
Using Formal Methods To Mechanize

Category-Partition Testing

Paul Ammann � Je� O�utt y

pammann@isse.gmu.edu ofut@isse.gmu.edu

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030

Draft { Submitted

September, 1993

Abstract

We extend the category-partition method, a speci�cation-based method for testing software.
Previous work in category-partition has focused on developing structured test speci�cations that
describe software tests. We o�er guidance in making the important decisions involved in trans-
forming test speci�cations to actual test cases. We present a structured approach to making
those decisions, including a mechanical procedure for test derivation. With this procedure, we
suggest a heuristic for choosing a minimal coverage of the categories identi�ed in the test speci�-
cations, suggest parts of the process that can be automated, and o�er a solution to the problem
of identifying infeasible combinations of test case values. Our method uses formal schema-based
functional speci�cations and is illustrated with an example of a simple �le system. We conclude
that our approach eases test case creation and leads to e�ective tests of software. We also note
that by basing this procedure on formal speci�cations, we can identify anomalies in the functional
speci�cations.

�Partially supported by the National Aeronautics and Space Administration under grant NAG 1-1123-FDP.
yPartially supported by the National Science Foundation under grant CCR-93-11967.

1

1 Introduction

Speci�cation-based testing, or black-box testing, relies on properties of the software that are
captured in the functional speci�cation, as opposed to the source code. The category-partition
method [3, 12] is a speci�cation-based test method that has received considerable attention.
An important aspect of category-partition testing is the formalization of the notion of a test
speci�cation, which is an intermediate document designed to bridge the large gap between func-
tional speci�cations and actual test cases. Some parts of a test speci�cation can be derived in
a mechanical way from a functional speci�cation. Other parts require the test engineer to make
decisions or rely on experience. The work reported on in this paper aims to isolate those tasks
of producing a test speci�cation that are mechanical, thereby freeing the test engineer to focus
on the remaining, more intellectually demanding tasks.

In this paper, we address some important details of constructing a test speci�cation that are
left open in the category-partition method. Speci�cally, we

� re�ne the latter steps of the category-partition method by supplying a mechanical procedure
for deriving test cases from test scripts

� argue that every category-partition test set should include certain tests and supply a general
procedure for enumerating these tests,

� supply a method of resolving infeasible tests caused by con
icting choices.

An important side e�ect of our method is that we are sometimes able to uncover anomalies in
the functional speci�cation. This allows us to, in some cases, detect unsatis�able (as de�ned by
Kemmerer [10]) speci�cations.

We employ formal methods, in particular Z speci�cations, as a tool in our investigation of
test generation. There are several motivations for using formal methods. First, some of the
analysis necessary for producing a test speci�cation is already present in a formal functional
speci�cation, and hence less e�ort is required to produce a test speci�cation from a formal
functional speci�cation. Second, the use of formal methods makes the determination of whether
part of a test speci�cation results from a mechanical process or from the test engineer's judgement
more objective. Finally, formal methods are well suited to manipulating artifacts of the testing
process itself. Such artifacts include parts of the test speci�cation and actual test cases.

1.1 Related Work

A variety of researchers have investigated the use of formal methods in test generation. Kemmerer
suggested ways to test formal speci�cations for such problems as being unsatis�able [10]. In the
DAISTS system of Gannon, McMullin, and Hamlet [6], axioms from an algebraic speci�cation, in
conjunction with test points speci�ed by a test engineer, are used to specify test sets for abstract
data types. Hayes [9] exploits the re�nement of an abstract Z speci�cation to a (more) concrete
speci�cation to specify tests at the design level. Amla and Ammann [1] described a technique
in which category-partition tests are partially speci�ed by extracting information captured in Z

2

speci�cations of abstract data types. Laycock [11] independently derived similar results. More
recently, Stocks and Carrington [15, 16] have used formal methods for describing test artifacts,
speci�cally test frames, or sets of test inputs that satisfy a common property, and test heuristics,
or speci�c methods for testing software.

1.2 Outline of paper

The paper begins by reviewing the steps in the category-partition method in section 2. As an in
depth discussion of the Z notation is beyond the scope of this paper, the Z constructs that we
require are described in section 3; further information may be found in the Z reference manual
[14] or one of the many Z textbooks [5, 13, 18]. Our mechanical procedure for deriving test
scripts is given in section 4, and section 5 presents partial Z speci�cations, test speci�cations,
test frames, and test case scripts for an example system. Finally, we summarize our results and
�ndings in Section 6.

