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Abstract

With the development of the Internet and the on-line availability of large numbers
of information sources, the problem of integrating multiple heterogeneous informa-
tion sources requires reexamination, its basic underlying assumptions having changed
drastically. Integration methodologies must now contend with situations in which the
number of potential data sources is very large, and the set of sources changes continu-
ously. In addition, the ability to create quick, ad-hoc virtual databases for short-lived
applications is now considered attractive. Under these new assumptions, a single, com-
plete answer can no longer be guaranteed. It is now possible that a query could not be
answered in its entirety, or it might result in several different answers. Multiplex is a
multidatabase system designed to operate under these new assumptions. In this paper
we describe how Multiplex handles queries that do not have a single, complete answer.
The general approach is to define flexible and comprehensive strategies that direct the
behavior of the query processing subsystem. These strategies may be defined either as
part of the multidatabase design or as part of ad-hoc queries.
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1 Introduction

One of the most enduring problems in database research has been the integration of informa-
tion from multiple, heterogeneous data sources. A common approach to this problem is to
provide an integrated view of the data by means of a global scheme, map this scheme into the
schemes of the various sources, develop query translation algorithms that interpret queries
against the global scheme into queries against the sources, and then combine the individual
answers received from the sources into an answer to the original query. This approach has
often been referred to as the virtual database approach.

Originally, the underlying assumptions were that the number of source databases is rel-
atively small, and that the scheme of each database is completely understood. In addition,
both the set of source databases and the scheme of each source database were assumed to
be static (and when either of these changed, substantial redesign of the virtual database was
to be expected). The considerable amount of work required to comprehensively integrate
the source databases was justified by the expectations of extensive and prolonged use of
the resulting virtual database. Such comprehensive integration ensured that every query on
the global scheme had exactly one translation, so that every global query was guaranteed a
single, complete answer.

The development of the Internet and the on-line availability of large numbers of infor-
mation sources have changed these assumptions drastically. Integration methodologies must
now contend with situations in which the number of potential sources is very large, and
the set of sources changes continuously, with new sources being discovered and added, and
current sources changing their structure or disappearing altogether, sometimes without any
prior notice. In addition, the ability to create quick, ad-hoc virtual databases for short-lived
applications is now considered attractive. In this new breed of virtual databases, integration
is no longer comprehensive: the number and complexity of the sources on one hand, and the
scope of the applications on the other hand, suggest integration of a more limited extent, in
which only small portions of the source databases are brought together. Under these new
assumptions, a single, complete answer can no longer be guaranteed. It is now possible that
a query could not be answered in its entirety, or it might result in several different answers.

Multiplex is a multidatabase model designed to operate under these new assumptions [14].
The advantages of the Multiplex model are numerous: (1) The global scheme, and hence
its user interfaces, are based on the popular relational model. (2) It supports heterogeneity;
that is, the source databases may be structured according to any database model, as long
as they can communicate their results in tabular format. (3) It facilitates the creation
of ad-hoc global schemes of limited scope, that cull from the source databases only the
information relevant to a given application. (4) It facilitates the tracking of evolving data
environments, because the addition or removal of new sources of information is governed by
a single resource that describes the contributions of the various sources. (5) It reflects the
dynamics of multidatabase environments where source databases may become temporarily
unavailable, and global queries might therefore be unanswerable in their entirety. (6) It
accepts that requested information may be found in more than one database, and admits



the possibility of inconsistency among these alternatives.

Viewed together, items 5 and 6 address a frequent situation in which it is not possible
to extract a single authoritative answer from the aggregate of source databases. This may
be either because some of the information requested in the query is unavailable (item 5), or
because some of the information requested in the query is available from multiple (possibly
inconsistent) sources (item 6). When “too little” information is available, a multidatabase
system should issue a partial answer, and when “too much” information is available, it should
resolve the inconsistencies in a single, “best” answer. Note that these two problems could
occur together, requiring inconsistency resolution in partial answers.

In a previous paper, we described a solution that addressed the unavailability of infor-
mation by computing upper and lower bound answers; that is, an unavailable answer is
approximated by a pair of answers consisting of the largest contained set of tuples and the
smallest containing set of tuples. The solution to the issue of inconsistency was largely
based on voting; that is, when multiple versions of the information are available, the version
advocated by most sources is preferred.

An advantage of that method for handling inconsistencies is that it can be applied “au-
tomatically”, without any human intervention. In practice, however, we have observed that
many applications require more powerful resolution strategies. Resolution strategies may be
classified into two types. When an item of information is available from several sources, it
may be desirable (1) to prefer one of the sources on the basis of available meta-information,
such as source quality or currentness, or (2) to consolidate the alternative data values, for
example, adopt the average or the minimum of the alternative values.

In this paper we describe a comprehensive approach that allows users to specify appropri-
ate conflict resolution strategies. Some strategies are simple; for example, they construct all
answers with the most current data. Other strategies may be quite elaborate; for example,
in a single query, it may be desirable to resolve age values by their average, salary values by
the most current, and email addresses by the mode (the most frequently mentioned value,
similar to voting).

Conflict resolution strategies may be considered either as part of the multidatabase design
specification, to be provided by the multidatabase designer as part of the global scheme, or
as part of the retrieval specification, to be provided by the multidatabase user as part of
each query. Indeed, a three-tier approach may be conceived, in which user strategies override
designer strategies, which, in turn, override system default strategies. With this latter tier,
the aforementioned advantage of automatic conflict resolution is recouped.

Section 2 reviews the basic concepts and definitions of the Multiplex multidatabase model.
The version described admits the possibility of inconsistencies, but does not attempt to re-
solve them. Sections 3 and 4 are the center of this paper. They describe our formal framework
for resolving inconsistencies and the syntax and semantics of the resolve statement. In Sec-
tion 5 compares our work to other research, and Section 6 reports on the implementation of
the Multiplex multidatabase system and sketches our future research plans.



2 The Multiplex Multidatabase Model

In this section we define the database concepts that will be used throughout this work. Our
formalization of relational databases is mostly conventional.

