
DESIGNING GRAPHICAL USER

INTERFACES WITH ENTITY-LIFE

MODELING

Douglas L. Smith

16 December 1993

ISSE TR 93 110

Abstract

This paper explores using entity-life modeling (ELM) as an e�ective method
for designing concurrent graphical user interfaces in a message processing
environment. In ELM, multiple threads of control in the software are modeled
on threads of events in the problem environment, and software objects are
modeled on objects in the problem. The goal is to identify a minimum
number of threads in the problem environment that drive the system while
operating on objects. ELM states that threads are primarily those processes
that must be rescheduled at particular points in time and those that vie for
resources.

The intent of this paper is to show that the ELM approach to problem
analysis needs to be modi�ed in order to produce optimal designs in a message
passing environment. The paper suggests that some reschedulable processes
do not need their own threads of control. Instead, the desired e�ect can be
achieved by timers that insert a message into the message queue of a given
process at the appropriate time. The paper also proposes a new category of
background entities to account for time-consuming calculations that must be
carried out concurrently with ordinary message processing.

1



1 Introduction

Entity Life Modeling [Sanden 94, Sanden 89] was introduced to address the
individual shortcomings of two popular paradigms, the process paradigm and
the object paradigm. In the process paradigm, the common elements between
the problem environment and the software environment are communicating
processes where each process represents a single thread of events. The process
paradigm emphasizes the sequential aspect of the problem by focusing on the
order in which events occur. This method of analysis does not adequately
address the order independent aspects of a problem. Such aspects are often
found in simple but useful objects that do not change in signi�cant ways
over time. Furthermore, when such a design is applied to a multi-thread
environment the e�ciency of the design is not optimal because of the large
number of processes that are usually generated.

In the object paradigm, the common elements between the problem en-
vironment and the software environment are objects. Each object in the
software environment corresponds to a real object in the problem environ-
ment and has a well-de�ned set of operations. Operations are invoked when
an object receives a message from another object. These objects are typically
implemented as concurrent, communicating processes in the software system.
Each object and its corresponding thread of control is encapsulated in a mod-
ule. This approach leads to an architecture with modules communicating via
messages. The object paradigm deals well with behavior patterns that �t
into a single object but may miss patterns that extend beyond objects. Like
the process paradigm, the object paradigm also leads to ine�cient architec-
tures when applied to a multi-thread environment. The modules produced
do not exploit the concurrent aspects of the problem rather they synchronize
on messages from other objects to execute operations.

Entity Life Modeling combines the expressive power of these paradigms
by giving equal weight to both objects and behavior patterns. ELM �rst sets
out to identify threads of events (behavior patterns) that encompass all the
relevant events. For each thread of events exhibiting a sequential behavior
pattern in the problem environment, an entity is de�ned. This entity is then
considered a subject candidate if it moves the action forward. ELM then
identi�es objects in the reality. Each object must be operated on by one or
more of the subject candidates. Subjects and objects are then combined into
one or more subject-object structures that describe the problem environment.

2



The goal of ELM is to describe the problem environment in terms of subjects
and objects that exploit its concurrent nature optimally.

2 Software Environment

Entity-Life Modeling requires an execution environment where threads of
control share an address space and each thread is scheduled for execution
dynamically at run-time. Furthermore, a synchronization mechanism is re-
quired so that a thread can request exclusive access to a shared resource and
remain idle until the resource becomes available. Threads with this capabil-
ity are said to be queueable. In addition to being queueable, ELM requires
threads to be reschedulable also. A rescheduable thread must be capable of
suspending execution for a speci�ed interval of time. Finally, ELM requires
that the software environment provide a means for expressing objects. That
is, the ability to encapsulate persistent data and operations in information
hiding modules must be available.

OS/2 [Microsoft Corp. 1989] is an advanced micro-computer operat-
ing system which provides a software environment that ful�lls the require-
ments of ELM. OS/2 provides the function DosCreateThread to instan-
tiate a thread of execution and DosExit to terminate a thread of execu-
tion. DosSuspendThread gives a thread of execution in a process the abil-
ity to suspend any active thread executing in the same process. Likewise,
DosResumeThread allows a thread of execution in a process to resume any
inactive thread in that process. An entire suite of semaphore functions pro-
vide a synchronization mechanism to accommodate threads vying for shared
resources. The DosSleep function allows a thread to suspend execution for
a speci�ed interval, which makes the OS/2 threads reschedulable. The op-
erating system also supports object oriented languages such as C++ which
provide all the necessary tools for encapsulating data and operations in infor-
mation hiding modules. This operating environment is an adequate platform
for implementing real-time systems designed with ELM. The graphical func-
tions native to OS/2, however, are unsophisticated and considered to be
inadequate for building state-of-the-art user interfaces.