2 Category-Partition Method

The category-partition method [3, 12] is a speci�cation-based testing strategy that uses an infor-
mal functional speci�cation to produce formal test speci�cations. The category-partition method
o�ers the test engineer a general procedure for creating test speci�cations. The test engineer's
key job is to develop categories, which are de�ned to be the major characteristics of the input
domain of the function under test, and to partition each category into equivalence classes of
inputs called choices. By de�nition, choices in each category must be disjoint, and together the
choices in each category must cover the input domain.

The steps in the category-partition method that lead to a test speci�cation may be summa-
rized as follows.

1. Analyze the speci�cation to identify the individual functional units that can be tested
separately.

2. Identify the input domain, that is the parameters and environment variables that a�ect the
behavior of a functional unit.

3. Identify the categories, which are the signi�cant characteristics of parameter and environ-
ment variables.

4. Partition each category into choices.

5. Specify combinations of choices to be tested and the corresponding results and the changes
to the environment.

Each speci�ed combination of choices results in a test frame. The category-partition method
relies on the test engineer to determine constraints among choices to exclude certain test frames.
There are two reasons to exclude a test frame from consideration. First, the test engineer may

3

decide that the cost of building a test script for a test frame exceeds the likely reward of executing
that test. Second, a test frame may be infeasible, in that the intersection of the speci�ed choices
is the empty set. Recently, Grochtmann and Grimm [7] have developed classi�cation trees, a
hierarchical arrangement of categories that avoids the introduction of infeasible combinations of
choices.

The developers of the category-partition method have de�ned a test speci�cation language
called TSL [3]. A test case in TSL is an operation and values for its parameters and relevant
environment variables. A test script in TSL consists of the operations necessary to create the en-
vironmental conditions (called the SETUP portion), the test case operation, whatever command
is necessary to observe the a�ect of the operation (VERIFY in TSL), and any exit command
(CLEANUP in TSL). Test speci�cations written in TSL can be used to automatically generate
test scripts. The test engineer may optionally give speci�c representative values for any given
choice to aid the test generation tool in deriving speci�c test cases. The category-partition
method supplies little explicit guidance as to which combinations of choices are desirable { the
task is left mostly to the test engineer's judgement.

In this work, we follow the spirit of the category-partition method, but there are di�erences
in our use of the technique. First, we base our derivation on formal speci�cations of the software,
since, as has been demonstrated in a variety of papers [1, 11, 15, 16], the formality of the functional
speci�cation helps to simplify and organize the production of a test speci�cation. Second, we do
not follow the TSL syntax, but instead format examples as is convenient for our presentation.
Speci�cally, as has been done by others [15, 16], we employ the formal speci�cation notation to
describe aspects of the tests themselves as well as to describe functional behavior. Third, we
identify categories with the function under test instead of a parameter or environment variable
of the function. Amla and Ammann present a more elaborate discussion of this point [1].

3 Z Speci�cations

The formal speci�cation language Z is a mathematical notation based on typed set theory and
predicate calculus. Here we restrict our overview to the speci�c aspects that are relevant to
this discussion. In particular, we focus our attention on Z speci�cations for abstract data types
(ADTs). An ADT is characterized by speci�ed states on a data structure and operations that
observe and/or change the state.

A Z speci�cation is organized around named objects, called schemas, which can be combined
to form larger speci�cations. A schema has three parts; the object name, the signature, which
de�nes the components of the object, and the predicate, which constrains the components. For
an ADT operation, the signature typically de�nes the inputs, outputs, and state variables. The
predicate typically de�nes preconditions and postconditions of the schema. A schema represen-
tation is shown below.

4

Name
Signature

Predicate

For the ADT-based systems we consider here, a Z schema de�nes either static or dynamic
aspects of the behavior of the system.1 A static schema describes the states that the system can
have, and it introduces the components (data items) of the state, and invariant relations on the
state. A dynamic schema describes an operation, or relation between states, that can occur in the
system, and gives the preconditions and postconditions for the operation. The preconditions must
be satis�ed before the operation can be applied, and the postconditions de�ne the relationship
between the inputs, the outputs, the prior state, and the resulting state.

By usual convention in Z, input variables are decorated by a trailing \?", and output variables
are decorated by a trailing \!". State variables decorated by a trailing \0" indicate the state of
the variable after an operation is applied. By way of abbreviation, one schema can be included
in another by using the name of the included schema in the signature of the new schema. By
convention, if the included schema name is pre�xed with a �, then the new schema may change
the state variables of the included schema. If an included schema name is pre�xed with a �, the
operation may not change the state variables of the included schema.

A partial mapping of Z constructs to category-partition test speci�cations is given by Amla
and Ammann [1]. We brie
y recap major points below:

1. Testable units correspond to \dynamic" schemas, i.e., operations on the ADT.

2. Parameters (inputs) are explicitly identi�ed with a trailing \?". Environment variables
(ADT state components) are the components of the \static" schema.