2.1 Schemes and Instances, Views and Queries

Assume a finite set of attributes 7', and for each attribute A € T assume a finite domain
dom(A), and assume a special value called null and denoted —, which is not in any of the
domains. A relation scheme R is a sequence of attributes from 7. A tuple t of a relation
scheme R = (Ay,..., A,,) is an element of dom(A;)U{—} x---xdom(A,,)U{=}. A relation
instance (or, simply, a relation) r of a relation scheme R is a finite set of tuples of R. A

database scheme D is a set of relation schemes {Ry,..., R,}. A database instance d of the
database scheme D is a set of relations {ry,...,r,}, where r; is a relation on the relation
scheme R; (i = 1,...,n). Finally, a database (D, d) is a combination of a database scheme

D and a database instance d of the scheme D.

Let D be a database scheme. A view of D is an expression that defines (1) a new relation
scheme V', and (2) for each instance d of D an instance v of V. v is called the extension of
the view scheme V' in the database instance d.

We shall assume that all views are of the family known as conjunctive views [16]. Although
conjunctive views are a strict subset of the relational tuple calculus, they are a powerful sub-
set, corresponding to the set of relational algebra expressions with the operations Cartesian
product, selection and projection (where the selection predicates are conjunctive).

A query (Q on a database scheme D is a view of D. The extension of () in a database
instance d of scheme D is called the answer to () in the database instance d.

As an example, given the relation schemes Emp = (Name, Salary, Dname) and Dept =
(Dname, Supervisor), a view Emp_sup may be defined by

pr0j€CtName,SupervisorSeleCtEmp.Dname:Dept.DnameEmp X Dept
The scheme of Emp_sup is (Name,Supervisor).

Our basic definitions allowed nulls in relation instances. This requires appropriate ex-
tensions to the model to determine the results of comparisons that involve nulls. Here, we
adopt Codd’s three-valued logic, in which comparisons that involve nulls evaluate to the
value maybe. In general, we shall provide control over the interpretation of maybe values. A
permissive interpretation will map maybe values to true, and a restrictive interpretation will
map maybe values to false.



2.2 Scheme Mappings

Consider a database (D, d). Let D’ be a database scheme whose relation schemes are defined
as views of the relation schemes of D. The database scheme D’ is said to be derived from
the database scheme D. Let d’ be the database instance of I’ which is the extension of the
views D' in the database instance d. The database instance d’' is said to be derived from the
database instance d. Altogether, a database (D', d') is a derivative of a database (D, d), if
its scheme D' is derived from the scheme D, and its instance d’ is derived from the instance
d.!

Let (D, d;) and (Do, dy) be two derivatives of a database (D, d). The derivative databases
are mutually “consistent” in the sense that “equivalent” views are extended identically in
the databases in which they apply. These notions of view equivalence is defined formally as
follows.

A view Vj of Dy and a view V5 of Dy are equivalent, if for every instance d of D the
extension of V; in d; and the extension of V5 in dy are identical. Intuitively, view equivalence
allows us to substitute the answer to one query for an answer to another query, although
these are different queries on different schemes.

Given two different database schemes, which are both derivatives of the same data scheme,
we express their commonality by means of scheme mappings.

Assume two database schemes D; and D,, which are both derivatives of a database
scheme D. A scheme mapping (D1, D) is a collection of view pairs (V;1,V;2) (i =1,...,m),
where each V;; is a view of Dy, each V,4 is a view of Dy, and V;; is equivalent to V; o.

As an example, the equivalence of attribute Salary of relation scheme E'mp in database
scheme D; and attribute Sal of relation scheme Employee in database scheme D, is indicated
by the view pair

( 71-Salow"yEﬂ'rnpa 71-Salenployee )

As another example, given the relation schemes Emp = (Name, Title,Salary,Supervisor) in
database scheme Dy, and Manager = (Ename, Level, Sal, Sup) in database scheme Dy, the
retrieval of the salaries of managers is performed differently in each database, as indicated
by the view pair

( 71-Name,SoLla'ryO-Title:managerEl’rn'pa 7"-En(JLme,Sal]\4(177'0’967” )

2.3 Multidatabase

To define a multidatabase, we shall assume that there exists a single (hypothetical) database
that represents the real world. This ideal database includes the usual components of scheme

'In this paper we are not concerned with an effective procedure for determining whether one database is
a derivative of another, a question that depends on the language for expressing views. For our purpose here,
it is sufficient to note that a database may or may not be a derivative of another database.
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and instance, which are assumed to be perfectly correct. We now formulate two assump-
tions. These assumptions are similar to the Universal Scheme Assumption and the Universal
Instance Assumption [13], although their purpose here is quite different. These two assump-
tions are statements of the integrability of the given databases.

The Scheme Consistency Assumption (SCA). All database schemes are derivatives
of the real world scheme. That is, in each database scheme, every relation scheme is a view
of the real world scheme. The meaning of this assumption is that the different ways in which
reality is modeled are all correct; i.e., there are no modeling errors, only modeling differ-
ences. To put it in yet a different way, all intensional inconsistencies among the independent
database schemes are reconcilable.

The Instance Consistency Assumption (ICA). All database instances are deriva-
tives of the real world instance. That is, in each database instance, every relation instance is
derived from the real world instance. The meaning of this assumption is that the information
stored in databases is always correct; i.e., there are no factual errors, only different represen-
tations of the facts. In other words, all extensional inconsistencies among the independent
database instances are reconcilable.

The Multiplex model assumes that the Scheme Consistency Assumption holds, meaning
that all differences among database schemes are reconcilable, and that the Instance Consis-
tency Assumption does not hold, allowing the possibility of irreconcilable differences among
database instances.

In other words, the member databases are all assumed to have schemes that are deriva-
tives of a hypothetical real world database scheme; these schemes are related through the
multidatabase scheme, which is yet another derivative of this perfect database scheme. But
the member database instances are not assumed to be derivatives of the real world instance.

Clearly, without subscribing to the SCA, it is not possible to integrate a given set of
databases. On the other hand, subscribing to the ICA would not reflect the reality of
independently maintained databases.

Formally, a multidatabase is

1. A scheme D.
2. A collection (Dq,d,),...,(Dy,d,) of databases.

3. A collection (D, Dy),..., (D, D,) of scheme mappings.

The first item defines the scheme of a multidatabase, and the second item defines the
member databases in the multidatabase environment. The third item defines a mapping from
the global scheme to the schemes of the member databases. The schemes D and Dy, ..., D,
are assumed to be derivatives of the real-world scheme, but the instances dy, ..., d, are not
necessarily derivatives of the real-world instance (see Figure 1).



