(1, b1), (2, b2), (3, b3), (4, b4)}
S(A,C) = {(2, c1), (2, c2), (3, c3), (3, c4),

(4, c5), (4, c6), (5, c7), (5, c8)}

and a join between R.A and S.A. It is a one-to-many matching in which every
tuple of R matches zero or two tuples of S, and it results in six tuples. The apriori
entropy of S is H(S) = H(S.A) + H(S.B) = 2 + 3 = 5. When the join iterates
over the four values of R.A it creates in S one empty slice and three slices with
two tuples each: {(2, c1), (2, c2)}, {(3, c3), (3, c4)} and {(4, c5), (4, c6)}. The empty
slice has entropy 0, and each of the other three slices has entropy 0 + 1 = 1, and
the posterior entropy is therefore HA(S) = (0+1+1+1)/4 = 0.75. Consequently,
the information gain for S from this join is IA(S) = (5 − 0.75)/5 = 0.85. The
information gain for R from this join would be IA(R) = 1.

Next, consider a join between

R(A,B) = {(1, b1), (2, b2), (3, b3), (4, b4)}
S(A,C) = {(2, c1), (2, c2), (3, c3), (4, c4), (4, c5), (5, c6)}

5 The spanning tree algorithm uses the lower values to resolve ties.



It is a one-to-many matching in which tuples of R match different numbers of
tuples of S, and it results in 5 tuples. The apriori entropy is H(S) = 4.5 and
posterior entropy is HA(S) = 0.5. The information gain for S is IA(S) = 0.89.
The information gain for R would be IA(R) = 1.

Next, consider

R(A,B) = {(1, b1), (1, b2), (2, b3), (2, b4),
(3, b5), (3, b6), (4, b7), (4, b8)}

S(A,C) = {(2, c1), (2, c2), (3, c3), (3, c4),
(4, c5), (4, c6), (5, c7), (5, c8)}

It is a many-to-many matching in which every tuple of R relation matches zero
or two tuples of S. Both information gains are identical: IA(S) = 0.85 and
IA(R) = 0.85.

Finally, consider

R(A,B) = {(1, b1), (2, b2), (2, b3), (2, b4),
(3, b5), (4, b6), (4, b7), (4, b8)}

S(A,C) = {(2, c1), (2, c2), (3, c3), (3, c4),
(4, c5), (4, c6), (4, c7), (5, c8)}

It is a many-to-many matching in which tuples of R match different numbers of
tuples of S. The information gains are IA(S) = 0.82 and IA(R) = 0.83.

The examples demonstrate how the method is sensitive to the selectivity
of the join (on both participating relations). A join matching a single tuple is
scored with perfection, and as the average number of tuples matched increases,
the score decreases. Therefore, on average, a one-to-n join will be scored higher
than a one-to-m join when n < m.

This method is an information theoretic way of quantifying referential con-
straints. If a foreign attribute has an information gain of 1 over a relation, that
relation is functionally dependent on the attribute. A one-to-one relationship is
one where gains in both directions are 1. A one-to-many relationship has gain of
1 in one direction. Indeed, this approach generalizes the definition of dependency
from a binary concept to a gradual one. The more an attribute acts like key, the
closer its gain will be to 1. Conversely, an attribute that has no selectivity at all
will have a gain of 0.

Once the weights are assigned to each edge, the enumeration of spanning
trees can be done by a variety of algorithms. We use the algorithm reported by
Kapoor and Ramesh [10], which allows the enumeration of an arbitrary number
of spanning trees in order of total weight (i.e., the top-k trees can be listed
without necessarily enumerating every candidate).

4.2 Inferring Global Selections

Once a viable join is found among the relations and the irrelevant attributes
are removed, a single relation R is obtained that encompasses the information



retrieved by the user from the various sources. Our sufficiency principle guar-
antees that the sought-after goal of this user is embedded in this relation. As
previously discussed, to achieve his goal, the user who gathered this information
could apply further operations to R. Yet, the principle of necessity implies that
these operations are global selections: comparisons between attributes that were
retrieved from different sources.

Domain information available in the global scheme reduces the number of
possible global comparisons, as the pairs of attributes that can be compared are
known. Nonetheless, the number of possible comparisons is still prohibitively
large.

Our approach to the problem of inferring likely global comparisons is to
extract pertinent knowledge from the query repository. This repository is a log
of queries that have been previously submitted to this virtual database, and
thus includes information on likely global comparisons. We shall refer to this
repository as our training set.