3. Categories have a variety of sources. Some categories are derived from preconditions and
type information about the inputs and state components. Typically, there are additional
desirable categories that cannot be derived from the speci�cation; the test engineer must
derive these from knowledge and experience. Recent work [15, 16] points to other sources
of categories in formal speci�cations.

4. Some categories, particularly those that are based on preconditions, partition naturally
into normal cases and unusual or illegal cases. Partitions for other categories depend on
the semantics of the system, and often require the test engineer's judgement.

5. To determine which combinations of choices to test, there are few general rules to be found
in either the Z speci�cations or in the previous work in category-partition testing [3, 12].
For the veri�cation of outputs, the state invariants and postconditions are helpful.

It has also been observed that Z schemas are ideal constructs for describing test frames
[16, 15]. In this case, the signature part lists the variables that make up possible test inputs

1Z schemas are often interpreted in a more general way, as described in the various Z references [5, 13, 14].

5

and the predicate part constrains the variables as determined by the reason for the test. For
example, a test frame intended to cover a statement in a program has a predicate part that gives
the path expression that causes the
ow of control to reach that statement. A Z schema used to
describe a test frame typically describes a set of possible inputs; a re�nement process must be
used to select an element from the set before the test can actually be executed.

4 Mechanical Derivation of Test Scripts

The category-partition work has left a considerable amount of detail in the last two steps to the
discretion of the tester. In particular, which combinations of categories to use is an important
problem whose solution a�ects the strength and e�ciency of testing. One problem that remains
is that some of the combinations of categories are impossible, because they have con
icting
requirements. Thus these combinations must be recognized and avoided. Another problem is
that the number of combinations of categories can be quite large and repetitious. If we generate
all combinations, where there are N categories and the kth category has ik choices, then the
number of resulting test frames is:

NY

k=1

ik ; (1)

which is combinatorial in cost. For example, consider a test speci�cation with two categories X
and Y , where X has three choices and Y has two:

Categories: X Y
* P1 * Q1

* P2 * Q2

* P3

Let us denote a test frame that satis�es choices Pi and Qj by [Pi ; Qj]. The example speci�-
cation de�nes six possible (classes of) test cases, [P1; Q1], [P1; Q2], [P2; Q1], [P2; Q2], [P3; Q1],
and [P3; Q2]. To construct a test set, one chooses from zero to six of the possible test frames,
yielding a total of 26 or 64 possible sets of test frames (including the empty set). On the surface,
only six decisions need to be made (whether to include each test frame), but since the test frames
are interrelated, the six decisions cannot be made in isolation. Thus we are left with the question;
which of these test sets should be speci�ed?

In TSL speci�cations [3], a special syntax in the form of conditionals in the RESULTS sections
is provided to specify combinations of choices. However, the TSL syntax only supports a way to
specify combinations of choices. Although the authors suggest testing certain error conditions
only once, deciding which choices to specify is left to the test engineer.

4.1 The Derivation Procedure

As a signi�cant re�nement of the category-partition method, we present the following mechanical
procedure to create test scripts. This process addresses open issues in the last two steps of the

6

method, and can be used to generate the TSL's RESULTS section.

1. Create a combination matrix.
A convenient way to organize the values for the inputs and environment variables in test
frames is with an N -dimensional combination matrix, where N is the number of categories
and each dimension represents the choices of a category. The entries in the matrix are con-
straints that specify a test frame for the intersection of choices. This matrix is intended as
a conceptual tool that helps describe our process, rather than something that will actually
be constructed in practice.

An example, explained further below, is the combination matrix for the two categories, X
and Y :

Y
Q1 Q2

P1 1
X P2 2 3

P3 4 5

2. Identify a base test frame.
For each partitioned category and each operation, the test engineer designates one choice
to be the base choice. This is typically either a default choice, or a \normal" choice. The
base test frame is constructed by selecting the base choice from each category. In the above
example, we assume that [P1; Q1] is the base test frame.

3. Choose other combinations as test frames.
Without some knowledge of the application, one cannot say, in general, which of the many
possible test sets are preferable. Some test sets, such as the empty set, are clearly un-
desirable. The test set with all combinations of choices is the most comprehensive of the
possibilities, but is usually repetitious, and can result in an unmanageable number of test
frames when there are a large number of choices.

In our work, we wish to mechanically derive the parts of the test speci�cation that the test
engineer must always specify anyway. Therefore we adopt the following minimal goal: For
each choice in a category, we combine that choice with the base choice for all other relevant
categories. This causes each non-base choice to be used at least once, and the base choices
to be used several times. We leave more extensive speci�cation of combinations of choices
to the test engineer to choose as the application warrants.

