
A graduate course in object-oriented

analysis based on student-generated projects

ISSE-TR-94-102

Bo Sanden

George Mason University

Fairfax, VA 22030-4444

bsanden@gmu.edu

March 1, 1994

Abstract

This paper describes the experience from several o�erings of a Software Re-
quirements course based on the Object Modeling Technique by Rumbaugh & al.
The paper describes the organization of the course, which includes a semester
project carried out by groups of 3-4 students. Descriptions of 20 such projects
are given, most of which were based on ideas from the student teams.

1 Introduction

This paper relates experiences with a graduate course in object-oriented analysis according

to the Object Modeling Technique (OMT) [Rumbaugh]. In addition to regular homework

exercises, the course includes a project where teams of 3-4 students use OMT to analyze and

specify a system of their own choosing. Several examples are cited in an appendix. This

element of the course emphasizes actional knowledge in that students must tackle a non-

textbook problem. It calls for invention on the part of the students. Prospective employers

desire that students acquire such actional knowledge and learn to appreciate the importance

of innovation and invention [Denning].

Acknowledgement: Thanks to the numerous students in my Software Requirements

class for their creative project ideas.

1



1.1 Institutional setting

George Mason University in suburban Washington D.C. has more than 21,000 students, 5,500

of whom are master's students, 500 doctoral students and 2,000 extended studies students.

Of a total of 1,400 faculty, 643 are full-time. There are 35 master's programs, 12 doctoral

programs and 8 certi�cate programs.

The School of Information Technology and Engineering (SITE) houses departments in

Computer Science, Information and Software Systems Engineering (ISSE), Systems Engi-

neering, Electrical and Computer Engineering, Operations Research and Engineering and

Applied and Engineering Statistics. The emphasis is on graduate education: While four BS

programs produce a total of 220 graduates yearly, seven MS programs { CS, ECE, IS, OR,

Software Systems Engineering (SWSE), Statistics, and Systems Engineering (SE) { produce

250 masters yearly. A school-wide doctoral program in Information Technology and Engi-

neering graduated 13 PhDs in 1992. Graduate courses are geared to students with full -time

jobs and meet once a week for a 2 hour 40 minute evening lecture.

1.2 Software Systems Engineering Program

The Software Systems Engineering MS program belongs to the ISSE department and was

started in the fall of 1989 based on the experience from the Wang Institute [Fairley]. It

consists of six core courses plus four electives (two of which may be replaced by a the-

sis). The core courses are: Software Construction, Software Design, Software Requirements

and Prototyping, Formal Methods and Models, Software Project Management and Software

Project Laboratory. Each core course is o�ered every fall and spring semester. A number of

software-engineering electives are o�ered, including Object-oriented Software Development,

User Interface Design, Advanced Software Design, Testing and Quality Assurance and Soft-

ware Engineering Economics. Further electives are provided by the other MS programs in

SITE. The program is further discussed in [Sanden 1993] and [Ammann 1994].

In addition to the lectures, a typical course generally includes weekly assignments,

midterm and �nal exams, and a group project. The project provides an element of real-

ism, where the course material must be applied to something that has not already been

formulated. The class size is typically around 40 resulting in about 12 teams of 3-4 students.

2



The projects are limited by the time frame of a semester course. Occasionally, it is possible

for a project to span more than one successive class, such as the Requirements, Design and

Project Lab classes, but this is the exception rather than the rule since the students do not

move as one contingent from one class to the next. Thus, it is normally impossible to form

the same teams in more than one class.

1.3 Software Requirements course

The Software Requirements course uses Davis's general text [Davis] and specializes in either

object-oriented analysis (OOA) or prototyping. The OOA specialization has been o�ered

several times based on the Object Modeling Technique (OMT) [Rumbaugh]. Earlier, the

course was o�ered once based on the text by Coad and Yourdon [Coad]. While the projects

outlined here could be analyzed based on the Coad and Yourdon notation, our experience is

that Rumbaugh's book is superior in terms of coverage, examples and exercises. Although

alternative texts have emerged, [Embley & al.], [Coleman & al.], etc., there has been no

reason to change the adoption.