Presentation Manager is a graphical user interface designed to provide
OS/2 with an application user interface capable of producing sophisticated
windowing environments [Petzold 1989]. Windowing environments are event

3



driven by design because they need to respond to user input rapidly. Presen-
tation Manager transforms the operating environment into an event driven,
message based architecture. Since all the OS/2 functions are available, this
new environment by default ful�lls the requirements of ELM. Traditional
OS/2 kernel functions used to implement reschedulability and synchroniza-
tion of shared resources can have an undesirable e�ect on the performance
of systems using Presentation Manager, however.

3 Presentation Manager and the User

Entity

Presentation Manager programs usually involve a human user who sustains
some kind of ongoing dialog with the system. In such systems, the user is
usually the primary candidate for subject entity. This class of entity is more
generally referred to as the user entity. This discussion will be limited to
systems where the user entity is of primary concern.

A user entity in a Presentation Manager environment must have at least
one thread of execution running in one process. A process and a thread
can be established by executing the OS/2 function DosExecPgm from the
OS/2 environment. This function allocates a child process with a single
thread of execution. The user entity thread begins executing as soon as the
process is dispatched. Once execution has begun the user entity must create
a message queue by calling WinCreateMsgQueue. It must then create one or
more windows capable of receiving and processing user input. Presentation
Manager directs user input to the window that holds the input focus. The
window that has focus will be the top-level window and is further identi�ed
by some unique change in color to the title bar or border. Window focus is
controlled through the WM SETFOCUS message.

The Presentation Manager uses the message queue to store messages for
all windows created in the user thread. The user entity must then loop
on the function WinGetMsg. This Presentation Manager function suspends
execution of the thread until a message is stored in the queue. After a
message has been stored in the message queue the user entity is allowed
to resume execution and retrieve the message at the head of the queue.
Retrieval of messages occurs without interruption if the message queue is

4



not empty when the WinGetMsg function is executed. Once the message
has been retrieved by the user entity, the function WinDispatchMsg is used
to dispatch the retrieved message to the appropriate window procedure for
handling. This process of retrieving and dispatching messages continues as
long as WinGetMsg completes successfully and returns a non-zero value.
When the user entity retrieves the WM QUIT message WinGetMsg returns
zero allowing the thread to exit the loop and terminate.

The user entity may communicate with itself or other entities possessing
message queues through the presentation manager functions WinPostMsg
or WinSendMsg. WinPostMsg operates asynchronously by placing a mes-
sage in the message queue associated with a particular window and returns
immediately. WinSendMsg operates synchronously by calling the window
procedure directly and returning after the window procedure has handled
the message. Communication with entities without message queues occurs
through traditional means such as global or shared memory.

It should be apparent from the preceding discussion that the user entities
primary objective in a graphical user interface is to process input events
expediently. Any lengthy delay in the processing of an event will have an
undesirable e�ect on the user. This e�ect is described in more detail later.

4 ELM Applied to Presentation Manager

As mentioned, the goal of ELM is to identify a minimum set of entities
that operate on real-world objects such that all relevant events are taken
into account. If ELM is applied to a sequential problem, it will identify
the intuitive solution of a single entity operating on one or more real-world
objects. The method is most useful when applied to problems involving more
than one entity (thread of execution). ELM aids the analyst by classifying
reschedulable and queueable entities. Entities in these classes are subject
candidates and must have their own thread of control. These classi�cations
must be reexamined for the message passing environment of Presentation
Manager.

5



4.1 Reschedulable entities

ELM de�nes a reschedulable entity as a thread of events that captures the
requirement that certain actions must be taken at a particular time or with
a de�ned interval. Furthermore, it states that each reschedulable entity re-
quires its own task even if there are multiple instances. In traditional envi-
ronments such as the Ada run-time environment or OS/2, this is a necessary
requirement because it allows each instance to be rescheduled independently.
This requirement exists because these traditional environments rely on thread
suspension mechanisms such as Ada's delay statement or OS/2's sleep prim-
itive. As a result, it is impossible for a task or thread to service more than
one reschedulable entity.

A Presentation Manager application can use the OS/2 functions DosCre-
ateThread and DosSleep to implement rescheduable entities as described
above. However, this approach does not utilize the message passing ar-
chitecture of Presentation Manager which provides its own mechanism for
rescheduling. The function WinStartTimer accepts as parameters, a timer
interval, a window handle, and a timer identi�cation value. The timer inter-
val value indicates the interval of time that should transpire between timer
events. The timer identi�cation value and window handle uniquely identi�es
the timer event. When a timer event occurs, the appropriate window proce-
dure receives a WM TIMER message which carries the timer identi�cation
value as a message parameter. The function WinStopTimer will discontinue
a speci�c timer event allowing for independent rescheduling. It should be
clear, that the timer mechanism provided by Presentation Manager provides
the capability of rescheduling without thread suspension.