Once the test engineer chooses a base test frame, the combination matrix can be used to
automatically choose the remaining test frames by varying over choices in each category.
In e�ect, we start at the base cell in the matrix, and successively choose each cell in every
linear direction from the base cell. In the above example, if [P1; Q1] forms the base frame,
then we also choose [P1; Q2], [P2; Q1], and [P3; Q1].

7

An advantage of this approach is that the number of test frames generated is linear in
the number of choices, rather than the combinatorial number from formula 1. The exact
number of test frames is:

(
NX

k=1

ik)� N + 1: (2)

4. Identify infeasible combinations.
In the combination matrix, each cell can be annotated with a number that corresponds
to a setup script, or left blank if that combination is impossible. If an impossible choice
(a blank cell) is reached, we shift the test frame by varying other choices until we reach a
combination of choices that is possible. Since [P1; Q2] in the above example is blank, we
shift the test frame by moving P1 to P2 to get test frame [P2; Q2]. Note that when we
shift, we shift away from the base frame.

Deciding whether a combination is infeasible is equivalent to deciding whether the con-
straints involved can be satis�ed. Although satis�ability is a hard problem, tools exist that
are capable of resolving many common cases. For example, theorem proving systems can
handle propositional and predicate calculus, as well as simple arithmetic properties, and
hence could be used as an intelligent assistants to the test engineer.

5. Re�ne test frames into test cases.
Each test frame represents a combination of choices, and thus is a set of candidate test
inputs for that frame. To actually execute a test, an element from the test set must be
chosen. Although we do not concentrate on this aspect of test generation in this paper, we
do note that it is the subject of serious inquiry. For example, DeMillo and O�utt [4] have
developed algorithms to automatically generate test cases from constraints, and Wild et
al. are developing techniques to employ accumulated knowledge to re�ne test frames [17].

6. Write operation commands.
For each cell in the combination matrix that is chosen, the corresponding operation com-
mands, setup commands, verify commands, and cleanup commands must be written. Al-
though we expect that the test engineer needs to specify the actual commands, not all
possible scripts are needed. Thus there is no need to enumerate the entire matrix, which
is why this step comes towards the end. For many systems the cleanup command(s) are
constant for the entire system and only need to be speci�ed once, and only one verify
command will be needed for each operation.

7. Create test scripts.
Given this information, creating the actual test scripts is a straightforward process. For
each chosen cell, the corresponding setup script is chosen, the command is appended,
then the verify and cleanup commands are attached. The commands can be given to an
automated tool, which can automatically generate the actual test scripts, execute them,
and provide the results to the tester.

8

The complete generation of test scripts can be done prior to the design; in fact, any time
after the functional speci�cations are written. By reusing the procedure, it is also easy to modify
the test scripts once they are created.

5 The MiStix File System Example

We demonstrate our mechanized procedure on an example system. MiStix is based on the Unix
�le system, and is used in exercises in graduate software engineering classes at George Mason
University. The Mistix speci�cation is similar to, although simpler than, the Unix �le system
speci�cation developed as a Z case study in Hayes [8]. There are a total of ten operations de�ned
in MiStix:

� Two operations to create and delete directories

� Two operations to create and delete �les

� Two operations to copy and move �les

� One operation to change the current directory

� One operation to print the full pathname of the current directory

� One operation to list �les and directories

� One operation to log o�

Because the complete speci�cation is quite lengthy, we focus on one of the ten operations,
CreateDir. We specify MiStix as an ADT, beginning with a description of the base types needed.
There are two types of objects in the system: �les and directories. The type Name is used to
label a simple �le or directory name (for example, the MiStix �le \foo"):

[Name]

We denote constants of type Name with double quoted strings, as in the example above.
Sequences of Name are full �le or directory names (for example, the MiStix �le \/usr/bin/foo"):

FullName ::= seqName

The representation chosen here has the leaf elements at the tail of the sequence, and so, for
example, the representation of \usr/bin/foo" is the sequence husr ; bin; fooi. We use the se-
quence manipulation functions front , which yields a subsequence up to the last element (e.g.,
front(husr ; bin; fooi) = husr ; bini) and last , which yields the element at the end of the sequence
(e.g., last(husr ; bin; fooi) = foo).