OMT includes an object model and a dynamic model. Objects are capsules of data (state)

and operations. The object model describes the attributes (state variables) and operations of

each object and the associations between objects. The dynamic model consists of concurrent

processes and describes how the state of each object changes as a result of events. The

dynamic model is based on Statecharts [Harel]. The object model is considered the primary

model. The dynamic model is subordinate and created by endowing each relevant object

with "life". OMT also includes a functional model based on data ow diagrams. This model

is rather weakly integrated with the two others. The experience from this course has shown

it largely unnecessary.

1.4 Project structure

The project setup is intended to resemble a real-world situation where a development team

proposes a new product according to a rather broad agreement with a commissioner played by

the instructor. Students are encouraged to think of topics early, based on a list of successful

earlier projects. The lecture material provides further examples. The process starts with

3



a one-page synopsis submitted by the team. The instructor gives written feedback on the

project synopsis based on the experience of earlier projects. It is important to ensure that

the project can be done with a reasonable e�ort and result in meaningful object and dynamic

models. Once an agreement on the product has been reached, the group undertakes a system

analysis based on OMT. The solution can be regarded as part of the software requirements

document.

Because of the large class size, formal interaction between teams and instructor is lim-

ited. In general, there is one meeting with each team, held at a point where working doc-

uments of an object model and a dynamic model are available. The meeting is usually

quite intensive and very productive. It tends to generate a large amount of feedback as well

as ideas for re�nement and extension. Each meeting typically runs 1-1.5 hours. The team

meetings replace about 2 regular lectures. A few teams tend to request one or two additional

meetings. Most other communication between team and instructor is handled via electronic

mail.

At the end of the semester, each team presents its project to the class. To make this

reasonably e�cient, one or two students from each team does the presentation usually within

a 20-30 minute slot. An earlier "tag-team" approach, where each member presented their

contribution was abandoned. That approach made it very di�cult to stick to a presentation

schedule. Because of the equal emphasis given to all parts of each project, much time was

spent on aspects that turned out to be uninteresting. With about 12 teams, the presentations

take 2 lectures. Although the experiences of teams are quite interesting and the presentation

provides valuable examples in the use of the modeling technique, there is a lack of incentive

for the students to attend the presentation. Attendance usually drops considerably compared

to the regular lectures. Since it is di�cult to actually test the students on the contents of each

others' project presentations, it has been di�cult to make attendance at the presentations

reect on their grades.

1.5 Evaluation

The idea of a collective project grade for each team was abandoned for a couple of reasons.

Once completed, most projects tend to fall within a relatively narrow quality range. Also,

a project grade might unfairly favor a weak student in a good team. Instead, the individual

4



student's contribution to the team e�ort is weighed into his/her �nal grade together with

the exam results. The meetings with each team usually gives the instructor a fairly good

impression of everybody's contribution. In addition, every student submits a con�dential

peer evaluation after the completion of the course. The peer evaluation tends to reveal cases

where an individual has contributed little or nothing to a project. Reports of an outstanding

contribution by some student are also common. Since some students are ill at ease with

evaluating their peers, it has to be accepted that they turn in a bland evaluation reecting

an equal contribution by everybody. Even if this does not reect the real contributions, it

suggests that the team has worked well together. In spite of these e�orts, it is not always

easy to measure the individual contribution, so the grades tend to be dominated by the

exam results except when there is reason to believe that the contribution to the project was

considerably di�erent from average.

2 Experience with di�erent project ideas

A number of representative project ideas are outlined in the appendix. As a general observa-

tion, few projects result in both a signi�cant object model and a signi�cant dynamic model.

To ensure a non-trivial dynamic model, students are encouraged to look for problems that

involve signi�cant series of events over time. This excludes many typical data processing

projects that might have led to interesting object models. The object model is most useful

when either there is a non-trivial database or an exact de�nition of concepts is necessary.

In the robot golf course mower problem (2) 1, the various areas in a golf course give rise to

an interesting generalization structure. A similar structure is found in the aircraft carrier

problem (16).

A class of systems with disappointing dynamic models are those largely based on feed-

back. These include the �sh tank (7), the home heating system (9) and home security system

(3) and the car auto-pilot (8). While these systems may seem dynamic, they tend to decom-

pose into multiple objects each with a single state and a regular action of the type "take

sample and adjust output".

A class of non-trivial dynamic systems that cannot be handled satisfactorily with OMT

1The numbers in parentheses refer to the project descriptions in the Appendix.

