
A Safety Kernel For Tra�c Light Control

Paul Ammann�

Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030

pammann@gmu.edu

July, 1994

Revised January, 1995

Abstract

The success of kernels for enforcing security has led to proposals to use kernels
for enforcing safety. This paper presents a feasibility demonstration of one
particular proposal for a safety kernel via the application of tra�c light control.
The paper begins with the safety properties for tra�c light control and speci�es
a kernel that maintains the safety properties. An implementation sketch of the
kernel in Ada is given and use of the kernel is discussed. The contribution of the
paper is a demonstration that a kernel is a feasible and desirable technique for
software in a realistic, safety-critical application. The paper also illustrates how
formal methods aid the software engineer in constructing and reasoning about
such software.

�Partially supported by the National Aeronautics and Space Administration under grant NAG 1-1123-
FDP.



1 Introduction

Software is being used with increasing frequency to control applications that are safety-
critical, by which it is meant that certain failures, called safety failures, can have unac-
ceptable costs, such as harm to humans, environmental damage, �nancial loss, and so on.
Computer-controlled, safety-critical systems can and do fail [Neu], and there is intense in-
terest in techniques for improving the software in such systems. Although a variety of
techniques have been developed1, there are signi�cant limitations on what can be achieved
[BF93], and there is a need to increase the number of methods available to developers of
software for critical systems. In this paper, we work towards this goal by considering the
use of kernels, which have enjoyed success in the security area, to achieve safety. The spe-
ci�c contribution of this paper is a feasibility demonstration of Rushby's notion of a kernel
[Rus89]; the application chosen for the demonstration is tra�c light control.

Safety is purely a system property; software by itself is neither safe nor unsafe. However,
as with any other component in a safety-critical system, the software is required to have
certain properties for the behavior of the encompassing system to be considered safe. These
properties can be expressed as predicates that the software must maintain with respect to
its inputs, outputs, and current state. For example, a system safety property for a reactor
might be de�ned as shutting down operation if the reactor overheats. For the reactor to
be safe, the software controlling the reactor must satisfy the predicate that a command to
shut down the reactor is always issued within some interval after a reactor sensor exceeds a
critical threshold. In this example, safety is de�ned with respect to reactor destruction, and
the safety-relevant predicate for the software is the timely relation of inputs from sensors
to outputs for actuators.

Showing that the software for a particular system satis�es a given set of safety predicates is
a veri�cation problem.2 In software for systems that are not safety-critical, veri�cation with
respect to functional requirements is usually carried out informally via some combination of
testing and inspections. Some faults, i.e., design mistakes, escape the informal veri�cation
process, and the consequences of these residual faults must be subsequently absorbed as a
cost of using the software.

For software in critical systems, the assurance gained by direct, informal veri�cation with
respect to safety requirements is generally inadequate, and more rigorous techniques are
desirable. In some cases regulatory agencies require more rigorous methods. Making a
more formal analysis feasible is di�cult and expensive. Since part of the problem is the
overall size of the software, one useful strategy is to organize the software so that the most
rigorous analysis can be con�ned to a relatively small portion of the total software, with
standard methods applied to the remainder.

Kernels are a useful organization that separates critical parts of the software from noncritical

1A recent survey by Rushby [Rus93a] enumerates many of these methods.
2The systems engineering process of deriving and documenting the proper set of safety predicates is also

crucial, but that activity is beyond the scope of this paper.

1



parts. In general, kernels must be small, relatively simple units, since a kernel comparable
in complexity to non-kernel software has little practical advantage. A kernel must ensure
some particular behavior for the overall system without making any assumptions about
the trustworthiness or proper functioning of the remaining software. Indeed, designers of
security kernels make the worst case assumption that the remaining software is written by
a malicious adversary whose goal is to bypass the kernel.

Kernels have a successful history in operating systems as a means of protecting access to
computing resources and in security applications as a means of preventing unauthorized
information ow. For example, a kernel in a multilevel secure system can prevent a user
classi�ed at one security level from directly reading data labeled at a higher or incomparable
security level or writing data labeled at a lower or incomparable security level. The key
property that a security kernel achieves is that no matter how the software outside the
kernel behaves, the kernel maintains a system level security predicate, namely, that all
direct information ow is authorized. (Indirect ows, or covert channels, must also be
addressed, typically via an extension of a kernel known as a trusted computing base.)

The fact that security predicates can be viewed as a special case of safety predicates has
prompted various researchers to suggest adapting security techniques for application to
other safety-critical software. In particular, the idea of a kernel has been considered for
safety [LSST83, Neu86, Rus89, WK94]. Proposals for safety kernels di�er in subtle but
important ways. Rushby makes a precise and convincing theoretical case for safety kernels
[Rus89], and this paper adopts Rushby's model, which from here on is referred to as a
Rushby kernel.

For a Rushby kernel to enforce safety, two conditions must hold. The �rst condition is
that predicates describing safe operation at the system level must be de�ned at the kernel
level. In other words, the variables in the safety predicates must be under the control of
the kernel. If a safety predicate references variables outside the control of the kernel, the
kernel, by itself, cannot guarantee the safety predicate.

