
Semantic Query Optimization

in Deductive Object-Oriented Databases

Jong P. Yoon y and Larry Kerschberg z

Department of Information and Software Systems Engineering
School of Information Technology and Engineering
George Mason University, Fairfax, VA 22030-4444

fyjyoon,zkerschg@isse.gmu.edu

Abstract. This paper addresses the problem of semantic query reformulation
in the context of object-oriented deductive databases. It extends the declarative
object-oriented speci�cations of F-logic proposed by Kifer and Lausen using the
semantic query optimization technique developed by Chakravarthy, Grant, and
Minker. In general, query processing in object-oriented databases is expensive
when a query incorporates declarative rules, methods and inherited properties.
We introduce the technique of semantic query reformulation for F-logic queries
which transforms the original query into an equivalent, semantically-rich query
that is more e�ciently processed. We also discuss the issues of conict resolution
strategies and query evaluation priorities for queries involving the upper bounds
of objects in the F-logic \type" lattice.

1 Introduction

In traditional database systems, queries are typically optimized by either access
method cost models or rule-based methods. Access methods constitute an index
structure (or an e�cient plan) for executing a user's declarative query. The
rule-based methods generate an evaluation plan for a query. Some researchers
[3, 4, 10, 13] have used heuristic rules to optimize queries. Rules are used to
determine e�cient search strategies.

It is di�cult to associate rules to a query for e�cient processing. To lessen
this di�culty, a few researchers have developed so called semantic query reformu-
lation [2, 3, 7]. Constraints are associated with a query which in turn becomes
semantically optimized [2]. Integrity constraints may be added to queries as
functional equations [3]. Type checking is performed at query compilation time
[1]. We apply the query optimization concept [2] to queries expressed in F-logic
[6]. We propose a query reformulation scheme by which a user-issued query
is reformulated into an equivalent and semantically-rich query; the query in-
corporating rules and inheritances, and resolves conicts between inherited and
derived values. This paper is extended from the earlier work [5]. In particu-
lar, the query reformulation process exploits the partial ordering information for
resolution between a query and other available information (e.g., rules) stated
above. Using the partial ordering information makes it easier to deal with both
single and multiple inheritances.

This paper is organized as follows: First, we review F-logic in Section 2. We
examine research issues pertinent to semantic query optimization and develop
the steps for query optimization in Section 3, including the aspects relevant

emplstudent

assistant

mary

faculty

dept

cs1 cs2

"CS" "EE" "Mary" "Bob"

bob

phil

adam

sally

tara

john

person

40

midaged
young

30

yuppie

20

string

Figure 1: A Lattice of Database Example

to object-oriented databases. The query reformulation process is applied to
four examples retaining various object-oriented features in Section 4. Due to
several features of the object-oriented paradigm, multiple equivalent queries can
be obtained from the original query. Evaluation priority for the reformulated
queries is discussed in Section 5. Finally, Section 6 summarizes our work.

2 Preliminaries and De�nitions

We introduce the background knowledge used in F-Logic in this section, leaving
the syntactic and semantic details to the original paper [6]. The unique features
of F-logic which are essential to our work will be described. Before describing
the features of F-logic, the partial ordering theory [14] is introduced.

Lattice
A lattice is a formalism for an ordering of values based on their information
content [14]. The lattice in Figure 1 shows part of the IS-A hierarchy. Notice that
the IS-A relation in typical object-oriented databases (see Figure 4) is depicted
reversely in a lattice. In Figure 1, the information content of person is contained
in the information content of student. Similarly, empl contains more (or equal)
information than person. Both student and empl are the upper bound of person.
For example, a statement student : john (John is a student) is more informative
than person : john because every student is a person, but not vice versa.

Lattices, therefore, determine the least upper bound (lub) of objects, which
is the smallest upper bound of the objects. The least upper bound function,
lub(e1; ::; en), in short, returns the least upper bound type for a set of the ar-
guments e1; ::en. Our resolution of the type conict is based on denotational
semantics: (1) the least upper bound of types is constructed for a single-valued

label; (2) the union of the sets of types is constructed for set-valued labels. A
single-valued label for more than one object is set by computing the function
lub. For example, from lub(student; empl) = assistant, the single-valued label
of the object which denotes both student and empl is constructed as assistant
according to the lattice in Figure 1. From lub(ra; john) = >, where > means
the greatest element which is viewed as a \meaningless" (or inconsistent) ob-
ject, it is likely that an object which denotes both ra and john is meaningless.
Single-valued labels denoting > will be discussed in more detail in Section 5.
Similarly, ? is the least element, meaning an \unknown" object. On the other
hand, a set-valued label is set by union of appropriate object. For example, the
type conict between mary[friends ! fbob; sallyg] and the inherited property
faculty[friends ! ffaculty : department facultyg] is resolved by union of
those two labels: mary[friends ! fbob; sally; department facultyg.