Real scheme W
(hypothetical)

Real instance w
(hypothetical)

Global scheme D
(derivative of W)

Member scheme D,
(derivative of W)

Member scheme D,,
(derivative of W)

Member instance d;
(not derivative of w)

Member instance d,,
(not derivative of w)

Figure 1: Consistency assumptions in Multiplex.

The “instance” of a multidatabase consists of a collection of global view extensions that
are available from the member databases. Specifically, the views in the first position of the
scheme mappings specify the “contributed information” at the global level, and the views in
the second position describe how these contributions are materialized.

As defined earlier, scheme mappings allow to substitute certain views in one database
with equivalent views in another database. In a multidatabase, the former database is the
global database, and the latter is a member database.

Our definition of multidatabases provides four important “degrees of freedom”, which
reflect the realities of multidatabase environments.

First, the mapping from D to the member schemes is not necessarily total; i.e., not all
views of D are expressible in one of the member databases (and even if they are expressible,
there is no guarantee that they are mapped). This models the dynamic situation of a
multidatabase system, where some member databases might become temporarily unavailable.
In such cases the corresponding mappings are “suspended”, and some global queries might
not be answerable in their entirety. Similarly, if an authorization mechanism is enforced, a
user may not have permission to some views.

Second, the mapping is not necessarily surjective; i.e., the member databases may include
views that are not expressible in D (and even if they are expressible, there is no guarantee



that they are mapped). This models the pragmatism of multidatabases, which usually cull
from existing databases only the information which is relevant to a specific set of applications.
For example, a large database may share only one or two views with the multidatabase.

Third, the mapping is not necessarily single-valued; i.e., a view of D may be found
in several member databases. This models the realistic situation, in which information is
found in several overlapping databases, and provides a formal framework for dealing with
multidatabase inconsistency. Recall that if we do not assume that the Instance Consistency
Assumption holds, then we do not assume that the member instances are all derived from a
single instance. Thus, the inclusion of view pairs (V, V]) and (V, V,) in two scheme mappings
of a multidatabase does not imply that the extensions of V' in the member databases are
identical. Rather, it implies that they should be identical.

Fourth, while the definition assumes that the member databases adhere to the relational
model defined here, they need not be relational, or even of the same data model. Recall that
the only purpose of the views in the second position of the scheme mappings is to describe
how the views in the first position are materialized. Therefore, the member databases need
not be relational, and the views in the second position need not be relational expressions.
The only requirement is that they compute tabular answers.

2.4 Multidatabase Queries and Answers

Syntactically, a multidatabase query is simply a query () of the scheme D. Intuitively, the
answer to a multidatabase query () should be obtained by transforming it to an equivalent
query of the views in the first position of the scheme mappings (the available information).
These views would then be materialized (using the view definitions in the second position of
the scheme mappings), and the translated query would be processed on these materialized
views. Formally, the required transformation of () is stated as follows.

Let D = {Ry,..., R,} denote a database scheme, and let M = {V},...,V,,} denote a set
of views of D. Translate a given query Q(D) of the database scheme to an equivalent query
Q' (M) of the view schemes.

However, a solution to this translation problem may not exist, or there could be multiple
solutions. To observe that multiple solutions may exist, consider a database with a relation
R = (A,B,C) and views V; = m4 pR and Vo = 74 R, and consider the query ) = m4R.
(@ can be answered from both V; or V5. To observe that a solution may not exist, consider
a database with two relations R = (A, B) and S = (B, (), and one view V' = R 1< S, and
consider the query @ = o4—,R. Clearly, ) cannot be answered from the view V', because
the join would not necessarily include all of R’s tuples.

This translation problem (for conjunctive queries and views) has been addressed by Lar-
son and Yang [10, 11], by Levy et al. [12] and by Brodsky and Motro [5]. We shall assume
that a translation algorithm exists which is sound and complete; i.e., it computes all the
correct translations that exist.



Assume a multidatabase with scheme D and mapped views M. The answer to a query
(Q on this multidatabase is the set of answers produced by a sound and complete translation
algorithm.

There are two possible cases:

1. When the translation algorithm produces more than one solution, these solutions may
evaluate to different answers. Each such answer is a candidate answer. The answer to
Q is the set of all candidate answers.?

2. When a solution to the translation problem does not exist, the answer to () is the
empty set of answers. This empty set of answers should be interpreted as answer
unavailable.’

3 A Framework for Handling Inconsistencies

3.1 The Issues

From a user perspective, each legitimate database query should evaluate to a single answer.
The multidatabase answers defined in the previous section deviate from this ideal in two
cases: when no answer is available, and when several different answers are available. In
either case, it is clear that a single perfect answer (i.e., an answer identical to the real world
answer) cannot be determined from the multidatabase environment. At best, the system can
provide an approximation of this elusive perfect answer. In this section, we discuss important
extensions to the basic Multiplex model to handle these two situations.

No answer is available. Intuitively, a global query cannot be translated to an equivalent
query of the available views, because the mapping of the global scheme to the member
schemes is not total; i.e., some information “promised” in the global scheme cannot be
“delivered”, either because it has never been mapped, or because some member databases
are not responding. In situations where a query () cannot be rewritten as an equivalent
query of the available views, an issue of great importance is how well can ) be approzimated
using the available views; i.e., what is the best approximation of () that can be evaluated
from the views?

Multiple answers are available. Intuitively, a global query is translatable to different
equivalent queries over the available views, because the mapping of the global scheme to the
member schemes is not single-valued; i.e., there exists a view of the global scheme that can be
materialized in more than one way. This happens when two view pairs of the mapping have
the same view in their first position. Obviously, for every translation that uses one view,
there is an equivalent translation that uses the other view. More generally, it happens when

2Note that possibly none of the candidate answers is consistent with the real world answer.
3Note the difference between an empty set of answers and an empty answer.



two pairs have overlapping views in their first position, as this implies that the intersection
view can be mapped in two different ways. The most common reason for such multivalued
mappings is that the information resources have overlapping information. Unless the ICA
holds, these different translations could evaluate to different answers. In situations where
there are different ways to rewrite () as an equivalent query of the available views, and
they evaluate to different answers, an issue of great importance is whether any one specific
answer should be preferred over the others, or how the answers could be combined into a
single answer.