The second condition for a Rushby kernel to enforce safety is that arbitrary behavior external
to the kernel cannot falsify the safety predicates. Rushby formalizes this condition by stating
that to show a kernel maintains a safety predicate P , it is generally necessary to show that

8� 2 op� � P(�)

where each op is an operation either inside or outside the kernel, and op� is a sequence of
such operations. In other words, P holds for any arbitrary sequence of operations, �.

Rushby briey outlines some examples of how a kernel might be applied in practice [Rus89].
The contribution of this paper is to show the feasibility of a Rushby kernel in a more realistic
example. Although tra�c light control might appear too simple an application, there is
evidence to the contrary. For example, a recent assessment of veri�cation techniques for
safety-critical software used a version of the tra�c light control problem [GC94]. Most of
the variants constructed in that study had latent safety-critical faults, thereby indicating

2



some intrinsic di�culty in tra�c light control. Further, serious safety violations can and do
occur even in cases where the underlying safety predicates are simple and well understood,
e.g. the mismatch between beam intensity and turntable position in the Therac-25 accidents
[LT93]. Finally, the kernel in this paper is based on actual tra�c light speci�cations [Nat92],
and as a result is somewhat more realistic than typical tra�c light case studies.

There are other reasons for working a larger example. First, scalability is a concern for
any software engineering technique, and the example in this paper demonstrates scalability
to one realistic system. Second, the example presented here begins with a speci�cation of
safety predicates for an application, proceeds through a formal speci�cation of a system
that satis�es the safety predicates, and �nishes with an implementation in Ada (informally)
re�ned from the formal speci�cation. The presentation is not completely formal { di�erent
phases correspond to a 1 or a 2 on Rushby's 0 (informal) to 3 (machine theorem proving)
scale of formal methods [Rus93b]. However, the author believes that the exercise is accessi-
ble, and that it demonstrates an e�ective use of formal methods easily within the grasp of
practicing software engineers. Thus the example in this paper not only serves as a model
for constructing a safety kernel, but also as a model for an e�ective application of formal
methods.

The paper is organized as follows. Section 2 motivates a kernel for a tra�c light controller
and presents the relevant safety requirements, i.e. properties that must hold if a tra�c light
is to be considered safe. Section 3 develops a formal abstract data type (ADT) speci�cation
in Z [Spi89] to implement these safety requirements. Section 4 argues that the speci�cation
of section 3 is indeed a Rushby kernel with respect to the safety requirements of section 2.
Section 5 discusses re�ning the speci�cation of the kernel into an implementation in Ada,
and, via the example in [LCS91], how an implementation of the functional requirements for
a tra�c light control system can employ the safety kernel. Section 6 concludes the paper.

2 Rationale For A Tra�c Light Safety Kernel

Various factors motivate the use of tra�c light control as the example for carrying the
ideas in this paper. First, tra�c light control is safety-critical, because safety failures of
tra�c signals can lead directly to accidents involving human life and property. Second,
although the basic operation of a tra�c light is simple and universally understood, ac-
tual implementations are quite complex. In this regard, tra�c light control is analogous
to communication protocols. Even simple communication protocols can have large state
spaces that hide subtle, but important errors. Similarly, the list of factors enumerated
below complicates the basic tra�c light protocol. Third, as in many other systems, the
exibility a�orded by powerful microprocessors has led to increased functionality. Tra�c
light controllers are increasingly more complex, and analyzing the properties of tra�c light
controllers is correspondingly more demanding.

3



Tra�c light controllers may be implemented as real time, interrupt driven systems.3 Tra�c
controllers must communicate with a variety of interfaces, including inputs from tra�c
sensing devices, messages sent over a network and commands issued directly from the front
panel. Functionality and safety requirements may di�er depending upon the source of the
the message. For example, a request to change a light for a particular direction may be
rejected for safety reasons if requested over the network, but be accepted when issued by a
human at the panel. Source code for a controller can exceed 10 megabytes, and object code
can occupy from 500 kilobytes to 1 megabyte.

Emergency vehicles have devices to demand right-of-way, and thus normal operation of a
tra�c light may be preempted. Hardware in tra�c lights is subject to failure, e.g., via short
circuits or lightning strikes; responses to these failures must be safe and should maintain
operation if possible, since interruption of service is a safety concern. Although some of
these issues are elaborated in tra�c light standards, the standards do not address some
signi�cant issues. For example, the response to burned out signals is only partially covered
by [Nat92]. The combination of the above factors means that assessing the functionality
and safety of a given tra�c controller, despite the simplicity of the underlying protocol, is
a nontrivial task. Although a kernel does not address correctness with respect to function,
a kernel does simplify an assessment of correctness with respect to safety.

2.1 Safety Provisions In Tra�c Lights

The behavior of a tra�c light controller is illustrated in �gure 1.4

Delay

Yellow Change

Delay

Minimum Green

Red Green

for conflicting directions

Delay Red Clearance

Normal Operation

Start-Up Flash

Automatic Flash

Red ClearanceAfter

Yellow

Initialization

Figure 1: Allowed Tra�c Light Transitions

The following safety requirements are derived from the tra�c light standard [Nat92]:

3Some of the parameters cited here are taken from a standard for tra�c light controllers [Nat92]. Others
are graciously provided by [Ken94].