F-Logic

Now, we review the unique features of F-logic [6]. A class is viewed as an instance
of a super-class. The object student can be viewed as representing the class of
students and at the same time as an instance of its superclass represented by
the object person. Each object has an object identity (oid).

F-Logic de�nes terms. The so called \F-term" P : Q[labeli ! Ti] is a
statement about an object Q asserting that it is an instance of the class P and
has properties speci�ed by the labels. Note P;Q and label denote \id-term,"
and T denotes \type constructor" which may be, in turn, an F-term. A term
constructed by an F-term is called a nested term. The terms can be either
constant symbols, variable symbols, or function symbols. T can be either single-
valued, function-valued, or set-valued. P : Q[labeli ! Ti] can be written as
P : Q if no labels are speci�ed.

For example, consider the term student : john[name! \John"]. The object
identity john is a student whose name is bound by \John." All terms are
constant single-valued in this F-term. However, in

student : john[works for ! dept : cs[chair! \Peter"]],

the type constructor works for for john is a nested term dept : cs[chair !
\Peter"]]. John works for the cs department where the chair is \Peter." In

faculty : peter[authorship! fpublication: Bg],

the faculty peter has an authorship that is a set B which is in publication. The
type constructor authorship for peter is set-valued.

Now, we discuss the decomposition and composition of terms. X[label1 !
a; label2 ! Y] is equivalent to a conjunction of its atomsX[label1 ! a]; X[label2
! Y]. We call decomposition of the formulaX[label1 ! a; label2 ! Y] into the
two atomsX[label1 ! a] and X[label2 ! Y] \�ssion," while the reverse process
(composition of atoms) \fusion." For example, the two terms

Facts:
(1) faculty : bob [name! \Bob", age! 40;works ! dept :

cs1[dname! \CS", mngr ! empl : phil]]

(2) faculty : mary [name! \Mary", age! 30; friends! fbob; sallyg;
works ! dept : cs2[dname ! \CS"]]

(3) assistant : john[name ! \John", works ! cs1[dname! \CS"]]

(4) student : sally[age! middleaged]

General Class Description:
(5) faculty[supervisor ! faculty; age! middleaged]
(6) student[age ! young]
(7) empl[supervisor ! empl]

Rules:
(8) E[supervisor !M](= empl : E[works! dept : D[mngr ! empl :M]]

Figure 2: F-Logic Example Speci�cation

student : john[name! \John"], and
student : john[works for ! dept : cs[chair! \Peter"]]

are \fused" into a term

student : john[name! \John", works for ! dept : cs[chair ! \Peter"]].

Inheritance

We assumemonotonic inheritance. If t1 �O s1; :::;and tn �O sn then f(t1; :::; tn)
�O f(s1; :::; sn), where �O denotes the ordering in a lattice, where f is an n-ary
function and is used to construct objects. For example, if person �O john then
car(person) �O car(john).

eval Function

We also introduce an evaluation function, eval(X;Y), a binary function with
arguments \object" and \attribute." The function eval(X;Y) returns a set of
the values associated with the attribute Y of the object X.

eval(X;Y) = fy j y is a value of the attribute Y of class X such that
X[Y ! y]; or X[Y ! fyg]g

In the above example, eval(john;works for) = cs and eval(cs; chair) = \Pe-
ter".

With this background of F-Logic, consider the facts and rules [6]. The objects
are depicted in a lattice as shown in Figure 1 and described in F-logic in Figure 2.
The object mary, named \Mary", is 30 years old, has the friends bob and sally,
and works at the department \CS" whose oid is cs2 as in (2) below. The general
class descriptions play the role of typing constraints. The attribute supervisor,
not de�ned in faculty, is inherited by faculty as de�ned in (5). In the rule (8),
an employee E's supervisor is M if E works for a department managed by M .

3 Semantic Query Reformulation

This section discusses F-logic query reformulation. Before discussing the subject,
we examine the research issues concerning object-oriented databases in F-Logic
which we believe have not yet been taken into account.