Referring to the tax example, if there are a significant number of exam-
ples in our training set that project the attributes ( TaxOwed, TaxWithheld ),
and a significant portion of these also include the selection predicate TaxWith-
held > TaxOwed, then we can infer the rule:

Π(TaxWithheld) ∧Π(TaxOwed) →
σ(TaxWithheld > TaxOwed)

A similar problem has been researched extensively in the area of data mining.
The goal of association analysis is to analyze sets of transactions to discover fre-
quent item sets. The classical example is market basket analysis, where purchase
records of retailers are mined to find out which products are purchased together
(e.g., beer and peanuts).

In analogy, we mine our training set of queries to find out which attributes are
frequently projected together. Furthermore, we would like to determine whether
the fact that a set of attributes is projected also implies a comparison. We
therefore mine our training set of queries for sets of projected attributes that
have at least a certain degree of support.6 The threshold for support depends
on many factors, including the number of attributes in the domain, the size of
the training set, and the extent of generality desired.

In our case, we prefer to set the support level so that the total occurrences
of the set of projected attributes is above some absolute number, a number that
reflects significant interest in those attributes. Consequently, as the training
set gets larger (while the threshold of occurrences is maintained), the level of
support decreases. The result is an increase in the number of rules generated and
in the time required for training. Hence, the support threshold is a compromise
between the desire to discover all the significant attribute sets, and practical
considerations of rule-base size and time.

6 When a set of n cases suggests a rule or association of the type α → β, the ratio |α|
n

is the support of the rule, and the ratio |α|
|β| is its confidence.



Once a threshold is set, a standard algorithm is used to find maximal fre-
quent item sets (we use MAFIA). Yet, a difference between our case and that of
standard association analysis should be pointed out. In our case, the item sets
must have two distinct and non-empty subsets: a set of projected attributes and
a set of selection constraints. This requirement results in substantial reduction
in the time needed for the algorithm.

The discovered item sets generate rules much like in standard association rule
mining. Each item set is partitioned into a rule such that, given the items in its
antecedent (the projected attributes), the queries in the training set have at least
a minimum probability of having its consequent (a comparison or conjunction
of comparisons).

The rule base thus mined is used to finalize candidate consolidations with the
most likely global selections, as follows. Once a single relation has been formed by
the appropriate joins, its attributes are compared against the rule base. When
the attributes match the antecedent of a rule, the selection constraint of its
consequent is retrieved. These possible completions of the query are ranked by
the confidence of the rule.

5 Conclusion

We described a new problem, which we termed query consolidation. Query con-
solidation seeks to interpret a set of disparate queries that were submitted to
independent databases with a single global query: A query that expresses the
ultimate goal of the user. Setting the problem in the architecture of a virtual
database, it exhibits attractive duality with the much-researched problem of
query decomposition.

We assumed that the independent databases to which the component queries
are submitted are “monitored” by means of a virtual database. Since the same
set of queries could be consolidated in different global queries (all of which will
decompose back to the same component queries), our solution ranks the possible
consolidations. The rankings are derived from our own treatment of the problems
of join inference and selection constraint discovery.

The assumption that the databases had been integrated previously in a vir-
tual database implied the existence of a global scheme. This scheme provided
semantic associations among the individual queries, and thus simplified the task
of consolidation. A more challenging situation is when such a virtual database
had not been constructed. In this situation the extensions of given queries must
be analyzed to infer their semantic associations, a task reminiscent of the well-
known scheme-matching problem [20, 5].

Much of the research described in this paper has been completed, and a pro-
totype system has been implemented. Indeed, the research and implementation
addressed also the more difficult problem just described. Work is continuing
in several directions, and we mention here briefly four problems under current
investigation.



We assumed the given queries Q1, . . . , Qn constitute a single task. The first
issue is how to cull from query logs (whether logs of a single database or logs
of multiple databases) a set of queries that constitute one task. Another issue is
the relaxation of the assumptions on sufficiency and necessity; that is, how to
find an interpreting global query when the set Q1, . . . , Qn is neither sound (some
queries should be discarded) nor complete (some information has been obtained
externally). Choosing consolidating queries often poses an interesting dilemma,
as to which consolidation should be preferred: a complex query that integrates
all the gathered information precisely, or a simpler query that only approximates
the total of information [21]. Quite often the latter is more revealing, especially
in situations when the query set is imperfect to begin with. Finally, security-
oriented applications of this problem often require that the discovery of roguish
intentions would be done in real-time. This means that sequences of queries are
analyzed as they are formed, and their interpretations are updated continuously
as the sequences progress. Obviously, real-time interpretations pose challenging
performance issues.
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