4The given diagram does not appear explicitly in [Nat92], but rather has been abstracted by the author.

4



1. Some tra�c directions conict, and simultaneous tra�c ow in conicting directions
may result in an accident. Therefore, if a pair of directions conict then the light
associated with one of the directions must be Red . The relation conict enumerates
the pairs of the conicting directions. (The Z notation used here declares the variable
above the line and constrains the variable below the line. The constraining predicate
conict = conict�1 asserts that the relation conict is symmetric):

conict : Direction $ Direction

conict = conict�1

2. A light associated with a particular direction may only change according to the shown
transition diagram 1. First consider normal operation. From a safety perspective, for
a light to turn Red , the light must be Yellow for at least YellowChange seconds prior
to the transition, thereby giving drivers fair warning of the impending Red . Further,
for a light to turn Green, all lights for conicting directions must be Red for at least
RedClearance seconds prior to the transition, thereby giving vehicles a chance to clear
the intersection. From a functional perspective, for a light to turn Yellow , the light
must be Green for at least MinimumGreen seconds prior to the transition. We return
to the issue of safety vs. functional perspectives later.

Consider ashing operation. From a safety perspective, the AutomaticFlash mode
may be entered only if lights for all directions are Red and a suitable RedClearance

period has passed.

3. StartUpFlash may be thought of as both an initial state and an error mode. There
is no precondition for entering the StartUpFlash mode. If StartUpFlash is entered
due to an error, then the system must remain in StartUpFlash for at least the period
MinimumFlash.

We propose installing a safety kernel internal to software in the tra�c light controller.
Existing tra�c lights contain a hardware device external to the controller called the Mal-
function Management Unit (MMU)[Nat92, Section 4]. The primary purpose of the MMU
is safety; the MMU detects potentially unsafe conditions and forces the tra�c light into a
safe state, e.g., the StartUpFlash state, upon detection of an unsafe condition.

The MMU checks for conditions that depend on controller outputs. It is possible for an
incorrect controller to request tra�c light con�gurations that violate safety constraints.
Speci�cally, the MMU checks for conicting signals and also for insu�cient delays with
respect to YellowChange and YellowChange=RedClearance intervals.

It is possible that conditions other than an incorrect controller result in violations of safety
constraints. For example, a short circuit could result in the illumination of conicting
signals even though the controller issues commands in a logically safe sequence. The MMU
detects the conicting signals regardless of the origin of the problem. The MMU also handles
safety conditions unrelated to the controller. For example, the MMU handles power supply
anomalies such as transient spikes, low voltages, and interruptions. In brief, the MMU

5



enforces safety constraints at the level of the tra�c light rather than at the level of the
controller unit. Although the MMU is, in e�ect, a system-level safety kernel for a tra�c
light, two arguments support the addition of a safety kernel in the controller.

First, it is useful to detect failures as soon as possible. A safety kernel within the controller
can detect the impending violation of a safety constraint before the outputs are presented
at the controller interface. This detection means that the unsafe output can be suppressed,
and the controller given a chance to recover from the fault. The source of the intercepted
safety violation can be logged as a design defect in the software, and audit trail information
can be stored for subsequent analysis. If instead the unsafe outputs are actually generated
and the MMU steps in, then the evidence is no longer clear that the software is at fault; for
example, a short circuit might be responsible instead. Also, when the MMU intervenes, the
driver always views the failure, whereas when the kernel intervenes, the driver might not.

Second, the controller has more detailed information about safety constraints than does the
MMU. The MMU enforces uniform YellowChange and YellowChange=RedClearance delays;
both delays must be at least 2.6 seconds [Nat92, Section 4.4.5]. The 2.6 seconds is a lower
bound that applies to any tra�c light for any tra�c direction, and is of necessity relatively
weak to accommodate e�ciency concerns. In particular, drivers will not tolerate excessively
long delays at all intersections. However, some speci�c intersections require longer delays
to be safe, and the required delays generally vary from one tra�c light to another, and also
for di�erent directions controlled by the same tra�c light.

Indeed, a tra�c engineer can specify a YellowChange delay for each tra�c direction of from
3 to 25.5 seconds, and a RedClearance delay for each tra�c direction of from 0 to 25.5
seconds[Nat92, Section 3.5.3.1]. Thus for example, if the tra�c engineer speci�es that a
particular direction should have a YellowChange delay of 4 seconds and a RedClearance

delay of 2 seconds, then the YellowChange=RedClearance delay is 6 seconds before a con-
icting tra�c light is allowed to safely change to Green. However, the MMU can only
detect a problem if the total delay is 2.6 seconds or less. Thus, for example, the MMU
accepts a delay of 5 seconds as safe. However, a safety kernel inside the controller has
access to the complete YellowChange and YellowChange=RedClearance speci�cations, and,
in the example, can detect that a 5 second delay is not safe.

The arguments in support of a safety kernel internal to the controller do not diminish the
need for the MMU. Even though all safety constraints are derived from system properties,
safety constraints can be enforced at di�erent levels. For the tra�c light example, a safety
kernel inside the controller can enforce system safety requirements at the controller level,
and the MMU, which is, as noted, essentially a system-level safety kernel, can enforce system
safety requirements at the tra�c light level. Enforcement of safety constraints is useful at
both levels.