3.2 The Approach

Given a global query, our approach is to populate the virtual relations targeted by the query
with data gathered from those contributed views that are relevant to the query. During this
process, both of the above issues are addressed.

No answer is available. Each available view is analyzed for all its possible contributions
to those parts of the virtual relations that are targeted by the query. Essentially, every
selection-projection subview of the virtual relations that contains data relevant to the query
is deployed. These subviews may even be incomplete in the attributes that they provide, in
which case they will be expanded with null values. This implies that later, when the query
is processed in the global relations, answers that are unavailable are approximated by partial
answers (i.e., tables with scattered nulls).

Multiple answers are available. When the requisite parts of the global relations
are assembled, inconsistencies among the available views are detected and resolved. This
implies that later, when the query is processed in the global relations, a single answer would
be issued.

It should be emphasized that we do not construct global relations in their entirety.
Rather, we request from the component databases only those parts that are relevant to
the query. Our construction is a form of translation. In general, a translation paradigm
(1) decomposes a query ) on the scheme D into a set of queries {Q;} on the views M,
(2) retrieves the corresponding answers {4;}, and (3) combines them into an answer A. Our
method uses this specific third step: the retrieved data is assembled into relations to which
the original query is then applied.

To combine different answers, some mechanism is needed to determine when different
tuples (from different sources) are indeed different versions of the same tuple. One such
mechanism are keys. If we assume that all contributions to a global relation include the
relation’s key attributes, then we may conclude that different tuples are versions of the same
tuple if they have the same key values. Another possible mechanism is tuple similarity. If
we define a semantic similarity among tuples of the same relation, then we may conclude
that different tuples are versions of the same tuple, if their similarity exceeds a predefined
threshold. We shall assume that a tuple identification mechanism of some kind is being



enforced. Whichever mechanism is chosen, we shall assume that each member database
provides a set of tuples that does not contain tuples that are versions of each other (e.g., no
two tuples have the same key, or no two tuples are “too similar”).

3.3 Contributions and Properties

The n scheme mappings in the definition of multidatabases may be represented in a single
two-column mapping table: the first column contains views of the global scheme, and the sec-
ond column contains instructions for materializing these views from the member databases.
Each row in this table describes an individual “contribution”. The global view definition
in the first position of the row defines this contribution, and the expression in the second
position of the row shows how to materialize it.

In practice, we must consider the possibility that the instance materialized by the expres-
sion in the second column is inconsistent with the global view definition in the first column.
In general, a view definition involves a product, followed by a selection, and followed by a
projection. This leads to three types of inconsistency:

Projection: The instance has an incorrect number of columns.

Selection: The instance includes tuples that are inconsistent with the selection condition.
For example, the view definition may include the condition A > 3 or B = C, yet a
tuple would include the value 2 for A, or different values for B and C.

Product: The instance is not a product of instances. For example, the view may be defined
as the product of relations R = (A, B) and S = (C, D), yet the instance would include
only two tuples (ay, by, ¢1, dy1) and (asg, ba, ¢a, do), which, clearly, could not be the product
of any two instances.

Contributions that are inconsistent with their definitions may be explained in two ways:
(1) The definition of the contribution (i.e., the mapping of the global scheme to the member
scheme) is correct; it is the instance of the source database which is inconsistent with its
scheme. In the last example, the source relation is indeed the product of R and S, but it
is missing two additional tuples (a1, by, co,ds) and (as, be, ¢1,d;). (2) The source instance is
consistent with its scheme; it is the definition of the contribution (i.e., the mapping) which
is incorrect. In the same example, the two-tuple instance is correct, but it is simply not the
product of R and S.

It is relatively simple to detect contribution instances that are inconsistent with their
definitions, and there are three possible approaches for handling such situations: (1) With
the exception of projection violations, the instances could be accepted, ignoring their incon-
sistencies, (2) contributions that exhibit inconsistencies could be discarded altogether, and
(3) attempts could be made to correct the inconsistencies. Our approach here is to discard all
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inconsistent contributions. Whenever we cannot detect any of these 3 types of inconsistency,
we assume that the definition of the contribution is correct.

Instances of contributions may be associated with properties. Each property provides
meta-information about the instance, such as the quality of the data, its currentness (times-
tamp), or its security classification. Each property is described by a pair ((keyword=value);
for example, quality=0.8, timestamp=990305, or security=“high”, and a contribution in-
stance may be associated with any number of such property pairs.

Some properties that are associated with instances can also be associated with each
individual tuple of the instance. For example, the property timestamp=z, which denotes the
currentness of an instance, can be associated with individual tuples of the instance. On the
other hand, the property count=z, which denotes the cardinality of an instance, cannot be
associated with individual tuples. Properties that can be associated with individual tuples
will be referred to as tuple-applicable properties.

3.4 Decomposing Contributions

Given a global query, our aim is to populate the virtual relations targeted by the query with
data gathered from those contributed views that are relevant to the query. This task raises
two difficulties. First, a contribution may not provide all the attributes of a global relation.
This is solved by using null values for the attributes not provided. Second, a contribution
may provide tuples to more than one global relation. This is approached by decomposing
such contributions to contributions to single relations. In some cases the decomposed tuples
that originate from a single tuple, must remain associated. To accomplish this, we assume
that every relation R; has an additional pseudo-attribute, denoted A.

Consider a contribution C' to the global database. In general, C'is defined as the product
of several global relation schemes, followed by a selection, and followed by a projection: with
the global relations.

C=m,09R; X -+ X R,

Possibly, the projection attributes o are contained in a single global relation scheme,
meaning that a contribution instance ¢ contributes tuples to a single global relation. Let
R; be the relation scheme that contains all the attributes a. We enlarge the contribution
instance ¢ by adding null values for the values of the attributes of R; — « (the attributes of
R; that are not in the contribution).

Alternatively, the projection attributes o may contain attributes from several relation
schemes, meaning that a contribution instance c contributes tuples to several global relations.
We decompose a contribution instance c¢ to contributions to the individual relations that share
attributes with «. This decomposition is made in several steps. Let R; be a relation that
shares some attributes with «.
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1. First, we project ¢ on the attributes R; N« (the attributes of the R; that appear in the
contribution).