9

5.1 State Description

The state of FileSystem is represented by the directories in the system (dirs), the �les (�les),
and a current working directory (cwd). The Z schema for FileSystem is as follows:

FileSystem
�les : PFullName
dirs : PFullName
cwd : FullName

8 f : �les [dirs � f 6= hi) front f 2 dirs

cwd 2 dirs

FileSystem has three components in its signature, �les, dirs, and cwd , and two invariants in
the predicate. The �rst component, �les, is the set of �les that currently exist in the system.
(The P in PFullName is the powerset constructor and is read \set of"). The second component,
dirs, is the set of directories that currently exist in the system. The last component, cwd , does
not record any permanent feature of the �le system, but is instead used to mark a user's current
working directory. The �rst invariant states that, with the exception of the root directory hi, for
a �le or directory to exist, it must be in a valid directory. (As a note on Z notation, the � in the
�rst invariant may be read, \it is the case that"). The second invariant states that cwd must be
an existing directory. Note that there is no constraint that prohibits �les and directories from
sharing the same name, although such a constraint might be desirable and could be easily added,
by including the predicate �les \ dirs = ;.

5.2 Example MiStix Operation

By way of example, we give the speci�cations for one representative operation, CreateDir . The
full speci�cations for MiStix can be found in the technical report [2]. The English speci�cation
for the operation CreateDir is as follows:

� CreateDir n?
If the name n? is not already in the current directory, create a new directory called n? as
a subdirectory of the current directory, else print an appropriate error message.

The Z formal speci�cation for CreateDir is as follows (the speci�cation for the error message
has been omitted here):

CreateDir
�FileSystem
n? : Name

cwd _hn?i =2 dirs

dirs 0 = dirs [fcwd _hn?ig

10

CreateDir modi�es the state of the �le system (hence the �FileSystem), and takes the new
directory name, n?, as an input. The �rst predicate, the precondition for the operation, is that
the directory to be created, the concatenation of the current working directory with the new
name (cwd _hn? i), does not already exist. The second predicate, the postcondition, adds the
new directory to the set dirs 0. Remember that dirs 0 denotes the value of the dirs environment
variable after execution of the operation. Note that we do not need to specify that cwd is valid,
since the FileSystem predicates ensure that.

5.3 Category-Partition Tests For CreateDir

In this section we apply the method of Amla and Ammann [1] to part of MiStix. The remainder
of the test speci�cation for MiStix is similar and can be found in the technical report [2].

The �rst step in category-partition testing (as given in section 2) is to identify the testable
units. Since FileSystem is a static schema giving a state description, it is not a testable unit.
Since CreateDir is a dynamic schema that describes an operation, it is a testable unit.

The second step is identi�cation of the inputs and environment (state) variables for CreateDir .
From the syntax of the operation, it is clear that n? of type Name is the explicit input and that
dirs and cwd are the state variables of interest. Formally, we can describe the input domain for
CreateDir with the schema

CreateDirInput Domain

FileSystem
n? : Name

Note that the schema FileSystem includes both the declarations for dirs and cwd and also
constraints on the values dirs and cwd can take. Since �les is neither examined nor changed in
CreateDir , �les is not a relevant state variable to the operation. As a technical point, we could
capture this fact by using the Z schema hiding operator to hide the variable �les in the schema
CreateDirInput Domain , but we elect not to do so for the remainder of the example.

The third step is the identi�cation of the categories, or important characteristics of the in-
puts. One source of categories is preconditions on operations. Preconditions are good sources for
categories because they are precisely the predicates on the domain of a testable unit that distin-
guish normal operation from unde�ned or erroneous operation. For CreateDir , the precondition
is that the directory to be created not already exist. Two choices for a category based on the
precondition are that the directory to be created does not yet exist and that it already exists.

Another source of categories is revealed by examining other parts of the MiStix speci�cation
and noting that variables of type Name can assume two special values. One special value,
which we denote PARENT , is the value of n? used when referring to the parent directory. The
special value PARENT corresponds to the \.." in Unix �lename speci�cations. The behavior of
CreateDir with respect to a request to create a �le named PARENT is technically allowed by the
formal speci�cation, but clearly represents an unusual case. This is an advantageous side e�ect
of deriving test frames in this manner; deriving test data based on the functional speci�cations
can lead the test engineer to identifying anomalies in the speci�cations themselves.

11

Another special value of type Name, which we denote ROOT , is the value of n? used when
referring to the root directory. The special value ROOT corresponds to the empty string.

The schema for CreateDir suggests two more categories. One is based on whether the current
working directory (cwd) is the empty sequence (i.e. root). The empty sequence is a typical
special case for sequences. The last category we employ is the state of the directories set (dirs).
The motivation for this category is that if it matters if cwd is the empty sequence (root), cwd
would always be root if the only existing directory is the root directory.