In summary, despite the existence of the MMU, a safety kernel within the controller is
desirable for two reasons. First, a safety kernel can catch potentially unsafe outputs before
they are generated. Second, a safety kernel can make a more accurate assessment of whether
safety constraints are satis�ed.

6



2.2 Safety Requirements for a Tra�c Light

Let the type Light enumerate possible tra�c light settings and let the type Direction enu-
merate possible tra�c directions for some particular intersection, e.g., `Through Tra�c On
Route 50 West', `Left Turn Onto Route 123 North', etc. The speci�cation here can be
applied to any intersection, regardless of the intersection's complexity, and so we omit the
speci�cs of the type Direction:5

Light ::= Red j Yellow j Green j Dark

Direction ::= :::

[Time]

clock : Time

Time is informally speci�ed in seconds, although the required resolution is in milliseconds.
For our present purposes, we need not be concerned with the details of how time is imple-
mented, only that we can state time intervals such as `0 seconds' and `2.7 seconds'.6

Let the type Mode enumerate the three modes described in �gure 1. The type Status

indicates whether operations are proceeding normally, or whether some safety-related error
has been detected. A status of Error is always associated with the mode StartUpFlash.

Mode ::= NormalOperation j AutomaticFlash j StartUpFlash

Status ::= Ok j Error

We de�ne the safety kernel as an ADT. The schema Tra�cLightKernel , shown below, de�nes
the state of the ADT. Explanations for each component of Tra�cLightKernel (components
appear above the middle line) and each constraint on the components in Tra�cLightKernel

(constraints appear below the middle line) appear after the schema.

5De�nitions here use the Z syntax [Spi89], although various liberties are taken with standard Z style to
make the speci�cation match the Ada implementation more directly. In the implementation, the Z type
Light translates to Ada as TYPE Light IS (Red, Yellow, Green, Dark). The type Direction is handled
similarly.

6In the implementation it turns out to be helpful to distinguish the notion of of absolute time from that
of an interval between two absolute times. Towards this end, the implementation uses the Ada types Time
and Duration from the standard Ada package Calendar. The distinction can be omitted in the speci�cation.

7



Tra�cLightKernel

lights : Direction ! Light

mode :Mode

status : Status
faulttime : Time
lastchanged : Direction ! Time

mode 2 fNormalOperation; AutomaticFlashg )

(8 d1; d2 : Direction j d1 7! d2 2 conict �
lights(d1) = Red _ lights(d2) = Red)

status = Error ) mode = StartUpFlash

The component lights assigns a signal setting to each direction in Direction. For the
modes NormalOperation and AutomaticFlash, the �rst invariant ensures at least one of
the lights for each pair of conicting directions is Red . Conicting lights are not an issue
in StartUpFlash mode. (A possible signal con�guration for StartUpFlash is a solid Red

combined with a ashing Yellow .)

The mode and status components of Tra�cLightKernel are constrained by the second in-
variant such that a status of Error requires the mode to be StartUpFlash. The component
faulttime records the value of clock from the most recent occurrence of setting status to
Error . (See the operations RegisterError and ClearError below.)

To aid in evaluating timing constraints, the time of the last update to each light is recorded in
the component lastchanged . Timing constraints with respect to the component lastchanged
are used in the preconditions of the operations de�ned below.

To handle timing requirements, we formalize minimum signal periods as a function of tra�c
directions. The timing constraints on the intervals are taken from a tra�c light standard
[Nat92, Section 3.5.3.1 and Section 4.4.2].

YellowChange : Direction ! Time

RedClearance : Direction ! Time

MinimumGreen : Direction ! Time

MinimumFlash : Time

8 d : Direction �
3 � YellowChange(d) � 25:5 ^
0 � RedClearance(d)� 25:5 ^
1 � MinimumGreen(d) � 255 ^

6 � MinimumFlash � 16

We de�ne the safety predicate P , the predicate the kernel must maintain for any sequence
of operations, as four separate predicates: P = P1 ^ P2 ^ P3 ^ P4, where P1, P2, P3, and
P4 are shown below.

8



P1: If the mode is NormalOperation or AutomaticFlash, then at least one light for each
pair of conicting directions is always Red . This predicate appears as an invariant in
Tra�cLightKernel ; we repeat it below:

mode 2 fNormalOperation; AutomaticFlashg )
(8 d1; d2 : Direction j d1 7! d2 2 conict �

lights(d1) = Red _ lights(d2) = Red)

P2: Except for the mode StartUpFlash (where light settings are unimportant), there is
a delay of RedClearance on conicting directions before the light for any direction is
allowed to change from Red to some other color. This predicate must be a precondition
on any operation that can change a Red light. The required predicate is:

mode 6= StartUpFlash ^ mode0 6= StartUpFlash )

(8 d1; d2 : Direction j d1 7! d2 2 conict ^ lights(d1) = Red ^ lights 0(d1) 6= Red �
clock � lastchanged(d2) � RedClearance(d2))

(In Z variables with primes (0) denote a state component after an operation. Variables
without primes denote state components before an operation.)