2. Next, we enlarge the resulting instance by adding null values for the values of the
attributes of R; — « (the attributes of R; that are not in the contribution). Each
tuple ¢ of the original instance ¢ is now decomposed into several null-extended tuples
in different instances.

3. Finally, we add a pseudo-attribute A to R;. If the condition 6 refers to attributes that
are not in « and it contains comparisons that involve more than one relation, then all
the tuples that originate from the same tuple ¢ receive a unique A value; otherwise, A
values are simple nulls.

At the end of this process, each global relation scheme R is associated with a set of
such fragments ry,...,r,, each originating from a different contribution. Let ¢; denote the
selection condition of the contribution that produced the fragment r;. ¢; defines the part of
R to which r; contributes tuples. Note that ¢; may involve attributes that are outside the
relation scheme R.

As an example, assume the global schemes R = (4, B,C) and S = (C, D, E, F), a con-
tribution defined by C) = m4 B p,EO(R.c=5.0)A(B>4)A(D>3) ]2 X S, and a contribution instance

C1
A|B|D|E
aq 5 7 €1
a9 6 4 €9
ay 5) 4 €3

This selection condition compares attributes in R and .S, and it refers to an attribute C' which
is not among the projection attributes. Hence, the decomposition requires pseudo-values to
link the tuples of the fragments. The instance ¢; generates two fragments

r(R) s(9)
A|A|B|C A|C|D|F|F
51 ay 5 - (51 - 7 €1 -
52 (05} 6 — (52 — 4 €y | —
53 aq 5 — (53 — 4 €3 | —

Both r and s are associated with the selection condition (R.C'= S.C) A (B > 4) A (D > 3).

As another example, assume the same global schemes R = (A, B,C)and S = (C, D, E, F),
a contribution defined by Cy = 74 B.c D EO(R.C=5.C)A(B>4)A(D>3) 1 X S, and a contribution in-
stance
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C2
A|B|C|D|E
ap 5 6 7 €1
a9 6 3 4 €9
ay 5 6 4 €3

Because all the attributes in the selection condition are among the projection attributes, this
decomposition does not require pseudo-values. The instance ¢y generates two fragments

s(S)
r(R)
ATATBTC A|lC|D|FE|F
— 6 7 €1 | —
— | a1 5 6
_la 6 3 — 3 4 €9 —
2 — 13| 4 |es|—

Again, both r and s are associated with the selection condition (R.C = S.C)A(B > 4)A(D >
3).

An important concern here is that the process of decomposing contributions into frag-
ments of individual relations would be correct; that is, it would neither store more informa-
tion than provided, nor less. The criteria of correctness is that the reversal of the decom-
position (i.e., the retrieval of the view C from the decomposed fragments) would generate
the original contribution instance. Assume the contribution C' = w,09R; X - - - X R,, and the
contribution instance ¢, and let rq,...,r, denote the generated fragments. It can be shown
that

C= Ta0gT1 X +++ X T

Where the product is interpreted as an equijoin on A. Note that the final projection discards
any pseudo-attributes. For lack of space we omit the proof of this claim.

3.5 Slices, Polyinstances, and Mosaic Instances

Consider two contributions to a relation Employee: the set of all female employees and the
set of all employees who are engineers. It is important to observe that the two contributions
overlap, and hence might induce inconsistencies, only in the set of female engineers. When
constructing a relation from different fragments, we must intersect their selection predicates
to obtain those “areas of contention”. Conflict resolution is conducted only among the sets
of tuples that belong to these areas.

Let f; and fy be two fragments of a global scheme R, and let ¢; and ¢o denote their
selection conditions, correspondingly. These two conditions divide R into three mutually
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exclusive “slices”, which are defined by the predicates:

(R TRV AN
o o1 N Ty
LT S VA 5

Obviously, only f; could contribute tuples to the slice defined by 5, and only fy could
contribute tuples to the slice defined by 3. However, if the selection conditions are not
contradictory, i.e., ¢1 A ¢o # false, then both fragments could contribute tuples to the slice
defined by 1)1, leading to the possibility of inconsistency. Hence, each slice is associated with
either one or two sets of tuples.

In general, let fi,..., f, be fragments of R, and denote ¢,..., ¢, their corresponding
selection conditions. These fragments define 2" — 1 mutually exclusive slices that are defined
by 2" — 1 mutually contradictory predicates. These predicates are formed by conjoining the
n selection conditions, where the 7th condition is either ¢; or =¢;. The new predicates are

L S A A AN S B AR
Yo o1 AN Q2 AN Lo N P N Oy

@/)2”71 : _|¢1 N _|(]52 YA AN _'¢n71 N ¢n
Formally, a slice S of a global relation scheme R is a pair (1, s):

1. 9 is the predicate of the slice, as defined above.

2. s is a polyinstance; i.e., a collection of sets of tuples. Each of the instances in s is
derived from a different fragment (and hence from a different contribution) in the
following way. Each predicate v is applied to each fragment f;. Consequently, for each
1), a collection of sets of tuples is derived, where each such set has been obtained from
a different fragment.?

Note that some of the ¢ predicates may evaluate to false, in which case the corresponding
polyinstance will be empty.

The application of a predicate 1 to a fragment is complicated by the possibility of null
values in fragments. Consider the selection predicates ¢; = (C < 10) and ¢y = (C' > 10),
and the following fragment f

A|B|C
11212
213 | —
71115

4Note that some of these sets would be empty. A contribution generates a non-empty set of tuples, if the
selection predicate of the contribution appears positively in 1.
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In this case, 77/)1 = Qsl/\d)g = false, ’QZ)Q = d)l/\_'QZSQ = (C < 10), and ’QZ)3 = _'d)l/\d)z = (C 2 10)
Obviously, ¥, will generate an empty set of tuples. The first tuple will be selected by 3
and discarded by 5, whereas the third tuple will be selected by vy and discarded by 3.
However, the decision on the second tuple is complicated, as the true value of C' is unknown.
According to Codd’s three-valued logic, the outcome of both 5 and 13 for the second tuple
is maybe. A permissive interpretation maps these maybe values to true, thereby inserting the
tuple into both sets. A restrictive interpretation maps these maybe values to false, thereby
inserting the tuple into neither set.?®

The collection of polyinstances will be referred to as a mosaic instance of the global
relation scheme R. Our goal is to convert this mosaic instance to an ordinary instance.
This goal would be achieved by separately converting every polyinstance into an ordinary
instance, and then taking their union.

