Algebraic Query Languages on Tempora Databases
with Multiple Time Granularities*

X. Sean Wang

Technical report |SSE-TR-94-107
Revised April 1995

Abstract

This paper investigates algebraic query languages on tempora databases. The data model used is
a multidimensiona extension of the temporal modules introduced in [WJS95]. In a multidimensiona
temporal module, every non-temporal fact has a timestamp that is a set of n-ary tuples of time points. A
temporal module has a set of timestamped facts and has an associated temporal granularity (or tempora
type), and a temporal database is a set of multidimensional tempora modules with possibly different
temporal types. Temporal agebras are proposed on this database model. Example queries and results of
the paper show that the algebras are rather expressive. The operations of the algebras are organized into
two groups. snapshot-wise operations and timestamp operations. Snapshot-wise operations are extensions
of the traditional relational algebra operations, while timestamp operations are extensions of first-order
mappings from timestampsto timestamps. Multiple temporal types are only dealt with by these timestamp
operations. Hierarchies of algebras are defined in terms of the dimensions of the temporal modulesin the
intermediate results. The symbol TALG;"" is used to denote all the algebra queries whose input, output and
intermediate modulesare of dimensionsat most m, n and k, respectively. (Most temporal algebras proposed
in the literature are in TALG}’l.) Equivalent hierarchies TcaLc]"" are defined in a calculus query language
that is formulated by using afirst-order logic with linear order. The addition of aggregation functions into
the algebrasis also studied.

*Thiswork was partly supported by the NSF grant IRI-9409769 and also by an ARPA grant, administered by the Office of Naval
Research under grant number N0014-92-J-4038.

1 Introduction

Tempora information plays an important role in various database applications, and because of this, many
temporal datamodels and their query languages are proposed [TCGT93]. These data models address many
fundamental issues in temporal information modeling and manipulation. However, one important aspect
that is missing from most of temporal database research in the literature is the data models and their query
languages that deal with multipletime granularities (or temporal types).! In [WJS95], we introduced such a
datamodel and itscal culusquery language. The purpose of thispaper isto propose and investigate algebraic
guery languages that incorporate multipletemporal types.

Tempora modulesdefined in [WJS95] can be viewed as an abstract (or conceptua) tempora datamodel
in which (a) each tuple is associated with a set of time points (i.e., atimestamp) and (b) each time point
is associated with a set of tuples (i.e., the facts that hold at the time). In tempora module jargon, we
model the aspect (a) into a tuple-windowing function 7, and aspect (b) time-windowing function ¢. A
tuple-windowing function accepts atuple and returns the timestamp (i.e., aset of time points) of the tuple,
and a time-windowing function accepts a time point and returns the facts (i.e., a set of tuples) that hold at
the given time. These two windowing functions are the two views of the same information.

As our running example, we assume there is a group of robots who are performing certain tasks.
The task that each robot is performing and the power consumptions at certain time are listed in the
table of Figure 1. (The time points are in seconds that are measured from the first second that the
robots were activated.) In this example, the tuple-windowing function returns the set {1, 130} if the tuple

Robot Task PowerConsumption Time (second)

Dan Pick 10.2 1

Niel Move 7 1

Wuyi Flash 2 2

Bliss Move 6.8 10
Dan Move 7 10
Wuyi Move 7.1 45
Wuyi Pick 11 61
Dan Flash 2.3 61
Bliss Pick 10.8 130
Nid Move 7 130

Figure 1: Robots and tasks.

(Niel, Move, 7T)isgiven,i.e., 7((Niel, Move, 7)) = {1,130}, and thetime-windowing function returnsthe
set{(Dan, Pick,10.2), (Niel, Move,7)} if timelisgiven,i.e, ¢(1) = {(Dan, Pick,10.2), (Niel, Move,T)}.