P3: If the mode is NormalOperation, then there is a delay of YellowChange before a light
for any direction is allowed to change from Yellow to some other color. This predicate
must be a precondition on any operation that can change a Yellow light. The required
predicate is:

mode = NormalOperation ^ mode0 = NormalOperation )
(8 d : Direction j lights(d) = Yellow ^ lights 0(d) 6= Yellow �

clock � lastchanged(d) � YellowChange(d))

P4: If the mode StartUpFlash is entered as the result of an error, then the mode cannot
be changed until a period MinimumFlash has expired.

status = Error ^ status 0 = Ok )

clock � faulttime � MinimumFlash

3 Kernel Speci�cation

As indicated in �gure 1, the initial mode is Start Up Flash. The operation Tra�cLightKernelInit

de�nes the initial state of Tra�cLightKernel .

Tra�cLightKernelInit

Tra�cLightKernel 0

mode0 = StartUpFlash

status 0 = Ok

(Initialization is viewed as an operation that only has a state after the operation; hence
the primes in mode 0 and status 0. The components faulttime0, lights 0, and lastchanged 0 are

9



not constrained in Tra�cLightKernelInit , except that they must satisfy the invariants in
Tra�cLightKernel 0, and hence these components could have a variety of values in the initial
state.)

We now turn to specifying operations on the kernel. For brevity, we omit specifying error
cases, i.e. what to do if an operation is requested when its precondition is not satis�ed.
Standard error handling methods apply.

In the event that an external error condition, such as a short circuit, is detected, the
operation RegisterError can be applied at any time. The clock time at which RegisterError

is called is recorded in the component faulttime0. (�Tra�cLightKernel de�nes two states,
the state before an operation is applied and the state after an operation is applied, and
asserts that the invariants hold on both states.) ClearError is called to recover from a call
to RegisterError .

RegisterError

�Tra�cLightKernel

mode0 = StartUpFlash

status 0 = Error

faulttime0 = clock

ClearError

�Tra�cLightKernel

mode = StartUpFlash

status = Error

clock � faulttime � MinimumFlash

mode0 = StartUpFlash

status 0 = Ok

Transition to the mode NormalOperation is as follows. Lights for all directions become
Red when the mode switches to NormalOperation, and the component lastchanged is set to
reect the current clock time for each direction.

BeginNormalOperation

�Tra�cLightKernel

(mode = StartUpFlash ^ status = Ok) _ mode = AutomaticFlash

mode0 = NormalOperation

lights 0 = fd : Direction � d 7! Redg
lastchanged 0 = fd : Direction � d 7! clockg

Operations for the NormalOperation mode are de�ned to accommodate the arcs in �gure
1. All three operations, ToGreen, ToRed , and ToYellow , have similar structure, as cap-
tured in the schema NormalOp. NormalOp has the precondition that the current mode is

10



NormalOperation and the postcondition that lastchanged is updated for direction d?. (The
decoration `?' indicates that variable d? is an input.)

NormalOp

�Tra�cLightKernel

d? : Direction

mode = NormalOperation

lastchanged 0 = lastchanged � fd? 7! clockg

mode0 = mode

status 0 = status

The speci�cations for the three operations ToGreen, ToRed , and ToYellow are given below:

ToGreen

NormalOp

lights(d?) = Red

8 d : Direction j d? 7! d 2 conict �
lights(d) = Red ^

clock � lastchanged(d) � RedClearance(d)
lights 0 = lights � fd? 7! Greeng

The preconditions for ToGreen are that the light for direction d? is Red , that lights for
all conicting directions are Red , and that the RedClearance interval for all conicting
directions has passed.

ToRed

NormalOp

lights(d?) = Yellow

clock � lastchanged(d?) � YellowChange(d?)
lights 0 = lights � fd? 7! Redg

The preconditions for ToRed are that the light for direction d? is Yellow and that the light
has been Yellow for at least the period speci�ed by YellowChange for light d?.

It is tempting to specify the operation ToYellow in a similar manner:

ToYellowDraftSpeci�cation

NormalOp

lights(d?) = Green

clock � lastchanged(d?) � MinimumGreen(d?)
lights 0 = lights � fd? 7! Yellowg

11



The preconditions for ToYellowDraftSpeci�cation are that the light for direction d? is Green
and that the light has been Green for at least the period speci�ed by MinimumGreen for
light d?.

Turning a light Yellow when the precondition clock�lastchanged(d?) � MinimumGreen(d?)
is not satis�ed does not constitute a safety failure. In fact, there are cases, such as preemp-
tion of a signal to yield right-of-way to an emergency vehicle, when violating the (draft)
precondition with respect to MinimumGreen is required. Hence, the timing requirement
with respect to MinimumGreen does not belong in the safety kernel, and ToYellow is spec-
i�ed as follows:

ToYellow

NormalOp

lights(d?) = Green

lights 0 = lights � fd? 7! Yellowg

Automatic ashing operation employs a con�guration of ashing Red and Yellow lights, and
perhaps also someDark lights [Nat92, Section 3.9.1.2], as described by autoashcon�guration:

autoashcon�guration : Direction 7! Light

Green =2 ran autoashcon�guration

8 d1; d2 : Direction � d1 7! d2 2 conict )
autoashcon�guration(d1) = Red _ autoashcon�guration(d2) = Red

We specify the operation BeginAutomaticFlash to enter the AutomaticFlash mode. The
modeAutomaticFlash can be entered fromNormalOperation mode. (LeavingAutomaticFlash
is accomplished via the schema BeginNormalOperation.)