The message passing architecture of Presentation Manager eliminates the
requirement that a reschedulable entity must have its own task or thread.
The primary reason a reschedulable entity requires its own task is because the
reschedulabilty of the entity dominates the processing of the thread. That
is, when a thread executes the DosSleep function it remains idle until the in-
terval expires and processing resumes. The timer mechanism in Presentation
Manager relieves the thread from the burden of waiting for the time interval
to expire by scheduling a unique event. This allows the thread to continue
processing messages waiting in the message queue.

Eliminating the requirement of separate threads for reschedulable entities
raises several issues. The �rst issue is one of precision. Often in real-time

6



systems a reschedulable entity requires precise processing. Consider an appli-
cation that maintains a graphical stop watch programmed to display elapsed
time down to 1/10th of a second. For this application to maintain an accu-
rate display, timer messages must be processed expeditiously. Any signi�cant
delay servicing the timer event could result in an inconsistent or inaccurate
display. Consequently, the amount of time a message spends in the message
queue must be addressed.

The dynamics of the message queue itself must be considered �rst. All
messages in the message queue at any one time are not treated equally.
Several speci�c messages have a unique priority and all remaining messages
share a priority. Messages of the same priority are serviced in FIFO order
as they appear in the queue. Message sets of di�ering priority are serviced
in order from highest priority down to lowest priority. This is a signi�cant
consideration because WM TIMER messages carry a lower priority than the
majority of all the messages. Most notably, their priority is less than the
priority of user de�ned messages. Presentation Manager provides the func-
tion WinPeekMsg to examine messages in the message queue. WinPeekMsg
operates like WinGetMsg but it returns immediately if the message queue
is empty. Also, a NOREMOVE option allows examination without removal
of the message from the queue. This method of ensuring that WM TIMER
messages are serviced as they arrive would be burdensome and unstructured.
Therefore, analysis must guarantee that reschedulable entities are processed
properly.

I propose that ELM could produce more e�cient designs for message
processing systems by qualifying which reschedulable entities require their
own thread of execution and introducing a new class of entities that require
a thread of execution. The new entity takes background for processing an
event into account. I will discuss each of these in turn.

4.2 Independent reschedulable entities

The traditional ELM de�nition of a reschedulable entity captures a require-
ment that particular actions must be taken at a certain time or according to a
speci�c time interval. This de�nition is too broad to allow the categoric clas-
si�cation of reschedulable entities as entities that require their own thread
of execution. From this point forward, I will refer to those reschedulable
entities that require their own thread of execution as independent reschedu-

7



lable entities. There are two compelling reasons for categorizing independent
reschedulable entities in a message processing system. The �rst reason is
precise calibration. Any behavior pattern exhibiting a timing requirement
and whose successful operation requires immediate execution is a indepen-
dent reschedulable entity. This entity must have its own thread of execution
and message queue. Entities of this nature are not common in graphical user
interfaces but design methodologies like ELM must account for them.

The second and less compelling reason for de�ning an independent reschedu-
lable entity is longevity. Often in graphical user interfaces a user entity is
more long-lived than any other entity in the system. As a result, timed be-
havior patterns that do not require expedient execution can be part of the
user entity. Analysis, however, must account for timed behavior patterns
that outlive all suitable message processing entities in the system. There-
fore, the new de�nition of an independent reschedulable entity must include
these behavior patterns.

This new de�nition of an independent reschedulable entity exposes a fun-
damental concern in message processing systems. Currently, there is no
guarantee that the processing associated with an event (message) will not
take an unacceptable amount of time. Lengthy event processing disrupts the
handling of messages in the message queue. This is a serious problem for a
graphical user interface because they are designed to allow input focus to be
switched instantaneously. However, a user entity may only give up focus by
processing a message instructing it to do so. Since the user entity is busy
processing a message, the focus message sits in the message queue and the
user entity is unable to give up input focus. Many of the advantages o�ered
by a preemptive multi-tasking operating system are crippled when a user en-
tity is unable to relinquish focus in a timely manner. Furthermore, the new
de�nition for an independent reschedulable entity relies on timely processing
of timer messages in the message queue. For these reasons, ELM needs to
identify a new entity type to account for processing time.

To address this issue, I will �rst qualify what an unacceptable amount
of time is. The popular book Programming the OS/2 Presentation Manager
[Petzold 1989] suggests 1/10th of a second as the longest acceptable time to
process a message. For the purposes of this paper, this limit is a suitable
guideline. It also assumes that recognizing a event with a potential to exceed
the guideline regularly is intuitive. For example, consider an application that
searches several �les for the occurrence of a string or logical combination of

8



strings. The ELM designer would probably be tempted to de�ne the �les as
objects and the search as an operation on those objects. In this design, the
user entity would then be chosen as the subject to execute search operations
on the �le. This design, however, would be plagued with the focus and timer
problems mentioned earlier. To correct this design, a separate entity must
be in place to carry out the search operations.