Converting a polyinstance into an ordinary instance is straightforward, unless the polyin-
stance contains at least two different instances, in which case the conflicts must be resolved.

4 Conflict Resolution

4.1 The Approach

Conflicts are resolved by means of conflict resolution statements. Each global relation re-
quires one statement. However, a statement may allow different conflict resolution strategies
for different “slices” of the relation. Formally, the statement involves a set of selection pred-
icates which are mutually exclusive and their disjunction is a tautology. These predicates
partition the relation in a way similar to the slices defined earlier.

Altogether, the global relation is “sliced” in two different ways: First, by the contribu-
tions, and then by the conflict resolution statement. These two partitions are combined, by
using the partition defined in the statement to refine the partition defined by the contribu-
tions. Consequently, the mosaic instance of the global relation consists of a larger number
of polyinstances, each for a “narrower” slice. Each strategy now governs several slices, but
each slice is governed by a single strategy.

To describe our approach to conflict resolution, we consider a single slice and its polyin-

stance. The conflict resolution process has three stages.

1. In the first stage, we filter the set of contributions to the polyinstance. This filtration
is based on the properties of the contributions. For example, a possible strategy is to

5Note that because the i predicates partition the fragment, this tuple belongs in exactly one of the
partition sets.

6The interpretation to be applied is stated as part of the conflict resolution strategy, to be described in
Section 4.2.
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consider only contributions whose timestamp is later that a certain value. Note that
the properties used in this stage need not be tuple-applicable.

2. The remaining tuples are now grouped into multituples. A multituple is a collection of
tuples that are versions of each other. When keys are used to identify tuples, then a
multituple can be visualized as a table

air | a12 A1k
key a9o1 | A22 | ... | A9k
ap1 | Gp2 Apk

At this point we disregard the original tuple associations and consider a multituple as
a single “tuple” with multiple values in each of its attributes (i.e., a non First-Normal-
Form tuple). The second stage allows us to eliminate some of the values in each of
the columns of multituples. This elimination may be based on both properties and
data values. Note that at this stage only tuple-applicable properties may be used. For
example, a possible strategy is to retain only A; values that are from contributions
with quality above 0.3, to retain only A, values that are between 5 and 100, and to
retain the most frequent Az value (the mode).

3. In the final stage the remaining alternative values in each of the attributes are fused
into a single value. By forcing the resolution of every attribute to a single value we
are ensuring that the mosaic instance of R becomes a simple relation instance. For
example, a possible strategy is to combine the values of attribute A; in their average
value.

4.2 The Resolve Statement

A conflict resolution scheme is a set of resolve statements, one for each global relation. In
this section we describe the syntax and semantics of the resolve statement. In our discussion
R is the global relation, and Ay, ..., A,, are its attributes.

The resolve statement has the following overall structure
resolve {permissive, restrictive} R

if ¢, then strategy,
else if ¢, then strategy,

else if ¢,, then strategy,,
else strategy(m1)

The header clause resolve states the global relation name. The keyword permissive or
restrictive indicates how comparisons with null values should be handled: permissive
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treats these comparisons as true, thus retaining all questionable tuples, whereas restrictive
treats them as false, thus discarding all questionable tuples.

The body of the statement is a structured “if then else” statement with predicates
@1, .-y O and m~+1 individual resolution strategies. This allows specifying different strategies
for different “horizontal” slices of R, while guaranteeing that the strategies do not overlap
(i.e., each slice is governed by a single strategy).

Each strategy; has the following structure:

select value-fusion
from contribution-qualification
where value-elimination

The three clauses of a strategy correspond to the three conflict resolution stages discussed
in Section 4.1. The from clause is applied first. It prunes the set of available contributions
to those that will be used to construct the present slice of R. The from clause comprises a
list of individual qualifying conditions. Only contributions that satisfy all the conditions in
the list are retained. Conditions have these two forms

property 6  threshold
'property 6  threshold

where property is any property, 6 is one of =, >, <, >, <, #, and threshold is either a constant
or one of the keywords max, min or avg. A contribution satisfies a condition property 0
constant, if the value of the contribution for that property stands in relation # with the
specified constant. When max, min or avg are substituted for the constant, the value
of the property is compared, correspondingly, with the highest, lowest or average value of
that property for all the contributions that possess it. The symbol ! indicates how to handle
contributions that do not have the specified property: if the symbol is included, the property
is required, and contributions that do not have it are disqualified; otherwise, contributions
that do not have the specified property qualify. Note that not having the specified property
is similar to having a null value for that property, with the outcome of the comparison
being maybe. Our treatment here is consistent with our previous approach of providing user
control over two alternative interpretations: including ! indicates a restrictive interpretation,
whereas omitting it indicates a permissive interpretation. As an example, the from clause
lquality > .85, cost < 75 will retain only contributions for which the data quality is known
and is above .85, and the retrieval cost does not exceed 75. As another example, timestamp =
max will assure that the present slice of R is constructed from the most recent contribution
only. 7

The where clause is applied next. At this point, the present slice of R is a set of
multituples, and the where clause is used to reduce the number of alternative values in each
of the attributes, by specifying a condition for every attribute. Hence, the where clause is

"Note that it is possible to specify conditions that eliminate all contributions.
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list of n attribute-specific conditions. Each such condition comprises any number of basic
conditions, which are connected with and and or operators. A basic condition has one of
these forms

property(A;) 6  threshold

A; 6 threshold

occur(A;) 6 threshold
true

where 6 and threshold are as before. The first form prunes multituples on the basis of a
property. Note that the property must be tuple-applicable; for example, timestamp(Address)
> 990305 will retain only the values of Address whose timestamps are later than 990305.
The second form prunes multituples based on the data values themselves; for example, Age
= min will resolve the multiple Age values to the lowest value, and Salary > 40,000 will
discard all the salaries that are below 40,000. The third form prunes multituples on the basis
of ratio of occurrence. For each different value of the attribute occur calculates its ratio of
occurrence within a given multituple. For example, assume a multituple has 20 versions with
a total of 5 different values in its Telephone attribute, as follows: ¢; and ¢; occur 6 times
each, t3 occurs 5 times, t4 occurs twice, and ¢5 occurs once. The condition occur(Telephone)
= max will retain ¢; and ¢y, whereas occur(7Telephone) > .3 will also retain ¢3. The fourth
form is used when no pruning is desired for a particular attribute.