The precondition on entering theAutomaticFlash mode is that the current mode isNormalOperation,
that all signals are Red , and that a suitable RedClearance interval has passed with respect
to each signal.

BeginAutomaticFlash

�Tra�cLightKernel

mode = NormalOperation

8 d : Direction �
lights(d) = Red ^ clock � lastchanged(d) � RedClearance(d)

mode0 = AutomaticFlash

lights 0 = autoashcon�guration

lastchanged 0 = lastchanged

status 0 = status

12



4 Analyzing the Safety Kernel

The purpose of this section is to verify that the kernel speci�cation developed in Section 3
maintains the safety predicates developed in Section 2. There are two aspects to analyzing
the kernel. One aspect is to apply the standard analysis methods of formal methods to the
kernel. The other aspect is to consider the e�ect of an arbitrary sequence of operations on
the safety predicates P1 through P4.

In Z, the standard analysis procedures relevant to the example may be broken into three
categories: initialization checks, precondition investigation, and totality analysis. Initial-
ization checks ensure that the initial state satis�es the invariant. It is also necessary to
ensure that remaining operations maintain the invariant. In Z, the invariant is explicitly
asserted on the `after' state, and so precondition investigation focuses instead on ensuring
that operations are `honest', by which it is meant that preconditions are explicit. Precondi-
tion investigation also aids the implementor. An implementor confronted with a `dishonest'
schema is likely to omit checks for some part of the precondition, and hence produce an
implementation that is an invalid re�nement of the speci�cation. Finally, totality analysis
shows that an operation is de�ned for all states that satisfy the invariant.

The details of initialization checks, precondition investigation, and totality analysis are not
shown the tra�c light kernel, since they are not a primary focus of this paper. However, it is
interesting to note that the formal proofs do require some revision of the safety predicates.
For example, the simpli�cation of the precondition on the operation ToGreen turns out to
require the additional constraint that conict be irreexive, since a light for a direction that
conicts with itself must always be Red .

An important aspect of completing the standard analysis procedures is that doing so sim-
pli�es the analysis of whether the kernel maintains the safety predicates. Speci�cally, these
procedures provide assurance that the invariant is, indeed, invariant. Initialization es-
tablishes the invariant, kernel operations explicitly maintain the invariant, and nonkernel
operations, which are assumed to not have update access to the variables in the invariant,
cannot a�ect the invariant.

Consider P1. P1 is an invariant in Tra�cLightKernel , and so the standard analysis proce-
dures guarantee that P1 is always satis�ed. Formally:

8� 2 op� � P1(�)

Consider P2. It su�ces to consider the last operation in some arbitrary sequence op�. To
show that a suitable RedClearance period passes before any light is allowed to change from
Red to some other color, we �nd relevant operations, namely, operations that satisfy the an-
tecedents in P2. Speci�cally, relevant operations apply when the mode is not StartUpFlash,
and the light for some direction changes from Red to another color. Inspection reveals two
such operations: ToGreen and BeginAutomaticFlash.

13



Therefore, it must be shown that ToGreen and BeginAutomaticFlash maintain P2. The
formal proof statements are:7

ToGreen ` P2

BeginAutomaticFlash ` P2

In the case of ToGreen, the only light being changed is for direction d?, and so P2 need
only be considered in the case where d1 = d?. P2 reduces to:

lights(d?) = Red ^ lights 0(d?) 6= Red )
(8 d2 : Direction j d? 7! d2 2 conict �

clock � lastchanged(d2) � RedClearance(d2))

which is implied by the predicates in ToGreen.

In the case of BeginAutomaticFlash, and we can consider a strengthened version of P2:

8 d2 : Direction �
clock � lastchanged(d2) � RedClearance(d2)

which is an explicit predicate in BeginAutomaticFlash.

Thus we have established:

8� 2 op� � P2(�)

Consider P3. Inspection reveals that the only operation relevant to P3 is ToRed . We must
show that ToRed maintains P2. The formal proof statement is:

ToRed ` P3

The proof follows directly from the predicate clock � lastchanged(d?) � YellowChange(d?)
in ToRed since d = d? is the only d of interest in P3. Thus we have established:

8� 2 op� � P3(�)

Finally, consider P4, for which the only relevant operation is ClearError . The following two
theorems are immediate.

ClearError ` P4

7For these theorems to be convincing, we need to establish (perhaps by inspection), that the component
lastchanged is updated to the current clock value each time the light for some direction is changed.

14



8� 2 op� � P4(�)

We conclude that the speci�cation given in Section 3 constitutes a Rushby kernel with
respect to the speci�ed safety predicate P = P1 ^ P2 ^ P3 ^ P4. We have only presented
sketches of informal proofs. In general, Z speci�cations are better for generating informal
proofs intended for human readers than for generating formal proofs amenable to machine
manipulation. However, formal proofs are by no means precluded.

As a separate veri�cation exercise, we should show that that operations described by the
Z speci�cations conform to the state transition diagram in �gure 1. Veri�cation requires
showing correspondence in both directions between the state diagram and the operations
on Tra�cLightKernel . Since we did not supply formal semantics for the state transition
diagram used in this example, this veri�cation must be carried informally, e.g., via an
inspection process.