The fourth step is partitioning the categories, some aspects of which have already been
discussed. The test speci�cations for CreateDir after the �rst four steps of the category-partition
method are:

Functional Unit: CreateDir

Inputs: n? : Name

Environment Variables: dirs : PFullName
cwd : FullName

Categories: Category { Precondition
Choice 1 (Base): cwd _hn?i =2 dirs
Choice 2: cwd _hn?i 2 dirs

Category { Type of n?
Choice 1 (Base): n? 6= ROOT ^ n? 6= PARENT
Choice 2: n? = ROOT
Choice 3: n? = PARENT

Category { Type of cwd
Choice 1 (Base): cwd 6= hi
Choice 2: cwd = hi

Category { Type of dirs
Choice 1 (Base): dirs 6= fhig
Choice 2: dirs = fhig

5.3.1 Creating The Combination Matrix

The combination matrix is a conceptual tool; only those combinations of choices that are selected
need be explicitly enumerated. The combination matrix for CreateDir has four dimensions, one
for each category. There are 2 � 3 � 2 � 2 = 24 entries in the combination matrix for CreateDir .

12

5.3.2 Identifying The Base Test Frame

To identify a base test frame, a base choice is selected for each category. The selection of a base
choice is somewhat arbitrary, but a good selection is the choice that corresponds to normal or
typical system activity. The indications of base choices are indicated by the word \Base" in the
test speci�cation for CreateDir .

For brevity, the choices in the test speci�cation are listed as predicates only, although a more
complete description is with a set of variable declarations and predicates on those variables,
i.e. with a schema, as done by Stocks and Carrington [15, 16]. Note that the invariant from
FileSystem, which describes the set of valid states for the �le system, must hold for every choice.
The base test frame is the intersection of the base choice for each category, and this is succinctly
expressed with the schema conjunction of the base schema for each category.

For CreateDir the base test frame is the schema:2

CreateDirBase Test Frame

FileSystem
n? : Name

cwd _hn?i =2 dirs

n? 6= ROOT ^ n? 6= PARENT

cwd 6= hi

dirs 6= fhig

The source of each of the explicitly listed predicates in CreateDirBase Test Frame is as follows.
The predicate cwd _hn?i =2 dirs comes from the schema that is Choice 1 (Base) for Category {
Precondition. Similarly, the predicate n? 6= ROOT ^ n? 6= PARENT comes from the schema
that is Choice 1 (Base) for Category { Type of n?, and so on.

5.3.3 Choosing Other Combinations as Test Frames

Applying the heuristic from section 4 to the CreateDir operation of MiStix gives a total of six
test frame schemas, the base test frame schema (shown above in CreateDirBase Test Frame) and
�ve additional variations, one for each non-base choice. In the interest of compactness we omit
the declaration part of the test frame schemas and only list the predicate parts from the choices.
Note that since each test frame schema includes FileSystem, each predicate part of a test frame
schema listed below also includes the state invariant from FileSystem, even though that predicate
is not explicitly listed.

2Note that the schema inclusion of FileSystem in CreateDirBase Test Frame declares the variables dirs and cwd

and supplies the state invariants on these variables.

13

Base Test Frame
Test Frame 1: The Base Test Frame schema, CreateDirBase Test Frame ,

is shown above
Test Frame From Category { Precondition

Test Frame 2: cwd _hn?i 2 dirs ^
n? 6= ROOT ^ n? 6= PARENT ^
cwd 6= hi ^
dirs 6= fhig

Test Frames From Category { Type of n?
Test Frame 3: cwd _hn?i =2 dirs ^

n? = ROOT ^
cwd 6= hi ^
dirs 6= fhig

Test Frame 4: cwd _hn?i =2 dirs ^
n? = PARENT ^
cwd 6= hi ^
dirs 6= fhig

Test Frame From Category { Type of dirs
Test Frame 5: cwd _hn?i =2 dirs ^

n? 6= ROOT ^ n? 6= PARENT ^
cwd 6= hi ^
dirs = fhig

Test Frame From Category { Type of cwd
Test Frame 6: cwd _hn?i =2 dirs ^

n? 6= ROOT ^ n? 6= PARENT ^
cwd = hi ^
dirs 6= fhig

Note the source of each of the four explicitly listed predicates in a given test frame schema
listed above. Predicates are mechanically derived as for those in CreateDirBase Test Frame . Specif-
ically, each predicate is a choice from one of the four categories for CreateDir . For any given test
frame schema, one predicate corresponds to a non-base choice; remaining predicates correspond
to base choices.

14

5.3.4 Identifying Infeasible Combinations

Test Frame 5, developed above for CreateDir , is, in fact, infeasible. The conjuncts

dirs = fhig ^
cwd 6= hi

along with the invariant relation from FileSystem,

cwd 2 dirs

simplify to false. Informally, if the root directory is the only directory, then cwd must be set to
the root directory.