� Uni�ed Representation. Rule execution is by nature expensive, in contrast
to database retrieval. How can rules be added to queries so that only the
queries are evaluated?

� Multiple Reformulation Strategies. A query may be semantically reformu-
lated by (1) rule evaluation and (2) property inheritance. Can a query
specify both at the same time?

� Activeness. Rules are not actively executed as a query is posed. Conicting
values are not automatically resolved.

Example: Consider the query (12) [6]:

(12) empl : X[supervisor ! Y; age! middleaged : Z; works! D[dname ! \CS"]]

requesting information about all middle aged employees working for the \CS"
departments. Suppose the database consists of the rule (8) and the general class
description (5) in Figure 2. The issues are how to associate rules and general
class descriptions with a query and what to do for conicting results. 2

3.1 Query Reformulation Process

In a database S having rules and/or inherited properties (denoted as K for
both) available, a query Q is posed. It is well known that the rules or inherited
properties K are executed against the database S to prove that the query Q
entails the answer A1. Logically speaking, S;K ` A � Q holds. It can be
rewritten as S ` A � (:K _Q). Therefore, it is true that S ` A � :(K ^ :Q).
That is, the query Q is equivalent to the reformulated query \:(K ^ :Q)."
Thus, the reformulated query is obtained by negating the resolvent of K and the
negation of Q. Notice that the resolvent (or residue [2]) is the remaining atoms
from resolution.

With the above rationale, we propose the process of query reformulation.
Resolution of a rule with the negation of a query results in the negation of the
reformulated query.

Query Reformulation Process:

1. Negation. A query is negated.

2. Fission. A rule and the negated query are decomposed into a set of atoms.

3. Substitution. To unify two atoms, (1) a class can be substituted with
sub-classes since property inheritance is allowed; and then (2) a (query)

1That is, S;K ` A � Q holds. It is also held that S;K ` (A � Q) ^ (Q � A). Assuming
that both A and Q are true, we can consider only S;K ` A � Q.

Reformulation- -

?
A Query A Reformulated Query

Rules

Figure 3: Update Reformulation

variable is substituted with another variable or (3) a variable is substituted
with a query value. Note that this step will be discussed in detail in the
following sub-section.

4. Resolution. Resolve the above two clauses. The resolvent is obtained.

5. Fusion. We compose the resolvents into a formula.

6. Negation. Finally, the negation of the fused formula is a reformulated
query.

The above process is performed within the box in Figure 3. A given query is
reformulated into a query with associated rules. The reformulated query is more
semantically-rich than the original query. As seen, the resolution step requires
substitution between atoms. We will discuss substitution in the following sub-
section.

3.2 Object Type Uni�cation

Uni�cation is the process of determining whether two expressions can be made
identical by appropriate substitutions for their variables. As we shall see, making
this determination is an essential part of our semantic query optimization. A
substitution is any �nite set of bindings between atoms2, the atoms in a query
and the atoms in a rule.

Recall that to unify two atoms, (1) a class can be substituted with sub-classes
since property inheritance is allowed; and then (2) a variable is substituted with
another (query) variable or (3) a variable is substituted with a (query) value.
In this section, we emphasize on how to obtain a substitution between classes.
Since the information content of a super class is contained in the information
content of a sub-class, variables of a super class are substituted with values (or
variables) of a sub-class. More generally speaking, in the term x : Q, x are
substituted with lub(x; y) where y : Q for an object Q. Of course, if x is a super
class of y, x is substituted with y by means of inheritance. Consider the typical
IS-A hierarchy example in Figure 4.

2Notice that resolution for semantic query processing does not require substitution of vari-
ables with expressions.

O1

6
O3 O4

@
@

@I

�
�

��

O2 O5

(a) (b)

Figure 4: IS-A Hierarchy Example

In the �gure, (a) depicts that O1 is the super class of O2. The object type
O2 is uni�ed with O1 because every object of O2 is also in O1 but not vice versa.
The substitution is fO1=lub(O1; O2)g � fO1=O2g. Similarly, in the �gure, (b)
depicts that O3 and O4 are the super classes of O5. Due to multiple inheritance,
O3 and O4 can be uni�ed through the their sub-class. The substitution is,
then, fO3=lub(O3; O4)g � fO3=O5g, and fO4=lub(O3; O4)g � fO4=O5g. For
example, the constitution fperson : Q=student : Qg is possible, but fstudent :
Q=person : Qg is not, because lub(person; student) = student. It is true that
not all persons are students but all students are persons. Substitution of lattice
information is very useful. Although x and y are not in a super or sub-class
relation, both x and y can be substituted with lub(x; y). For example, the
substitution fstudent : Q=assistant : Q; empl : Q=assistant : Qg are possible
because lub(student; empl) = assistant. Using lattice information makes it
easier to deal with uni�cation under multiple inheritance.