5 Implementing and Using the Safety Kernel

The safety kernel can be implemented in a variety of ways. A formal approach is to perform
data and operation re�nement, in which more abstract data structures are systematically re-
placed with ones closer to an implementation. For example, sets are typically implemented
as (injective) sequences. The re�nement approach generates a set of proof obligations,
speci�cally `initialization' obligations, `applicability' obligations, and `correctness' obliga-
tions, that collectively ensure that the re�ned speci�cation is a desirable implementation of
the original speci�cation.

For our purposes, the safety kernel speci�cation is fairly simple, and we proceed directly to
an implementation in Ada. For tra�c light control, supporting concurrency is appropriate {
actual tra�c lights are implemented with concurrency [Ken94] { so we choose an implemen-
tation with tasking over one with procedures. The state described by Tra�cLightKernel

is implemented with an Ada package, and each operation is implemented with an entry
call in a task, Tra�cLightKernelTask . An excerpt of the Ada speci�cation part of an
implementation is shown below.

PACKAGE TrafficLightKernel IS

...

TYPE Direction IS (NorthSouth, EastWest); -- for example

...

TASK TrafficLightKernelTask IS

ENTRY RegisterError;

ENTRY ClearError;

ENTRY BeginNormalOperation;

ENTRY ToGreen (d : IN Direction);

15



ENTRY ToRed (d : IN Direction);

ENTRY ToYellow (d : IN Direction);

ENTRY BeginAutomaticFlash;

END TrafficLightKernelTask;

END TrafficLightKernel;

An excerpt of the Ada body part of an implementation is shown below.

PACKAGE BODY TrafficLightKernel IS

TYPE Light IS (Red, Yellow, Green, Dark);

TYPE ModeType IS (Ok, Error);

TYPE StatusType IS (NormalOperation, AutomaticFlash, StartUpFlash);

...

mode : ModeType;

status : StatusType;

lights : ARRAY (Direction) OF Light;

lastchanged : ARRAY (Direction) OF Time; -- Time is define in package CALENDAR

...

TASK TrafficLightKernelTask IS

...

LOOP

SELECT

...

OR ACCEPT ToRed (d : IN Direction) DO

IF PreToRed (d) THEN

lights (d) := Red;

lastchanged (d) := Clock;

ELSE -- raise exception / produce audit trail / return error code

END IF;

END ToRed;

...

OR TERMINATE;

END SELECT;

END LOOP;

...

END TrafficLightKernelTask;

BEGIN

mode := StartUpFlash; -- Implement Tra�cLightKernelInit

status := Ok;

END TrafficLightKernel;

The code excerpts in �gures above illustrate several aspects of the translation from Z to

16



Ada. Ada enumerated types directly implement Z data type de�nitions, i.e., Direction,
Light , Mode, and Status . Initialization, speci�ced by the schema Tra�cLightKernelInit , is
implemented with initialization code for the package body of TrafficLightKernel. Pre-
conditions are checked after the entry is accepted; violations result in some unspeci�ed
action, such as an exception being raised, an audit trail being generated, and/or an error
code being returned to the caller.

In the example, the precondition of ToRed is checked by the function PreToRed. PreToRed
is a direct implementation of PreToRed , calculated during precondition investigation and
shown below.

PreToRed

Tra�cLightKernel

d? : Direction

mode = NormalOperation

lights(d?) = Yellow

clock � lastchanged(d?) � YellowChange(d?)

The implementation of PreToRed is as follows. The additional structure in PreToRed ac-
commodates the fact that lights and lastchanged might not be de�ned if mode is not
NormalOperation.

FUNCTION PreToRed (d : IN Direction) RETURN BOOLEAN IS

BEGIN

IF mode = NormalOperation THEN

RETURN (lights(d) = Yellow AND Clock - lastchanged(d) >= YellowChange(d));

ELSE

RETURN (FALSE);

END IF;

END PreToRed;

We note again that it is particularly important for speci�cations such as ToRed to be
honest, so that an implementation ToRed can be derived in a straightforward way and still
be assured to be a valid re�nement of ToRed .

Using The Kernel

The kernel may be used by the remainder of the software, where the functional requirements
on tra�c lights are implemented. For example, the implementation may service requests

17



generated by cars depressing pressure pads, synchronize phases with other tra�c lights, or
satisfy preemption requests by emergency vehicles. In all cases, any changes to a particular
light requires a call to the relevant entry in TrafficLightKernelTask.

With the kernel, the safety predicates are maintained no matter how complicated the re-
mainder of the implementation. Without the kernel, it can be quite di�cult to detect
whether even simple implementations maintain the safety properties. For example, Leve-
son, Cha, and Shimeall present an implementation in Ada for servicing requests generated
by cars tripping detection sensors [LCS91, �gure 18]. Leveson, Cha, and Shimeall use the
example to illustrate the Software Fault Analysis (SFTA) technique for tasking implemen-
tations.