We demonstrate the utility of the combinationmatrix by showing the entries for the Type of dirs�
Type of cwd part of the combination matrix:

Type of dirs
Base Root Only

Type of cwd Base 1
Root 2 3

The empty cell represents the combination of choices where there is only one directory, the
root directory, and it contains no subdirectories (dirs = f<>g, and the current working directory
(cwd) is some non-root, e.g. /a.

We revise test frame 5 by shifting to a di�erent cell in the combination matrix, namely the
one where cwd = hi. As a result, we get a revised Test Frame 5 (listed in full schema form):

CreateDirRevised Test Frame 5

FileSystem
n? : Name

cwd _hn?i =2 dirs

n? 6= ROOT ^ n? 6= PARENT

cwd = hi

dirs = fhig

5.3.5 Re�ning Test Frames Into Test Cases

Re�ning the test frames into test cases is the process of selecting a representative input from
the set of inputs that satisfy the selected choices. In previous work such as DeMillo and O�utt's
[4], the re�nement may be based purely on the syntax of the constraints and the types of the
variables, whereas in a sophisticated system such as the one proposed by Wild et al. [17], such a
re�nement might be based on a knowledge base incorporating other project speci�c data. Since
re�nement is not the focus of our present work, we simply present sample test inputs that satisfy
the necessary constraints. Each test input is a triple of (n?; dirs; cwd).

15

All Base Choices

Test Case 1: (b, {<>,<a>}, <a>)

Non-Base Precondition Choice

Test Case 2: (b, {<>,<a>,<a,b>}, <a>)

Non-Base Type of n? Choice

Test Case 3: (PARENT, {<>,<a>}, <a>)

Test Case 4: (ROOT, {<>,<a>}, <a>)

Non-Base Type of dirs Choice

Test Case 5: (b, {<>}, <>)

Non-Base Type of cwd Choice

Test Case 6: (b, {<>,<a>}, <>)

5.3.6 Writing Operation Commands

The actual test case commands must use the parameters speci�ed by the values of the test cases
in a syntactically correct command to the system being tested. This is a straightforward process
that could be automated by using the formal speci�cation of the command. For cell 1 in the
example above, the operation is:

Operation: CreateDir b

5.3.7 Creating Test Scripts

A test script is derived from a matrix entry by taking the corresponding setup script, creating
the syntax for the test operation, and appending the verify and cleanup scripts. A test script for
cell 1 from the above matrix is:

Setup: CreateDir a

ChangeDir a

Operation: ...

Verify: List

Cleanup: Logoff

5.4 Results of Testing MiStix

To demonstrate our technique, we generated and executed a complete set of test data for the
MiStix system. The implementation is about 900 lines of C source, in three separate modules.

We derived 72 test cases for the ten operations, of which 5 were duplicates. Some of the test
cases were also superseded by others in the sense that they were pre�xes of the other test cases.
We did not eliminate these tests (although an automated tool to support this process could easily
do so). The MiStix system contained 10 known faults, of which 7 were detected.

16

6 Conclusions

Test speci�cations are an important intermediate representation between functional speci�cations
and functional tests. In general, it is desirable to know the extent to which a test speci�cation
can be derived from the functional speci�cation and the extent to which the tester must rely on
information external to the speci�cation. In this paper we have helped to answer this question by
presenting a mechanical procedure that will guide the tester when creating complete functional
tests from functional speci�cations.

It is unreasonable to expect to derive a test speci�cation completely from the functional speci-
�cations. For example, the test engineer might be aware that typical (incorrect) implementations
for a given problem employ �xed sized structures in cases where dynamically sized structures are
required. In the speci�cation for MiStix, the depth of the directory tree is not constrained in any
way by any explicit statement in the Z speci�cations. The lack of an explicit statement makes
it di�cult to mechanically derive an appropriate category (e.g., directory tree depth). However,
to a typical human test engineer, limits on directory depth is a relatively obvious property to
check (and indeed such a check can lead to tests that discover faults not found by the mechani-
cally generated test speci�cation). Thus the role of mechanically generated test speci�cations as
identi�ed here is to relieve the burden of routine tasks and free the test engineer to concentrate
on other areas.