Temporal modules abstract many of the data models proposed in the literature. Such an abstraction

1See Related Work section for details.

allows us to arrange our algebraic operations on temporal modulesinto two groups: Thefirst group iswhat
we cal snapshot-wise operations and the second group timestamp operations. A snapshot of a temporal
module is the set of tuples (i.e.,, a relation) that hold at a given time point. A snapshot-wise operation
is simply an operation that operates on each snapshot of a temporal module. Clearly, any operation on
(non-temporal) relations can be straightforwardly extended to a snapshot-wise operation. Here, we extend
the traditiona relational algebra operations into snapshot-wise operations. As an example, the selection
operation that selectsthe tuplesusing the condition Robot =" Bliss' ATask =’ Pick’ will be performed on
6 snapshots: namely the 6 non-empty relations that are returned by the application of the time-windowing
functionontimes, 2, 10, 45, 61 and 130, respectively. Theresult of this particul ar snapshot-wise operation
gives empty set on the first 5 snapshots. At time 130, the selection returns a tuple (Bliss, Pick, 10.8).
Thus, the result of this snapshot-wise operation returns a temporal module whose only non-empty snapshot
isat time 130 and there isonly one tuple (Bliss, Pick, 10.8) at that time.

Themoreinteresting group of operationsisthetimestamp operations. Thisiswhere wediffer from most
proposasin theliterature. A timestamp operation takes as input one or more timestamps (i.e., sets of time
points) and returns one timestamp (i.e., one set of time points). Such a mapping is extended to temporal
modul es by applying the mapping on each non-empty result of the tuple-windowing function on every tuple.
For example, let f be the mapping such that f(I) = {i|3j € I(i < j)}, i.e, f returns dl the time points
that is smaller than some time point in the given set. Applying f to the temporal module corresponding
to the table of Figure 1, among other things, we know that the new timestamp for (Bliss, Pick,10.8) is
{1,...,129} since the timestamp for this tuple in the given module is {130}. Intuitively, a timestamp
operation changes thetimethat facts hold for the purpose of user query. Thisisapowerful way of extracting
temporal information. Asan example, assumewewant to find out if Dan ever movesbefore Bliss picks. We
may do so by applying the above f mapping to the timestamp of each tuple, and then look at each snapshot
of this new temporal module along with the corresponding snapshot of the original module: Obviously, iff
there is a snapshot when Dan moves in the origina module and Bliss picks in the new module, we know
that Dan moves before Bliss picks. This last test on snapshots can be accomplished by a snapshot-wise
natural join and snapshot-wise selection on the new temporal module and the origina one. (The answer
for thisis “yes’ based on the table in Figure 1 since in the new module, i.e., the temporal module after f
is applied, contains a tuple (Bliss, Pick,10.8) at time point 10, and the original modules contains tuple
(Dan, Move, 7) a the same time point 10.)

This arrangement of timestamp operation also gives rise natural trestment of multiple temporal types.
For example, assume that a user isinterested in knowing that if Dan and Bliss ever perform the same task
in one minute. This query can be easily accomplished by first changing the timestamp (by some timestamp
operation) into minutes. For the table in Figure 1, the first 6 rows will be labeled as in minute 1, the next
two rows minute 2 and the last two rows minute 3. Snapshot-wise operations can then be used to see if in
any snapshot (now in terms of minutes), Dan and Bliss perform the same task. (The answer is“yes’ since
the rows 4 and 5 are now both labeled 1, i.e., Bliss and Dan both move in minute 1.) Such operations are
similar to the scal e operation of [DS94].

Algebraic operations on temporal modules should preserve the structure of temporal modules. Each

algebraic operation should be a mapping from temporal modules to temporal modules, i.e., the input of
the operation is one or more temporal modules and the output must also be a temporal module. The
aforementioned operations al satisfy this property. The temporal modules as defined in [WJS95] are one
dimensiondl, i.e., each fact is associated with a set of timepoints. In other words, only onekind of time (i.e.,
either valid time, or transaction time, or user time, etc.) issupported in temporal modulesof [WJS95]. Such
an arrangement may limit the expressiveness of algebraic query languages, for the information extracted
by an operation must be encoded by such a one-dimensional temporal module. We conjecturein this paper
that if we increase the dimensions of the intermediate temporal modules, the algebra will become more
expressive. In this paper, we link this conjecture to the conjecture that calculus query languages based on
first-order logic with linear order is strictly more expressive than those based first-order |ogic with temporal
modalities Since and Until [CCT94, Cho94]. Specifically, we show that the hierarchy in the algebrathat is
defined by the dimensionsof intermediatetempora modulesisequivaent to ahierarchy, whichisdefined on
the number of free time variables in certain subformulas, in a calculus query language based on first-order
logic with linear order.