Moreover, if an atom contains a nested term, in order to unify those two
nested terms, an eval function is used so that the lub is obtained. For example,
consider

(8) E[supervisor !M](= empl : E[works! dept : D[mngr ! empl :M]]
(13) E[supervisor ! N](= student : E[grades! course : C[instructor ! faculty : N]]

The left-hand-side of two rules (8) and (13) can be uni�ed by the substitution

fM=lub(eval(D;mngr), eval(C; instructor)); N=lub(eval(D;mngr), eval(C;
instructor))g. As discussed in Section 2, eval(D;mngr) returns an object which
is an employee in this case. Clearly, the left-hand-side is bound by a least upper
bound between a manager employee and a faculty as instructor.

4 Examples

We analyze the four possible cases of semantic query reformulation. (1) Query
with rules, where deductive rules are associated with queries, (2) Query together
with inheritance (single and multiple inheritance), where the structural proper-
ties such as relationships of super- and sub- objects are associated with queries,
and (3) Query with methods (Functions), where methods which are functional
operations are associated with queries (see [5]). Of course, these three cases can
be mixed. In this paper, we demonstrate only two cases (1) and (2) above.

Negation of Query (12)

#

Fission

#
:X[supervisor ! Y]_

:X[age ! middleaged : Z]_

:X[works ! D[dname ! \CS"]]

Rule (8)

#

Fission

#
E[supervisor !M]_

:E[works! dept : D[mngr ! empl : M]]

& .

Substitution: fX=E;Y=Mg

. &

:E[supervisor !M]_
:E[age ! middleaged : Z]_
:E[works ! D[dname! \CS"]]

E[supervisor !M]_
:E[works! dept : D[mngr ! empl : M]]

& .

Resolution

#
:E[age ! middleaged : Z]_ :E[works! dept : D[dname ! \CS"]] _
:E[works ! dept : D[mngr ! empl : M]]

#

Fusion

#
:E[age ! middleaged : Z;works! dept : D[dname ! \CS", mngr ! empl : M]]

#

Negation

#
empl : E[age ! middleaged : Z;works! dept : D[dname ! \CS", mngr ! empl : M]]

Figure 5: Query Reformulation with a Rule

4.1 Query Reformulation with a Rule

Consider the query (12) and the rule (8).

(12)empl : X[supervisor ! Y; age! middleaged : Z; works! D[dname ! \CS"]]
(8) E[supervisor !M](= empl : E[works! dept : D[mngr ! empl :M]]

The negations of (12) and (8) are arranged into two columns and the query
reformulation process is applied as shown in Figure 5.

The atoms obtained from the negation of (12) and (8) are uni�ed by substitut-
ingX with E and Y withM . Then, a pair of the two atoms,E[supervisor !M]
and :E[supervisor ! M], is removed. The reformulated query returns values
for E;Z;D and M as requested by the original query. It turns out that this
query speci�cation incorporates the rule evaluation.

4.2 Query Reformulation with Inheritance

The property inherited from a super-class is associated with a query as shown
in Figure 6. Consider the same query (12)

(12) faculty : X[supervisor ! Y; age! middleaged : Z; works! D[dname ! \CS"]]

and both the rule (8) and the general description (5). The general description
(5) is:

faculty[supervisor ! faculty; age ! middleaged].

Before resolution with the query, rules and inherited properties are resolved.
The resolvent from this resolution is, then, resolved with the query. The class
faculty of the general class description (5) is used for substitution with the
rule (8) and then with the query (12). This substitution preserves property
inheritance.

Notice that the label \supervisor" bound by both faculty in the atom faculty[
supervisor! faculty] andM in the atom faculty : E[works! dept : D[mngr !
empl : M]] causes the conicting oids. The two oids, faculty and M , are
bounded by the > that is returned from lub(faculty;M) as shown in the lattice
of Figure 1. This reformulated query expresses more semantics than the original
query (12) by specifying lub functions.