5



are control systems involving multiple processes sharing resources. These include the jukebox

(4), where a money insertion process and a playing process share the request queue object,

the automated switchyard (15), the aircraft carrier (16), the automated parking garage (12)

and the automated lubrication service (17). OMT provides no obvious way to represent and

reason about such resource-contention problems. [Sanden 1994]

A class of problems includes user interfaces of the same general description as the ATM

in Rumbaugh. These are easily modeled on the ATM. A di�culty with the state model in

this kind of problems is that the lack of structure may conceal errors. We have found that the

Jackson diagram notation [Jackson], [Sanden 1994] is a more explicit although much more

demanding notation that allows you to easily verify regularities such as: "each transaction

resulting in dispensed money produces a receipt". (In the Rumbaugh solution no receipt is

printed if the subtransaction where money is dispensed is followed by a second subtransaction

that is cancelled.)

3 Conclusion

Several o�erings of the Software Requirements with an object-oriented specialization have

shown that most students easily come up with project ideas and appreciate the freedom to

choose for themselves. Only a few teams in each class tend to lack the necessary imagination,

and do a variation of an earlier project. That way, a rich set of examples is built over time.

It has not been the experience that the stronger students necessarily have an easier time

coming up with project ideas; the di�erence instead shows in the resulting models.

Paradoxically, it is easier in many ways for the instructor to deal with several di�erent

problems rather than many solutions to a single one. These slightly di�erent solutions are

hard to keep apart, and there is a temptation to inappropriately steer all teams towards one

preconceived solution.

Readers are encouraged to try this approach in their own teaching, using some of the

examples given in the appendix as inspiration for the students. Although the experience

related here is with graduate students, there is no particular reason why the same approach

cannot be used in upper-level undergraduate teaching. While graduate students might be

expected to draw on their work experience for project ideas, this seldom happens in reality.

6



A similar approach to the semester project has been tried in Software Design, the Soft-

ware Project Laboratory and Advanced Software Design. These courses were based on the

entity-life modeling approach to concurrent software design [Sanden 1994]. The experience

from those classes is equally positive.

4 References

Ammann,P.Gomaa,H. O�utt,J. Rine,D. Sanden,B. A �ve-year perspective on Software Engi-

neering graduate programs at George Mason University in Software Engineering Education,

Proceedings, 7th SEI CSSEE Conference, San Antonio, Jan. 1994, Springer Verlag, 473-488

Coad,P. Yourdon,E. Object-oriented Analysis, Yourdon Press, Prentice-Hall 1990

Coleman,D. Arnold,P. Bodo�,S. Dollin,C. Gilchrist,H. Hayes,F. Jeremaes,P. Object-oriented

Development: The Fusion Method, Prentice-Hall 1994

Davis,A.M. Software Requirements - Objects, Functions, & States, 2nd Ed. Prentice-Hall

1993

Denning, P. Designing new principles to sustain research in our universities, CACM 36:7

(July 1993), 99-104

Embley,D.W. Kurtz,B.D. Wood�eld,S.N.Object-oriented Systems Analysis, A Model-driven

Approach, Yourdon Press 1992

Fairley,R.E. "A post-mortem analysis of the Software Engineering programs at Wang In-

stitute of Graduate Studies", ACM Sigsoft Software Engineering Notes, 13:2 (April 88),

41-47

Harel,D. Statecharts, a visual approach to complex systems in Science of Computer Pro-

gramming 8, North Holland, 231 -274 (1987)

Jackson,M.A. Principles of Program Design, Academic Press, New York 1975

Sanden,B. An Ada-based, graduate Software Engineering curriculum at GMU, ASEET Sym-

posium, Monterey, CA, Jan 1993

7



Sanden,B. Software Systems Construction with Examples in Ada, Prentice-Hall, 1994

A Appendix: Project topics

A number of representative project ideas are outlined below. The descriptions are brief;

they are not intended as su�cient project descriptions but rather to suggest what kind of

projects work. Students should instead be encouraged to come up with ideas from their own

experience.

A.1 Airport parking system

The system controls the access to the di�erent parking lots at an airport. Cars are identi�ed

upon entry to the airport premises and assigned parking spaces depending on the duration

of intended travel, etc. They are charged when they leave the area. Frequent airport users

may charge their parking fees to accounts with the airport. Airport vehicles, shuttle buses

and drop-o�/pick-up vehicles are excluded.