In light of the above discussion, we extend the temporal modules into multidimensional. That is, each
timestamp is a set of n-ary tuples of time points, for some positive integer ». Such an extension can be
intuitively viewed as to include valid time, transaction time, user time, reference time, etc [SA85, Cl194].
However, our intension is that the multidimensionality is used more for the intermediate results rather than
for the stored temporal modules. The snapshot-wise operations and the timestamp operations mentioned
earlier are easily extended to multidimensional temporal modules.

When dealing with multiple temporal types, we not only need to convert timestamps in terms of one
temporal typeinto that in terms of another temporal type, but often we need to change the facts accordingly.
For example, one may ask the power consumptions of each rabot in each minute, assuming the power
consumption of a minute is the sum of the power consumption at the seconds within the minute. In this
case, the aggregation function sum is needed. In order to perform this aggregation function, the tuples are
grouped not only according to their attribute values, but also according to the timestamp: In this particular
example, only if two seconds are within the same minute, the corresponding tuples can then be in a group.
We introduce such aggregation operations into our algebra.

The rest of the paper is organized as follows. Related work is discussed in Section 2. In Section 3,
temporal types and multidimensional temporal modules are defined. In Section 4, algebraic operations on
temporal modules are given. Based on these operations, temporal agebras TALG, TALG; and TALG,"" are
presented. Section 5 introduces corresponding cal culus query languages TeaLC, TeaLcy, and Teac) ™™ which
are to be used to compare with the algebras of Section 4. Section 6 proves that the algebras are equivalent
in expressiveness to the corresponding, data-domain independent (a notion defined here) calculus. The
addition of aggregation functions into tempora algebras is investigated in Section 7. Section 8 concludes
the paper.

2 Redated work

After a diversified, active research period, the tempora database area appears to have started to turn to
unification. Thedesign of TSQL 2 [TSQ94] and the study of conceptua temporal models, which includethe
bi-temporal conceptua relations [JSS94] and the temporal module model [WJS95], are two devel opments
withinthisgenera trend. The current paper continuestheinvestigation of conceptual temporal datamodels,
namely agebraic query languages we call TALG on temporal modules. We are not aware of any other
algebraic query languages that incorporate multiple temporal types, which places TALG in a unique position.
However, we find the work of TSQL2 [TSQ94], including the algebra for TSQL 2 [SJS94], the bi-temporal
data model [JSS94], and the work on tempora aggregations [SGM93, Tan87] are related to the current
paper.

As mentioned earlier, most of the temporal data models and their query languages in the literature
do not support multiple temporal types. One important exception is TSQL2. The TSQL2 language
displays an impressive array of features that include the support for multiple calendars and granularities
and aggregation. However, the algebrathat is designed for TSQL 2 [SJS94] does not consider the issue of
multiplegranularities. Therefore, the TALG algebra can be viewed as acomplement to the algebra of [SJS94].
Some of the features that are in TSQL 2, such as “sliding window” aggregation (e.g., three-month averages
starting from each month), are not expressiblein TALG and worth further investigation.

Although it does not deal with multiple granularities, the algebra for the bi-temporal relational model
[JSS94] is dso an agebraic query language on a conceptual model. However, one important difference
between TALG and the algebra of [JSS94] is in the organization of operations. TALG operations are orga-
nized into two groups: snapshot-wise operations and timestamp operations, while the bi-tempora agebra
operations are more integrated. We believe that the separation of the two groups in TALG makes the query
language more intuitive, and gives rise natura treatment of multiple temporal types. Another important
difference isthat in TALG, we alow multidimensiona temporal modulesin the intermediate results, even if
the input and output are restricted to one dimensional. We conjecture that this makes TALG more expressive
than the bi-temporal algebra.