4.3 Query Reformulation with Multiple Inheritance

Consider the following rules:

(8) E[supervisor !M](= empl : E[works! dept : D[mngr ! empl :M]]
(13) E[supervisor ! N](= student : E[grades! course : C[instructor ! faculty : N]]

The above two rules are available in the class assistant. The rule (8) is
inherited from empl, while the rule (13) is inherited from student. Suppose the
following query is posed to list the supervisors for assistant:

(12) assistant : X[supervisor ! Y; age! middleaged : Z; works! D[dname ! \CS"]]

Two inherited rules and the query are arranged into three columns and the
query reformulation process is applied as shown in Figure 7. Notice that not all
type constructors have to be uni�ed. The type constructors are uni�ed if they
bind the same attribute. For example, empl : M and empl : N are not uni�ed
because their attributes are not the same but mngr and instructor, respectively.
However, in E[supervisor !M] and E[supervisor ! N], M and N are uni�ed
because their attributes are binding the same supervisor.

5 Evaluation of Reformulated Queries

It is shown that upper bound objects contain more (speci�c) information than
lower bound objects [14]. If more speci�c objects are considered in queries,
more speci�c information can be obtained. We believe that queries speci�ed by

the upper bound of objects should be evaluated �rst similar to the \speci�city"

Negation of Query (12)

#

Fission

#
:X[supervisor! Y]_

:X[age! middleaged : Z]_

:X[works! D[dname ! \CS"]]

Fission of Inheritance (5)

#
faculty[supervisor ! faculty]

Fission of Rule (8)

#
E[supervisor! M]_

:E[works!dept : D[mngr

! empl : M]]

& .

Substitution: fE=facultyg

&
Bounding: lub(faculty;M)

. &

faculty[supervisor
! lub(faculty;M)]

faculty[supervisor !M]_

:faculty[works! dept : D[mngr

! empl : M]]

& # .

Substitution: fX=faculty;Y=Mg

. &
:faculty[supervisor !M]_
:faculty[age ! middleaged : Z]_
:faculty[works ! D[dname! \CS"]]

faculty[supervisor ! lub(faculty;M)]_
:faculty[works ! dept : D[mngr ! empl : M]]

& .

Resolution

#
:faculty[supervisor ! lub(faculty;M)]_ :faculty[age ! middleaged : Z]_
:faculty[works ! D[dname ! \CS"]] _ :faculty[works ! dept : D[mngr ! empl : M]]

#

Fusion & Negation

#
faculty[supervisor ! lub(faculty;M); age ! middleaged : Z;

works! dept : D[dname ! \CS", mngr ! empl : M]]

Figure 6: Query Reformulation with Inheritance

precedence in production systems. If two queries are posed at objects in two
di�erent levels of speci�city (i.e., one object in a super class and the other in
a sub-class), the query posed to objects at the more speci�c level is evaluated
�rst. That is, a query posed to sub-objects is evaluated �rst.

Regarding the lattice information, if more than one object are denoted by a
single-valued label, [X ! lub(e1; e2; :::; en)], the label is, if not >, set by comput-
ing the least upper bound of those objects. For example, consider [instructor!
lub(student; empl)]. The object instructor which is both student and empl is
assistant due to lub(student; empl) = assistant. However, if lub(e1; ::; en) = >,
then the least upper bound may not be an acceptable solution. In this case, the
lub function itself can be shown so that the single-valued label can denote either
e1, e2, or en. Of course, interpretations of the lub can be leave to users. For ex-
ample, in the case that [good student ! lub(ra; john)] = [good student ! >],

Negation of Query (12)

#

Fission

#
:X[supervisor ! Y]_

:X[age ! middleaged : Z]_

: : X[works! D[dname ! \CS"]]

Fission of (13)

#
S[supervisor ! N]_

:S[grades ! course :

C[instructor ! empl : N]]

Fission of (8)

#
E[supervisor !M]_

:E[works! dept :

D[mngr ! empl : M]]

& .

Substitution: fE=Sg

&
Bounding: lub(eval(C; instructor); eval(D;mngr))

#
S[supervisor ! lub(eval(C; instructor); eval(D;mngr))]_
S[supervisor ! lub(eval(C; instructor); eval(D;mngr))]_

:S[works! dept : D[mngr ! empl : M]]_
:S[grades ! course : C[instructor! empl : N]]

& .