The example in Leveson, Cha, and Shimeall is a tra�c light where the type Direction in our
model has two values, EastWest and NorthSouth. In the example from [LCS91], one task
entry services requests made by EastWest tra�c, and another task entry services requests
made by NorthSouth tra�c. Viewed from the kernel speci�ed here, the failure scenario
discovered via SFTA in [LCS91] appears as the following sequence of entry calls. (EastWest

lights are Green and NorthSouth lights are Red at the beginning of this sequence.)

A. ToYellow (EastWest); delay(1.0) { [LCS91, �gure 18, line 34]
B. ToRed (EastWest); ToGreen (NorthSouth); { [LCS91, �gure 18, line 35]
C. ToRed (NorthSouth); ToGreen (EastWest); { [LCS91, �gure 18, line 33]

As discovered via SFTA in [LCS91], Step C presents a problem. In particular, the precon-
dition of ToRed in step C is violated since the lights for direction NorthSouth are never set
to Yellow . (Also, the precondition of ToGreen in steps B and C is violated if RedClearance
is nonzero for directions EastWest and NorthSouth. However, this safety constraint is not
considered in [LCS91].)

SFTA does not have any completeness guarantee, so it is possible that some safety-related
faults slip past the analysis. We note that if the direct manipulation of the tra�c lights
in the Leveson, Cha, and Shimeall example is replaced by calls to the entries of the safety
kernel speci�ed here, then all manifestations of safety faults as de�ned by the predicate P
from Section 2.2 are guaranteed to be detected at execution time. The above comments do
not mean that SFTA should not be applied, but rather that kernels are a complementary
approach.

6 Conclusion

To demonstrate that the feasibility of Rushby kernels we have exhibited a safety kernel
for tra�c light control. Safety requirements were abstracted from a tra�c light standard

18



[Nat92], speci�ed with Z as an ADT, and implemented in Ada. Analysis showed that the
kernel maintained four predicates necessary for safe tra�c light control. We concluded with
a discussion of how the kernel could be used by the remaining software in the controller. The
exercise shows by example that a kernel is indeed a feasible technique for ensuring safety
and that formal methods aid the software engineer in constructing a kernel. The intent is
to thereby inspire the use of both safety kernels and formal methods in other applications.

Acknowledgements

The author is pleased to acknowledge improvements to this paper inspired by Timothy
Gorgos, John Knight, Melissa Moore, Je� O�utt, Michael Rittler, and Kevin Wika. The
author is also pleased to acknowledge feedback from students in the 1994 fall semester of
Formal Methods and Models for Software Engineering, in which the tra�c light kernel was
used as a term project.

References

[BF93] Ricky W. Butler and George B. Finelli. The infeasibility of quantifying the
reliability of life-critical real-time software. IEEE Transactions on Software En-

gineering, 19(1):3{12, January 1993.

[GC94] Lon D. Gowen and James S. Collofello. Assessing traditional veri�cation's e�ec-
tiveness on safety-critical software systems. The Journal of Systems and Software,
26:103{115, 1994.

[Ken94] Bud Kent, 1994. Personal communication.

[LCS91] Nancy G. Leveson, Stephen S. Cha, and Timothy J. Shimeall. Safety veri�cation
of Ada programs using software fault trees. IEEE Software, 8(4):48{59, July
1991.

[LSST83] Nancy G. Leveson, Timothy J. Shimeall, Janice L. Stolzy, and Je�rey C. Thomas.
Design for safe software. In Proceedings AIAA 21st Aerospace Sciences Meeting,
pages 1{5, Reno, NV, January 1983. American Institute of Aeronautics and As-
tronautics.

[LT93] Nancy Leveson and Clark Turner. An investigation of the Therac-25 accidents.
IEEE Computer, 26(7):18{41, July 1993.

[Nat92] National Electrical Manufacturers Association, 2101 L Street N.W., Washington,
D.C. 20037. Tra�c Controller Assemblies, 1992. NEMA Standards Publication
No. TS 2-1992.

[Neu] Peter Neumann. Risks to the public. Regular column in Software Engineering

Notes. Also published electronically in comp.risks.

19



[Neu86] Peter G. Neumann. On hierarchical design of computer systems for critical appli-
cations. IEEE Transactions on Software Engineering, SE-12(9):905{920, Septem-
ber 1986.

[Rus89] John Rushby. Kernels for safety? In Tom Anderson, editor, Safe And Secure

Computing Systems, pages 210{220. Blackwell Scienti�c Publications, 1989. Pro-
ceedings of a Symposium held in Glasgow, UK, October 1986.

[Rus93a] John Rushby. Critical system properties: Survey and taxonomy. Technical
Report CSL-93-01, Computer Science Laboratory, SRI International, Menlo
Park, CA, May 1993. Available via anonymous ftp from ftp.csl.sri.com in
/pub/reports/csl-93-1.dvi.Z.

[Rus93b] John Rushby. Formal methods and the certi�cation of critical systems. Technical
Report CSL-93-07, Computer Science Laboratory, SRI International, Menlo Park,
CA, November 1993. Available via anonymous ftp from ftp.csl.sri.com in
/pub/reports/csl-93-7.dvi.Z.

[Spi89] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York,
1989.

[WK94] Kevin G. Wika and John C. Knight. A safety kernel architecture. Technical
Report CS-94-04, Computer Science Department, University of Virginia, Char-
lottesville, VA, February 1994.

20