The object model includes a visit class with the subclasses parking-visit and drop-o�/pick-

up visit. A parking-visit has the subclasses frequent-user-visit and infrequent-user -visit. A

frequent-user-visit is associated (many to one) with a frequent-airport-user class. The dynamic

model includes a state diagram of a visit beginning in a state outside and including events

such as enter airport domain, enter legal parking space, enter illegal parking space. In the case

of illegal parking, events such as get warning, receive citation, etc., follow.

A.2 Robot golf course mower

A robot lawn mower automatically mows the various playing areas at a golf course. A

database describes the topology of the golf course including the various cuttable areas of

each playing area: tee, fairway, green, rough and fringe. Each area has a reference point. The

mower navigates between these reference points along separately de�ned pathways. Within

each area, the positions of known obstacles to the mower are also stored. The mower has the

capability to identify new obstacles that it encounters.

8



A generalization hierarchy describing di�erent kinds of areas is prominent in the object

model. The class area has attributes such as reference point and operations such as contains

position(p) which returns true i� p is within the area. The subclasses of area are: cuttable,

obstacle and pathway. Further down in the hierarchy, a green class has the attribute cut

orientation reecting the direction the green needs to be cut next time to achieve a desired

cutting pattern.

A Jackson diagram [Jackson], [Sanden 1994] was used in the dynamic model of mower

behavior, which is conveniently seen in terms of nested iterations: The life of the mower is an

iteration of work shifts. Each shift includes an iteration over playing areas, and within each

area, there is an iteration over the cuttable areas. Cutting is represented as an iteration over

cutting path segments, and transportation between areas is an iteration over route segments.

A.3 Home security system

The security system is used to protect a family home and its grounds. It monitors the home

and grounds for intruders, detects smoke and �re and tracks legal home occupants.

In addition to the obvious model of the house as an aggregation of its physical parts,

the object model de�nes a class entry with the two subclasses illegal entry and legal entry.

These subclasses have associations with the outside door, windows, etc., showing that the

door is the only legal entry point.

The object model of the security system itself includes an example of multiple inheritance

in that a telephonic device is both an access unit (used to change system parameters) and an

alarm unit (used by the system to report a breach of security, a �re, etc., to the authorities).

The object model also de�nes the creatures that the system must deal with. The creature

class has the subclasses intruder and non-intruder. Non-intruder has the subclasses human and

pet, where human has subclasses reecting whether this human non-intruder is authorized

to manipulate the security system.

9



A.4 Jukebox

This project speci�es the software necessary to run an ordinary jukebox. Customers are

allowed to insert coins and select songs from a number of independent stations, placed

perhaps at each table in a diner. Selected songs are entered in a request queue. The jukebox

mechanism retrieves one song at time from the queue, operates an arm that retrieves and

mounts the appropriate compact disc from storage (if it is not already mounted), and plays

the song.

A.5 Package exchange system

The automatic package exchange system allows users at di�erent locations to send letters and

parcels to each other. A pneumatic technique may be used for transportation. The system

consists of customer-service stations where customers send and receive packages, tubes and

switches.

If the system is operated on the basis of "package switching", that is, packages are

bu�ered at each switch before being forwarded, the problem gives rise to a textbook state

model of a single package. If the system is instead based on circuit switching, the problem

becomes one of resource sharing, where a package must obtain exclusive access to a series of

tubes (and switches) before being sent. With each package needing simultaneous exclusive

access to multiple resources, some technique must be employed to prevent deadlock [Sanden

1994].

A.6 Tra�c control

The system controls the tra�c lights at one or more road intersections. The object model

introduces and de�nes concepts such as lane group which is a group of lanes that have a

green light at the same time. (Each tra�c lane may belong to one or more lane groups.)

The order in which di�erent lane-groups get to go is represented by means of the one-to-one

association turns-green-before between lane-groups.

10



A.7 Fish tank

The system automatically monitors a �sh tank, performing tasks on a daily, weekly and

monthly basis. It controls food delivery, light level, water temperature, water level, and pH

level and e�ectuates water cleaning through a �lter. The user sets initial controls and mod-

i�es settings as necessary. The system sounds an alarm and displays appropriate messages

when values fall outside set limits.