The select clause is applied last. At this point, the present slice of R may still have
multiple values in some of its “tuples”, and the select clause specifies how these values are
to be fused into a single value. This clause is a list of n fusion instructions, one for each
attribute. A fusion instruction has the form

aggregate( A;)

where aggregate is either min, max, avg, mode or random. The first three aggregations
are useful for fusing numeric values. mode and random can be used with non-numeric
values as well; the former selects the most popular value, whereas the latter selects one of
the alternatives at random. In the previous example, a possible select clause is min(Age),
avg(Salary), random(Telephone). Conceivably, the options for fusing alternative values
may be expanded with the addition of user-defined aggregate functions. One example would
be a function that, given a set of different text strings, would identify some of the strings as
misspelling of another string, and would consolidate the set with the correct string.

Finally, when the entire relation is to be governed by a single conflict resolution strategy,
the resolve statement is simply

resolve {permissive, restrictive} R
strategy

With all its different features, the statement is versatile and powerful. It can be used to
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express basic strategies quickly, or to design elaborate strategies. Two examples follow.

Consider a global relation Employee = {Ssn, FirstName, LastName, Salary, Age} with
Ssn as its key ® and these two contributions:”

C1 = (Tssn, LastName,Salary, AgeT Age>21 (Employee), “http://www.x.com/getDB.cgi?abc=1")
CQ = (ﬂ-Ssn,Fi'rstName,LastName,AgeUAge<:65(Employee)a “http://WWW.y.com/getDB.cgi?abc:3”)

Assume that C; has the properties {quality = .9,cost = 2} and Cy has the properties
{quality = .8, timestamp = 981231}.

Cy and C slice Employee into three parts: (Age < 21), (Age > 21 A Age < 65), and
(Age > 65). Because both contributions insert tuples into the second slice conflicts may
arise within that slice.

Example. The following statement provides a single strategy for all of Employee.

resolve permissive Employee

select mode(Ssn), random(FirstName), mode(LastName), min(Salary), max(Age)
from quality > .7

where true, true, true, Salary > 40000, Age > avg — 5 and Age < avg + 5

It dictates that in the case of conflicts:

1. Data of low quality should be discarded (in this example both contributions qualify).
2. Within each multituple, low Salary values and extreme Age values should be discarded.

3. The remaining alternative values within each multituple should be fused to a single
value as follows: the most frequently mentioned last name, a randomly chosen first
name, the average salary, and the highest age. Since Ssn is the key there would only
be one value in each multituple, and the choice of fusion function is irrelevant.

Note that tuples in which the value of Age is null would be inserted into all three slices, and
would therefore participate in subsequent conflict resolution phases.

Example. This second statement provides two separate strategies for Employee.

8We assume that keys are used as the tuple-identification mechanism.
9For brevity we use only two contributions, but to demonstrate some of the possibilities, the example
strategies shown below include features more appropriate for a large numbers of alternative values.
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resolve restrictive Employee

if Age > 40

select mode(Ssn), random(FirstName), mode(LastName), min(Salary), max(Age)
from quality > .7

where true, true, true, Salary > 40000, Age > avg — 5 and Age < avg + 5

else

select mode(Ssn), random(FirstName), mode(LastName), min(Salary), max(Age)
from !cost < 15

where true, true, occur(LastName) > .33, true, true

Note that tuples in which the value of Age is null would be discarded from all four slices,
and would therefore not participate in subsequent conflict resolution phases.

By providing two strategies, this statement refines the three-slice partition into a four-
slice partition: (Age < 21), (Age > 21 A Age < 40), (Age > 40 A Age < 65), and
(Age > 65). The first strategy governs the first two slices, and the second one governs the
last two slices. However, conflicts are possible in second and third slices only. The first
strategy is as before. The second strategy dictates that in case of conflicts

1. Data with high cost (or without cost information) should be discarded.

2. Within each multituple, values of LastName that were “agreed upon” by less than a
third of the contributions should be discarded.

3. The remaining alternative values within each multituple should be fused to a single
value as follows: the most frequently mentioned last name, a randomly chosen first
name, the average salary, and the highest age.

5 Comparison with Other Work

As mentioned in the introduction, there has been considerable work in the area of multi-
databases. A comprehensive discussion of every project or product is beyond the scope of
this paper. The discussion here is divided into two. First, we discuss four different integra-
tion systems, representing fairly different approaches, and compare them to Multiplex. None
of these systems considers extensional inconsistencies (“too much data”) and their handling
of partial answers (“too little data”) is fairly limited. Then, we discuss additional works that
are related to the inconsistency resolution methods that were presented in this paper.

UniSQL [9] is an example of a multidatabase system based on a comprehensive mapping
of its global database scheme to the component database schemes. UniSQL provides an
exhaustive framework for handling schematic heterogeneity (i.e., intensional inconsistencies)
among the participating databases. Its reliance on predefined, comprehensive mappings dic-
tates that UniSQL may not be as suitable for ad-hoc integration, in which (1) relatively small
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portions of the component sources are of interest (their entire schemes possibly being irrele-
vant, unavailable or incomprehensible), and (2) component sources change frequently, with
new sources being added and existing sources undergoing structural changes, or becoming
altogether obsolete.

The TSIMMIS project [8] is an example of a system that is based on mediators and
wrappers. Mediators [17] are software modules designed to deal with representation and ab-
straction problems that occur when trying to use data and knowledge resources. Mediators
are understood to be active and knowledge-driven. Wrappers [17] are simpler software inter-
faces that allow heterogeneous information sources to appear as if they conform to a uniform
design or protocol. For example, a wrapper could be built to make a legacy database respond
to a subset of SQL queries, as if it were a relational database. Multiplex makes fairly stan-
dard use of wrappers. With respect to mediators, a Multiplex query (a global view) may be
considered a new “object”. Its translation produces an ad-hoc “mediator”, describing how
the global object is to be constructed from the presently available sources. The advantage
of such “dynamic mediation” are two: (1) Whereas with “static” mediators all integrated
“objects” must be anticipated and predefined, in Multiplex an unlimited number of global
objects may be defined spontaneously. (2) Static mediators need to be redefined whenever
the available information sources change, whereas Multiplex only needs to have its mapping
updated.