The addition of aggregation functionsinto TALG isdifferent from that of TSQL 2, [SGM93] and [Tan87].
In TSQL2, [SGM93] and [Tan87], aggregates are performed on a set of timestamped facts. In contrast,
we believe that an aggregation function should not take the time into consideration. Any time related
mani pulation should be dealt with by other constructs. This separation follows the spirit of the separation
of snapshot-wise operations and timestamp operations. Also, the aggregation in the current paper takes
advantage of the multitude of temporal types. On the other hand, the dependence on the temporal types
limitsthe ability to express certain intuitive aggregates that are expressiblein TSQL 2.

Another research area that is related to the current paper is the work on multiple calendars, e.g.,
[CR87,NS92, CSS94, SS92]. These work are more focused on the management or description of calendars
but not on incorporating them into query languages.

3 Data model

This section introduces a datamodel that is an extension of the one presented in [WJS95].

3.1 Temporal types

We start with defining temporal types that model typical (and atypical) calendar units.? We assumethereis
an underlying notion of absolute time, represented by the set A of all positive integers.

Definition Let 7, betheset of adl intervalson NV, i.e, Iy = {[¢, 7] | i,j e Nandi < jU{[i,00] |7 €
N'}.2 Atemporal typeisamapping . from the set of the positiveintegers (the timeticks) to the set Z U {0}
(i.e, dl intervalson A plusthe empty set) such that for each positive integer ¢, al following conditionsare
satisfied:

(D) if p(i) = [k, Jand p(i + 1) = [m,n], thenm =1 + 1.
(2) pu(i)=0impliespu(i + 1) = 0.

(3) thereexistsj suchthat uu(j) = [k,] withk <7 <.

For each positive integer ¢ and temporal type p, 1(7) is called the i-th tick (or tick 7) of . Condition
(2) states that the ticks of atemporal type need to be monotonic and contiguous, i.e., the subsequent tick (if
not empty) is the next contiguousinterval. Condition (2) disallows a tempora type to have an empty tick
unless all its subsequent ticks are empty. And condition (3) requires that each absolute time value must be
included in atick. One particular consegquence of the above three conditionsis that the last non-empty tick
(if it exists) must be an interval of the form [, cc].

Typical calendar units, e.g., day, mont h, week andyear , can be defined astemporal typesthat follow
the above definition, when the underlying absolute timeis discrete.

An important relation regarding temporal types involvestimeticks. For example, we would like to say
that aparticular monthiswithinaparticular year. For thispurpose, we assumethereisabinary (interpreted)
predicate IntSec,, ,, for each pair of temporal types ;. and v:

Definition For temporal types i and v, let IntSec,, , be the binary predicate on positive integers such that
IntSec, ,(¢,7)istrueif u(i) N v(j) # 0, and IntSec,, , (¢, 7) isfalse otherwise.

In order words, IntSec,, , (¢, j) is trueiff the intersection of the corresponding absolute time intervals
of tick 7 of p and tick j of » is not empty. For instance, IntSeCyonth,year(?,7) istrueiff the month i falls
within the year ;.

2This subsection borrows heavily from [BWBJ95].
SAninterval [i, 5] ([¢, oo], resp.) isviewed asthe set of all integers & suchthat i < k < j (k > ¢, resp.).

3.2 Temporal module schemes and temporal modules

We assumethereisaset of attributesand aset of valuescalled thedata domain. Eachfiniteset R of attributes
is called arelation scheme. A relation scheme R = {A1,..., A, } isusudly writtenas (A1,..., 4,). For
relation scheme R, let Tup(R) denote the set of all mappings, called tuples, from R to the data domain.
A tuple ¢ of relation scheme (A4, ..., A,) is usually written as (a1, ..., a,), Where a; = ¢(z) for each
1< <n.

Definition For each positive integer n, an n-dimensional temporal module scheme is atriple (R, j, n)
where R is arelation scheme and i atemporal type. A n-dimensional temporal moduleon (R, i, n) isa
5-tuple (R, i, n, ¢, 7), where

1. ¢ isamapping, called time windowing function, from A/ x - - - x A" (n times) to 2T2P(®) and

2. T isamapping, called tuplewindowing function, from Tup(R) to 2V %N (A appears n times),

such that (8) for positiveintegers i, .. ., iy, @(i1, ..., %,) = 0if p(i;) = 0 for somel < j < n, and (b) for
al positiveintegersiy, . . ., i, and tuplet, (i1, ...,1,) € (1) iff t € (i1, ..., 1,).