The object model includes an aggregation of devices and a generalization structure of

various kinds of devices. The dynamic model consists of state diagram for food control, light

control and chemical control. The control of water temperature, etc., is a feed-back system.

Feeding and other functions operate based on the time of day.

A.8 Auto-pilot system for cars

A number of projects deal with automation of cars. The auto -pilot enables vehicle operation

on a limited-access highway system. It monitors the vehicle position relative to the road and

surrounding tra�c, controls the speed, and monitors vital vehicle functions (fuel level, etc.).

These projects are usually disappointing from the point of view of OMT. The object

model tends to reduce to the rather obvious aggregation of vehicle components (sensors,

actuators, etc.). The dynamic model tends to reect the feedback nature of the problem:

the state diagram of each sensor tends to consist of one (or two) states and periodic actions.

A.9 Home heating system

The home heating system allows the inhabitants to preselect desired temperatures for dif-

ferent times of day. The system anticipates the beginning time for each desired temperature

and starts heating or cooling in order to reach the target temperature at the desired time.

The system also senses the arrival of an unexpected visitor and adjusts the temperature

accordingly.

11



A.10 Automated tennis player

This is a robot that can be used as the automatic opponent of a human tennis player. The

robot moves by means of turnable wheels and handles a racket in much the same way as

a human player. By means of sensors in the robot's and the human's rackets, the robot

calculates the trajectory of the ball and the move it must make to hit it. Based on a

knowledge of its own parameters, it determines whether it can make it in time to return the

ball.

This is clearly a fanciful project which requires a certain leap of faith in technology. In

general, the experience with fairly unrealistic projects like this one is not worse than with

more implementable ideas.

A.11 People mover

The people mover is an automated vehicle for the transportation of people in an environment

such as an airport. The people mover navigates based on emitters placed at suitable distances

along the pathways and can automatically carry out a traversal from a point A to a point

B within its intended range. It has the ability to detect and avoid stationary and mobile

obstacles.

As is often the case, the object model forces a clear de�nition of the central system

concepts. The terminal building (or buildings and connecting spaces) is broken into areas.

Each emitter is associated with an area and uniquely de�nes a single point. A route traveled

by the mover consists of route segments with start and end at such a point.

The dynamic model includes a user-interface diagram similar to the ATM example

[Rumbaugh]. (In these simple terminal systems, many states are conveniently associated

with the screen that is currently displayed, such as a credit card screen prompting the user

to insert a card.)

The dynamic model of the behavior of the mover is rudimentary since the technique for

navigating around an obstacle had be largely left outside the scope of the project.

12



A.12 Automated parking garage

The automated parking garage consists of parallel aisles with two levels of parking stalls on

either side. The aisles are connected by transportation roadways. (Other con�gurations are

equally possible.) The garage is served by automated carriers. Each carrier picks up a car

that has been parked by its driver in a designated entrance module and transports it to a free

parking stall. Upon request, a carrier retrieve a car from a stall and moves it to a designated

exit module, where it is picked up by its driver. There is a wait area for idle carriers.

The challenge lies in the management of the automated carriers. Multiple carriers are

considered necessary for performance reasons, so the aisles and roadways must be managed

as shared resources. The aisles are allocated to one carrier at a time, allowing the carrier the

necessary time to load or unload. Carriers are not allowed to wait in the roadways, where

they would impede each other's movements.

A.13 Automated store

Various examples of automated stores have been used. Some are similar to the people mover

or the automated garage in that they involve either shopping or stocking robots that navigate

the aisles while avoiding obstacles. A more realistic variation involves automated shopping as

follows: Barcoded samples of various merchandise are displayed in the store. Each customer

uses a hand-held electronic unit that scans barcodes and where the quantity ordered of each

item is keyed-in. At a suitable point in the process, the hand-held unit creates an order

to the storage facility, where the customer's order is assembled. Soon after the customer

reaches the checkout, the goods are delivered. Provisions must be made for the customer to

change the order by deleting items or reducing the quantities.

This problem gives rise to a dynamicmodel of a customer transaction basically consisting

of item selection and checkout processing. A concurrent series of events starts with the order

to the storage facility where items are picked and the order assembled.