The approach of SIMS [3] to the integration problem is somewhat different. SIMS creates
a domain model of the application domain, using a knowledge representation language to
establish a fixed vocabulary describing objects in the domain, their attributes, and the rela-
tionships among them. Given a global query, SIMS identifies the sources of information that
are required to answer the query and reformulates the query accordingly. SIMS is similar to
Multiplex in that both do not rely on pre-programmed mediators, making the addition of
new sources relatively simple. In both systems new sources have only to be described to the
system. In SIMS, this description is in the knowledge representation language, using terms
in the shared domain model; in Multiplex it is via pairs of equivalent views. Arguably, the
SIMS descriptions are more demanding, but may allow the system to perform additional
tasks. In contradistinction, Multiplex makes no claims of “intelligence”; it is a direct exten-
sion of relational model concepts, without the costs, risks, and possibly some benefits of a
“knowledge-based” approach.

In many ways, the Information Manifold (IM) [2] is similar to SIMS. IM uses an object-
relational model to integrate the various information sources, called sites. The individ-
ual sites are described and related to the global scheme, called the world-view, using the
knowledge description language Classic. Like Multiplex, global query processing requires
translation from the global set of relations to the set of available views. Like SIMS, and
unlike Multiplex, the selection of relevant sites depends heavily on the quality of the site
descriptions.

An early consideration of extensional inconsistencies may be found in [6], which describes
Multibase, an early multidatabase system. Essentially, the method used in Multibase is
to provide solutions to all anticipated inconsistencies in the design of the global schema.
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The virtual database is thus guaranteed to be conflict-free. In contrast, the approach of
Multiplex is much more dynamic, allowing different resolution strategies for different users
or for different executions of a query. While Multiplex offers a powerful resolve statement,
it should be possible to embed simple resolution strategies directly in the from clause of
user queries.

The purpose of the Flexible relational model [1] is to represent the inconsistencies that
are detected in a multidatabase environment, and preserve this information during query
processing. This is achieved by a new relation structure and extensions to the relational
algebra. The solution provides end users with complete information on inconsistencies, and
leaves them to interpret it any way they see fit. In contrast, our goal here is to provide tools
for resolving inconsistencies.

In the area of deductive databases, [15] develops methods for amalgamating inconsistent
knowledge bases. Conflict resolution axioms are used to determine which facts should be
removed from the amalgamation. These axioms are based on properties such as reliability or
timestamps. However, it does not seem possible to remove information based on its contents,
or to fuse alternative values into a single value.

One of the features of Multiplex is that when some of the information required for answer-
ing a query is unavailable, the system delivers a partial answer. A similar feature is described
in [4], where in addition it is shown how the part answer which is presently unavailable can
be calculated subsequently submitted as a complementary query.

6 Conclusion and Future Work

Multiplex is a system for integrating heterogeneous information sources. It facilitates the
quick creation of ad-hoc virtual databases in networked environments that are highly dy-
namic and involve large numbers of possibly complex sources. An important feature of
Multiplex is its handling of “troublesome” situations in which there is “too little data” (e.g.,
some sources are unavailable), or “too much data” (i.e., some sources are inconsistent).

Implementation. At the present, the Multiplex system is being upgraded from an
earlier version described in [14] to the version that was described here. We mention here some
of the architectural features common to both versions. Multiplex extends the query language
of conjunctive queries with aggregate functions. A language based on conjunctive queries with
aggregation provides a fairly powerful querying tool. The user interfaces include a simple
window for entering global queries, as well as a query assistant for guiding users through
the creation of global queries. All relations are assumed to have keys, which are used as the
tuple identification mechanism. Multiplex employs the widely-used client-server architecture.
The server is an application written in pure Java, whereas the client applications (e.g., the
submission of global queries) are CGI-scripts which are usually invoked through the Multiplex
user interface. All communication between the server, the clients and the member databases
is carried on the Internet. With respect to heterogeneity, Multiplex retrieves information
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from different kinds of sources, including: (1) relational (using Oracle), (2) object-oriented
(using Ode), (3) simple files (using Unix shell scripts), and (4) Wide-area information services
(WALIS, using SWISH 1.1 and WWWALIS 2.5) and (5) spreadsheets (Microsoft Excell’s HTML

output).

Null values. The virtual relations constructed by Multiplex may contain null values.
These nulls originate either from actual nulls that were present in the contributions, or from
the extension of contributed views with null columns. The processing of global queries on
databases with nulls is an issue that has not been discussed in this paper. Essentially, our
approach is to provide both a restrictive interpretation (in which null comparisons are inter-
preted as false) and a permissive interpretation (in which null comparisons are interpreted as
true). This creates two answers: A sound answer which contains the tuples that are certain,
and a complete answer which contains the tuples that are possible. The “real answer” is thus
“sandwiched” between these sound and complete estimates.

Optimization. Multiplex tries to optimize global query processing by striving to min-
imize the amount of data extracted from the member databases. The challenge to the
Multiplex optimizer is that member databases may not be able to process requests other
than those that precisely match the views they promised. For example, assume a member
database that contributes a large set of employee records, and consider a query about the
salary of Jones. The optimizer might recognize that it is sufficient to issue a request for
just one tuple, but the source might be unable to respond to any request other than for the
entire set. One way to optimize requests to such sources is to embed them in appropriate
wrappers.

Future directions. Finally, we mention several research problems that are still open.
First, we are interested in deriving the properties of the answers assembled by Multiplex in
response to user queries from the properties of the input sources that were used in generating
these answers. The Multiplex model we described does not incorporate integrity constraints.
The subject of global constraints, the mapping of global constraints to member constraints,
and the use of global constraints in the construction of global relations requires further
study. Another interesting issue is whether a global scheme is “covered” by a given set of
contributing views. Fourth, we are interested in investigating the semantic distance among
tuples as an alternative tuple identification mechanism [7].
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