A problem with category-partition testing that has not received much attention is guidance
for specifying which combinations of choices should be tested. In this paper we have outlined
a technique that designates some choices as \base" choices. A base test frame uses all the base
choices, and only the base choices. Other test frames are generated by systematic enumeration
over all non-base choices. This technique has the desirable properties that it is relatively inexpen-
sive (linear in the number of choices) and ensures that each choice will be used in at least one test
case (if feasible). Another advantage of the technique is that the test engineer's determination
of expected results for a test case can be aided by examining the category over which choices are
being enumerated. Such an approach reveals inconsistencies in the functional speci�cation if a
given test input is interpreted as simultaneously leading to two inconsistent outputs.

Thus, our results support the thesis that test speci�cations can be useful early in the devel-
opment process to identify ambiguous and inconsistent parts of the functional speci�cation. An
important, but often overlooked point, is that the mere use of formal methods, such as Z, does
not eliminate problems with speci�cations. Testing the speci�cation itself is as valid a role for
test speci�cations as is testing the implementation against the speci�cation.

Our eventual goal with this research is twofold. First we want to �nd new ways to integrate
testing activities into early phases of the lifecycle. Creating test speci�cations and test scripts
immediately after functional speci�cations is one such activity. Second, we hope to provide
test engineers with as much automated support as possible to derive consistently e�ective test
speci�cations and test cases for system level testing. The mechanical procedure reported here
is a step towards this goal; in future work we hope to augment this procedure with automation
whenever possible.

17

Acknowledgements

It is a pleasure to acknowledge Tom Ostrand for his helpful comments and encouragement on
the application of formal methods to category-partition testing. We are also grateful to Steve
Zeil for explaining the utility of Z schemas as test frame descriptors.

References

[1] N. Amla and P. Ammann. Using Z Speci�cations in Category Partition Testing. In Proceed-
ings of the Seventh Annual Conference on Computer Assurance (COMPASS 92), Gaithers-
burg MD, June 1992. IEEE Computer Society Press.

[2] P. Ammann and A. J. O�utt. Functional and test speci�cations for the MiStix �le sys-
tem. Technical report ISSE-TR-93-100, Department of Information and Software Systems
Engineering, George Mason University, Fairfax VA, 1993.

[3] M. Balcer, W. Hasling, and T. Ostrand. Automatic Generation of Test Scripts from Formal
Test Speci�cations. In Proceedings of the Third Symposium on Software Testing, Analysis,
and Veri�cation, pages 210{218, Key West Florida, December 1989. ACM SIGSOFT 89.

[4] R. A. DeMillo and A. J. O�utt. Constraint-based automatic test data generation. IEEE
Transactions on Software Engineering, 17(9):900{910, September 1991.

[5] A. Diller. An Introduction to Formal Methods. Wiley Publishing Company Inc., 1990.

[6] J. Gannon, P. McMullin, and R. Hamlet. Data-Abstraction Implementation, Speci�cation,
and Testing. ACM Transactions on Programming Languages and Systems, 3(3):211{223,
July 1981.

[7] M. Grochtmann and K. Grimm. Classi�cation Trees for Partition Testing. Journal of
Software Testing, Veri�cation, and Reliability, 3(1), 1993. To appear.

[8] I. Hayes. Speci�cation Case Studies. Prentice Hall Publishing Company Inc., 1993.

[9] I. J. Hayes. Speci�cation Directed Module Testing. IEEE Transactions on Software Engi-
neering, SE-12(1):124{133, January 1986.

[10] R. A. Kemmerer. Testing formal speci�cations to detect design errors. IEEE Transactions
on Software Engineering, SE-11(1):32{43, January 1985.

[11] G. Laycock. Formal Speci�cation and Testing: a Case Study. Journal of Software Testing,
Veri�cation, and Reliability, 2:7{23, 1992.

[12] T. J. Ostrand and M. J. Balcer. The Category-Partition Method for Specifying and Gener-
ating Functional Tests. Communications of the ACM, 31(6):676{686, June 1988.

18

[13] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Speci�cation and Z. Prentice
Hall Publishing Company Inc., 1991.

[14] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Publishing Company Inc.,
1989.

[15] P. Stocks and D. Carrington. Test Template Framework: A Speci�cation-Based Testing
Case Study. In Proceedings of the 1993 International Symposium on Software Testing and
Analysis, pages 11{18, Cambridge, MA, June 1993.

[16] P. Stocks and D. Carrington. Test Templates: A Speci�cation-Based Testing Framework. In
Proceedings of the 15th International Conference on Software Engineering, pages 405{414,
Baltimore, MD, May 1993.

[17] C. Wild, S. Zeil, G. Feng, and J. Chen. Employing Accumulated Knowledge to Re�ne Test
Descriptions. Journal of Software Testing, Veri�cation, and Reliability, 2(2):53{68, August
1992.

[18] J.B. Wordsworth. Software Development with Z. Addison-Wesley, 1992.

19