13



A.14 Video rental store

It is easy to imagine the automation of some highly structured retail operations. A video

rental store may have number of terminals where customers browse a catalog and select

tapes. The store is manned by robots that retrieve the desired tapes and deliver them to

the customer positions. The same robots also service the return chutes. There is a special

return chute for damaged tapes.

The dynamic model includes a user interface somewhat similar to the ATM [Rumbaugh].

A tape state diagram reects events such as rent, return and return-damaged. A robot model

includes the necessary steps to take upon return of a tape, etc. (Identify the tape based on

its bar code, re-shelve it, etc.)

The robots are assumed to travel along a one-way track that passes by the tape shelves,

the customer positions and the chutes. There is also a siding for idle robots.

A.15 Automated switchyard

In the automated switchyard, a computer controls the disassembly and reassembly of trains

by means of remotely controlled switch engines. An incoming train is placed on a particular

siding. Individual cars or blocks of more than one car are detached and moved by switch

engines to a sidings where trains for di�erent destinations are being assembled. The sidings

are arranged in a tree structure. A resource contention problem arises when di�erent switch

engines need to travel over the same segments of rail and past the same turnouts to reach

their respective sidings. [Sanden 1994]

A.16 Aircraft carrier

The aircraft carrier system deals with the management of aircraft on board the carrier. The

movement of aircraft raises problems similar to those in the switchyard when the di�erent

aircraft need exclusive use of the same elevator between ight deck and hangar deck, etc.

The object model includes classes such as aircraft, aircraft type, pilot, and sortie, and an

association certi�ed between pilot and aircraft type. The di�erent kinds of areas on-board

14



give rise to a generalization hierarchy similar to that in the robot lawn mower problem.

The aircraft dynamic model starts in a state parked and unmanned and covers the events

involved in manning the aircraft, moving it to the launch site, take-o�, landing and movement

back to the parking area.

A.17 Automated lubrication service

This project envisions an automated facility that undertakes standard vehicle service on a

number of cars placed in individual bays. A number of robot arms travel on rails in the

ceiling to reach the various caps on the car engine (oil, radiator uid, etc.) Additional arms

operate from under the car and access the oil drain plug, etc. The arms have the ability

to open a plug, take care of the draining liquid and re-close the plug, or open a cap, insert

liquid, sense the �lling level and re-close the cap. A database must know the position of each

cap and plug relative to certain reference points in the car.

A.18 Home toilet

The home toilet project is unique in that it has no software connection but shows how an

object model and a discrete -event dynamic model can be used to describe a well-known

continuous system. Essentially, the toilet consists of a bowl, a tank, a �lling pipe that allows

water to enter the tank and a port that allows it to enter the bowl. The states reect the

level and movement of water in the bowl and tank respectively. For each one, there is an

idle state where no water is moving, a �lling state with a net inow of water and an emptying

state with a net outow. Events include the movement of the trip lever handle to start the

ushing cycle, and those de�ned by the hydrodynamics of the toilet itself: The water level

reaches a certain minimum where the ball cock valve closes and a transition from emptying

to �lling occurs. A similar event exists for the bowl when the emptying stops and the bowl

start �lling up to its idle level.

15



A.19 Luggage tracking

The luggage tracking system operates either in an airport or for an airline. It is basically

a database system keeping track of customers and their baggage. Data is captured when a

piece of luggage is checked in, when it is loaded on an aircraft, is o�-loaded, arrives in the

baggage pick-up area, etc. The life of a piece of luggage reecting these events gives rise to

an interesting dynamic model.

A.20 Programmable remote controller for home electronics

The controller is a sophisticated remote that controls not a single device but a set of home

entertainment devices such as a TV set, a VCR, a record player, etc. At a given time, a

number of di�erent devices can be registered with the device, which stores the operations of

the device's original remote control. The device can store a number of di�erent macros that

can be recorded, edited and executed by the user.

The object model is essentially an aggregation showing the various buttons, displays,

etc., of the controller. The dynamic model reects the state of the controller as a whole.

The user interface is non-trivial but sequential and reects the normal, name and edit modes

used for normal operation, for registering new devices and for macro editing, respectively.

In the normal mode, there is concurrency between the manually keyed-in commands and the

commands made by executing macros.

16