Substitution: fX=S;Y= lub(eval(C; instructor); eval(D;mngr))g

. &

:S[supervisor ! lub(eval(C; instructor);
eval(D;mngr))]_

:S[age ! middleaged : Z]_
:S[works ! D[dname ! \CS"]]

S[supervisor ! lub(eval(C; instructor);
eval(D;mngr))]_

S[supervisor ! lub(eval(C; instructor);
eval(D;mngr))]_

:S[works! dept : D[mngr ! empl : M]]_
:S[grades ! course : C[instructor

! empl : N]]

& .

Resolution

#
:S[supervisor ! lub(eval(C; instructor); eval(D;mngr))]_
:S[age ! middleaged : Z]_ :S[works! D[dname ! \CS"]] _
:S[works ! dept : D[mngr ! empl : M]]_
:S[grades ! course : C[instructor! empl : N]]

#

Fusion & Negation

#
S[supervisor ! lub(eval(C; instructor); eval(D;mngr)); age! middleaged : Z;
works! dept : D[dname ! \CS", mngr ! empl : M];
grades! course : C[instructor! empl : N]]

Figure 7: Query Reformulation with Multiple Inheritance

the label good student may be either ra or john rather than concluding an
\inconsistent" object.

Example 1. Consider the following two queries, Q1 and Q2, reformulated
in Section 4.1 and 4.2, and the facts (1) and (2):

(Q1) empl : E[age! middleaged : Z;works! D[dname! \CS", mngr ! empl :M]]

(Q2) faculty : E[supervisor ! lub(faculty;M); age! middleaged : Z;
works! dept : D[dname! \CS", mngr ! empl :M]]

(1) faculty : bob[name! \Bob", age! 40;works ! dept : cs1[dname ! \CS",
mngr ! empl : phil]]

(2) faculty : mary[name! \Mary", age! 30; friends! fbob; sallyg;
works ! dept : cs2[dname ! \CS"]]

Because Q2 is posed at faculty which is sub-class of empl, it is evaluated
�rst. With the facts (1) binding M by phil, the answer (14) is obtained be-
cause lub(faculty; phil) = >. With (2), the variable M is unknown or the least
element, then, lub(faculty;?) � faculty and the answer is (15).

(14) bob[supervisor ! lub(faculty; phil); age! 40;works! cs1]
(15) mary[supervisor ! faculty; age! 30;works ! cs2]

If (14) were used to evaluate Q1 �rst, the value for supervisor would be
phil which causes a conict with the value faculty inherited from the general
description (5). These answers may resolve the conict between phil and faculty
by obtaining >, \inconsistency," from lub(faculty; phil) in Q2. However, if
the value \inconsistency" is not acceptable to the attribute supervisor, the lub
function may be shown for potential answers, say, either faculty or phil. 2

If two queries are posed to objects in a same level of the speci�city, the query
speci�ed by the upper bound of objects is evaluated �rst. That is, a query
speci�ed by objects at the more speci�c level is evaluated �rst.

Example 2. Section 4.4 illustrated how the query Q3 is reformulated into
the query Q4. This example shows that the reformulated query Q4 has expressive
power and is semantically richer than Q3.

(Q3) assistant : X[supervisor ! Y; age! middleaged : Z; works ! D[dname! \CS"]]
(Q4) assistant : E[supervisor ! lub(eval(C; instructor); eval(D;mngr));

age! middleaged : Z; works ! dept : D[dname ! \CS",
mngr ! empl :M], grades! course : C[instructor ! empl : N]]

Consider the following facts:

(1) faculty : bob [name! \Bob", age! 40;works ! dept :
cs1 [dname! \CS", mngr ! empl : phil]]

(3) assistant : john[name ! \John", works ! cs1[dname! \CS"]]
(4) student : sally[age! middleaged]
(16) ta : adam[age! 30;works ! dept : cs2[dname ! \CS"],

grades ! course : os1[instructor ! \Peter"]]

Consider the reformulated query Q4 �rst. The object in (1) is not appli-
cable for this query. For the fact (3), the attribute mngr is bound by phil
because he works for cs1 whose manager is phil, and the attribute instructor is
? \unknown." That is,

lub(eval(cs1;mngr);?) = lub(phil;?) = phil.

john's supervisor is phil. For sally, lub(?;?) = ?, so her supervisor is unknown.
However, in the same manner, adam's supervisor is \Peter." Hence, the answer
to the above reformulated query includes:

(17) john[supervisor ! phil; age! young]
(18) sally[supervisor ! ?; age! middleaged]
(19) adam[supervisor ! \Peter", age! 30]

Note that john is young because of the inherited property (6) student[age!
young].