4.3 Background entities

The ELM methodology for message passing systems can be corrected by
categorizing a new class of entities called background entities. This class
will contain those entities that have a lengthy time requirement. Similar to
independently reschedulable entities, background entities require their own
thread of execution. However, unlike reschedulable entities, background en-
tities are not candidates for subject entities. The primary purpose of this
class of entity is to o� load work from a message queued subject entity.

This new class of entity takes advantage of the 
exibility provided by a
message passing system. That is, the message queue absorbs the delay due to
processing and allows the subject to proceed. Upon completion of processing
the background entity can report the results to the subject by sending it a
message. The background entity will be most e�ective if it is implemented
with a message queue which allows subjects to queue up a request by posting
a message. To put this in the proper perspective, I will revisit the string
search example. With the new approach the ELM designer would recognize
the search operation as one with a lengthy time requirement. Consequently,
the designer creates a search entity and designates the user entity as the
subject that requests the search entity to carry out its operation by sending
it a message. The user entity is free to process other messages while it
waits for the asynchronous response. It should be apparent that the proper
identi�cation of this new class of entity will guarantee that message queue
servicing is not signi�cantly delayed by message handling in implementing
ELM designs.

4.4 Queueable entities

ELM de�nes a queueable entity as any entity that competes for a shared
resource. Furthermore, it recognizes queueable entities as subject candidates

9



that require their own thread of execution. This classi�cation holds with-
out deviation in the message passing environment of Presentation Manager
as well. There are, however, aspects of queueable entities that should be
examined.

Upon examination of the de�nition of reschedulable entities, it was discov-
ered that a re�ned classi�cation would produce a better design. This re�ned
classi�cation allowed certain reschedulable entities to be absorbed into other
message processing entities such as the user entity. The opposite is true with
queueable entities. Absorption into message processing entities is absolutely
prohibited because synchronization delays during message processing would
cause the same focus and timer message problems mentioned earlier.

The message passing architecture can be used to avoid synchronization
delays in subject threads. In the Ada run-time environment, a special pur-
pose guardian task can be used to implement mutual exclusion. Guardian
tasks protect one or more critical sections by implementing a rendezvous for
each critical section which is implemented in the body of the accept state-
ment. The disadvantage to the Ada guardian task is that competing tasks
are suspended and wait in a queue for the desired resource. Similar to the
Ada run-time environment, mutual exclusion can be implemented in special
purpose threads. These threads must be message processing threads and I
will refer to them as guardian threads. A guardian thread may protect one
or more critical sections by associating a unique message with each critical
section. When a message arrives in the guardian threads message queue
it retrieves the message and executes the critical section for that message
without interruption.

The advantage of guardian threads over guardian tasks is the message
queue. Again, the message queue absorbs the delay allowing the subject
thread to proceed. Contrast this with guardian tasks where the subject
tasks are suspended and queued. Although it is more e�cient, the guardian
thread has its disadvantages as well. Operation of the guardian task is com-
pletely asynchronous. Therefore the subject task must be able to proceed
independently of critical section execution. If this is not the case the designer
must enforce synchronization by implementing a return message to the sub-
ject thread. If the subject thread cannot split its processing in this fashion
then traditional means of critical section synchronization must be employed.

10



5 Conclusion

The primary goal of ELM is to identify a minimum set of subject threads
that operate on objects. The subjects are then combined with objects in
subject-object structures that best describe the problem environment. This
paper shows that the ELM approach to problem analysis can be successfully
modi�ed to achieve its goal in the message passing architecture of Presenta-
tion Manager. The reclassi�cation of reschedulable entities as independent
rescheduable entities eliminates unneeded threads. Likewise, the identi�ca-
tion of background entities enables the model to avoid processing delays that
locks up the message passing system. As a result, these changes allow ELM
to be applied in manner that is both optimal and correct.

Bibliography

Microsoft Corporation, OS/2 Programmer's Reference, Microsoft Press, Red-
mond, WA, 1989.

Petzold, Charles, Programming the OS/2 Presentation Manager, Microsoft
Press, Redmond, WA, 1989.

Sanden, Bo, Software Systems Construction with Examples in Ada, Prentice-
Hall, Inc., Englewood Cli�s, NJ, 1994.

Sanden Bo, "An entity-life modeling approach to the design of concurrent
software", Commun. ACM, 32:3, March 1989, pp. 330-343.

11