Throughout the paper, we assume that the temporal modules are finite, i.e., |J;~1 ¢(7) is afinite set,
where ¢ is the time windowing function of atemporal module. Note that this fi niteness does not exclude
those temporal modules that have an infinite number of 7 such that (7) # (. We do require, however, that
the number of distinct tuples (regardless of time) isfinite. In other words, we require that there are only a
finite number of tuplest such that 7(¢) #), where 7 isthe tuple windowing function of atempora module.

Intuitively, the time windowing function ¢ in atemporal module (R, i, n, ¢, 7) gives the tuples (facts)
that hold at (the combination of) non-empty timeticks:y, . . ., ¢, of temporal type .. Thisisageneraization
of many temporal modelsin theliterature. Here, the multidimensionality reflects the valid time, transaction
time, user time, and so on [TCG*93]. However, it will become clear later that we will be focusing on
unary temporal modules when we consider the expressiveness of our query languages. Condition (b) above
requires that tuple windowing function 7 be the inverse of . Thus, when defining atemporal module, we
only need to tell what ¢ (7, resp.) isand 7 (¢, resp.) will be“derived” from ¢ (7, resp.).

Another viewpoint isthat the time-windowing function of an »-dimensional temporal module gives, for
positiveintegersiy, . . ., ¢,, the snapshot of the temporal moduleat time:y, . . ., i, while tuple-windowing
function gives, for each tuple ¢, the (z-dimensional) timestamps of ¢ in the temporal module. These two
views allow us to organize our algebraic operations (described later) into two categories: “snapshot-wise”
operations and “timestamp” operations.

Example 1 The table in Figure 1 gives the temporal module Robots = (R,second,1, ¢, 1), where
R = (Robot, Task, PowerConsumption) and ¢ is defined as follows:

»(1) = {(Dan, Pick,10.2), (Niel, Move,7)}

»(2) = {{(Wuyt, Flash,2)}

»(10) = {(Bliss, Move,6.8), (Dan, Move, 7)}

»(45) = {(Wuyt, Move, 7.1)}

p(61) = {(Wuyt, Pick,11),(Dan, Flash,2.3)}
(

»(130) = {(Bliss, Pick,10.8), (Niel, Move, 7)}

and ¢(7) = () for all other times. The tuple-windowing function can be derived from the above time-
windowing function. o

A temporal database scheme is a finite set of temporal module schemes, each of which is assigned a
unique name. A temporal databaseis afinite set of temporal modules, each of which is associated with a
scheme name and is atemporal module on the corresponding temporal scheme.

4 Temporal algebras

In this section, we first present our algebraic operations on temporal modules. By using these operations,
we then define our temporal algebras.

The operations are of two kinds. The first kind is “snapshot-wise operations’. Here we adopt the
traditional relational algebra operations. These traditional operations will operate on each “snapshot” of
temporal modules. A snapshot of an n-ary temporal module (R, j1, n, ¢,) a@ timeiy, .. ., i, istherelation

(i1, ey in).

4.1 Snapshot-wise operations

We have the following operations that map from asingle tempora moduleto asingletemporal module. We
assume M = (R,u,n, ¢, 7). Notethat = and o in the following definitions are the traditional projection
and selection operations, respectively, in the relational algebra.

Projection. If {Ay,..., Ay} C R,thenn}, 4 (M) = ((A1,..., Ax), .1, ¢, 7'), wherefor al positive
integersil, U gol(il, .. .,in) = WAl,...,Ak(SO(ila cee Zn))

Selection. If P is a selection condition in the traditional relational algebra that involves only attributes
in R, then 6B(M) = (R, pu,n, ¢, 7"), where for al positive integers i1, ..., i, ¢'(i1,...,0,) =
O-P(S‘Q(ilv teey Zn))

The following are operations that map from two temporal modules to a single one. We assume
M1 = (Ra, p,n,p1,71) and Mo = (Ra, i1, n, @2, 7). Notethat M; and M, have the same temporal type
and the same dimension, and =< in the following definition is the natural join in the traditional relational
algebra.