Without query reformulation, it is not possible to obtain sound answers from
Q3. That is, although Q3 may produce answers by means rules and inherited
properties, it does not deal with conicting answers. The conicting answers
can be handled by Q4 e�ciently as seen above. 2

6 Conclusion

Simple F-logic queries can be reformulated into equivalent and semantically-
richer queries that incorporate a rule, a more general description, or a method.
We develop the query reformulation process. Reformulated queries may consist
of the least upper bound lub of the conicting values, thereby resolving conicts.
Queries with associated rules and inherited properties are semantically rich in
that types can be checked by the associated rules specifying that type, query
processing can be limited within a range if restricted by constraints, and answers
may be intensional [8, 11]. Due to the several features of the object-oriented
paradigm available and one or more rules considered, several queries can be
generated for an original query. To resolve the conicting answers, the evaluation
precedence of the reformulated queries is also discussed. We believe that queries
speci�ed by upper bound objects should be evaluated �rst.

The unique contributions of this paper are:

� Semantic query optimization techniques have been extended to apply to
object-oriented declarative databases, as those expressed in F-logic [6].

� Object-oriented query reformulation techniques extended the notions of
semantic query optimization [2] to include active rules and inherited prop-
erties.

� Conict resolution and query evaluation strategies are proposed to ensure
the proper evaluation of multiple, semantically-equivalent queries derived
from the initial F-logic expression.

Association of recursive rules [12] with a query is a topic for future research.
Magic-set theory [9] may be also employed in our query reformulation process.

Acknowledgement
This research is supported in part by an ARPA grant, administered by the O�ce of Naval
Research under grant number N0014-92-J-4038.

References

[1] A. Borgida. Type systems for query class hierarchies with non-strict inheritance. In
Proceedings of the ACM Symposium on Principles of Database Systems, pages 394{400,
1989.

[2] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach to semantic
query optimization. ACM Transactions on Database Systems, 15(2):163{207, June 1990.

[3] Georges Gardarin and Rosana S. Lanzelotte. Optimizing object-oriented database queries
using cost-controlled rewriting. In Proc. of 3rd Int'l Conf. on Extending Database Tech-

nology, pages 534{549, Vienna, Austria, 1992.

[4] Alfons Kemper and Guido Moerkotte. Advanced query processing in object bases using
access support relations. In Proc. Intl. Conf. on Very Large Data Bases, pages 290{301,
Brisbane, Australia, 1990.

[5] Larry Kerschberg and Jong P. Yoon. Semantic query reformulation in object-oriented
databases. In Proc. of the Workshop on Combining Declarative and Object-Oriented

Databases, pages 73{85, Washington, D.C., 1993.

[6] Michael Kifer and George Lausen. F-logic: A higher-order language for reasoning about
objects, inheritance, and scheme. In Proc. ACM SIGMOD Intl. Conf. on Management

of Data, pages 134{146, Portland, Oregon, 1989.

[7] Sanggoo Lee, Lawrence J. Henschen, and Ghassan Z. Qadah. Semantic query reformula-
tion in deductive databases. In Intl. Conf. on Data Engineering, pages 232{239, 1991.

[8] A. Motro. Using integrity constraints to provide intensional answers to relational queries.
In Proc. Intl. Conf. on Very Large Data Bases, pages 237{246, Amsterdam, 1989.

[9] Inderpal S. Mumick, Sheldon J. Finkelstein, Hamid Pirahesh, and Raghu Ramakrishnan.
Magic is relevant. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages
247{258. 1990.

[10] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/rule based query
rewrite optimization in Starburst. In Proc. ACM SIGMOD Intl. Conf. on Management

of Data, pages 39{48, 1992.

[11] A. Pirotte and D. Roelants. Constraints for improving the generation of intensional
answers in a deductive database. In 5th Int. Conf. on Data Engineering, pages 652{659,
LA, 1989.

[12] Kenneth A. Ross. Modular acyclicity and tail recursion in logic programs. In Proceedings

of the ACM Symposium on Principles of Database Systems, pages 92{101. 1990.

[13] P. Gri�ths Selinger and et al. Access path selection in a relational database management
system. In Proc. ACM SIGMOD Intl. Conf. on Management of Data, pages 23{34, 1979.

[14] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. The MIT Press, Cambridge, MA, 1977.