Natural join. My < My = (R1UR2, pi, n, ', '), wherefor al positiveintegersis, . . ., ¢, (i1, . . ., i) =

991(i1, ey Zn) D @Z(il, ey Zn)

We have the following extension of the standard set operations. In the following definitions, My and M
are as given above, but with the condition that 1 = R,. Note U and — are the standard set union and
difference, respectively.

Union. M1 U™ My = (Ry,u,n,¢',7"), where for dl positive integers i1, ..., in, ¢ (i1,...,1,) =
991(i1, RN Zn) U @Z(il, RN Zn)

Difference. M1 —™ M> = (R1,u,n,¢',7'), where for al positive integers iy, ..., i,, ¢'(i1,...,i,) =
010715+ s n) = @2(015 -+ o 0.

Asusual, we may define our intersection N'™ by using —"™.

The notationsfor snapshot-wise operationsall include asuperscript , signifying that the corresponding
operations are applied to each snapshot of temporal modules. In the sequel, when no confusion is possible,
we shall drop this superscript ™.

4.2 Timestamp operations

The other kind is “timestamp operations’. The first such operation is derived from IntSec. We assume
M = (R, p,n,¢,7).

Temporal type conversion. If v isatemporal type, then s, (M) = (R, v, n,¢’, 7"), where for each tuple
t € Tup(R),

() = {(J1. ..., Jn)| 31, . . ., 1) € T(t)(INtSeC, . (7y, j,) = trueforeach1 < p < n)}.

In other words, a fact is taken to be valid at the tick combination (j1, ..., j,) of v if it isvalid at tick
combination (1, . .., ¢,) of x such that tick each ¢, of x intersects with the corresponding tick j,, of v. For
example, Kpinute(Robots), where Robots = (R, second, 1, ¢, 7) isasin Example 1, gives the temporal
module(R,minute, 1, ¢', 7"), where ¢/(1) = ¢(1)Up(2)Up(10)U 4(45),¢'(2) = ¢(61), ¢'(3) = ¢(130),
and ¢/(i) = () for each i > 4.

It is easily seen that the operation here only changes the timestamps of the facts, but not the facts
themselves. In Section 7, we will see how the facts themsel ves are manipulated via aggregation functions.

Another suite of time operations are from any given class of mappings on timestamp sets. A k-ary
timestamp operation isa mapping from 2V x .. x 2V to 2V where n, . . ., n;, and m are positive
integers. That is, itisamapping whoseinput is &k sets of nj-ary tuplesof timepoints, . . ., ng-ary tuples of
time points, respectively, and whose output is a set of m-ary tuples of time points. And furthermore, the
input sets and the output set of the mapping are of fixed temporal types. We call these arities and types as
the signature of the mapping, denoted by (n1, i1, - . ., nk, i) — (m, v). Intuitively, we take the input sets

8

as nj-ary timestampsin terms of the temporal type 1; (1 < j < k) and the output set as m-ary timestamps
in terms of v. Thus, a timestamp operation of signature (n1, i1, . . ., Nk, i) — (m,) converts k sets of
timestamps into one set of timestampsin terms of . A collection of such timestamp operationsis called a
timestamp oper ation system.

The timestamp operations in a timestamp operation system are extended to operations on temporal

modules as follows. Let My = (R1, p1, n1, 1, 71), - - -» My = (Ri, pie, nie, i, 71) be tempora modules.

General timeoperation. If f isa k-ary timestamp operation and (n1, pa, . . ., 2k,) — (m, p) its sig-
nature, then [f](My,..., M) = (R,u,m,¢',7"), where R = Ry U ---U R;, and for each tuple
t € Tup(R),

T/(t) = {(jl, .. .,jm)Htl, .. .,tk((jl, .. .,jm)E (Tl(tl), .. .,Tk(tk)) and
(r:(t;) £ O A t; = t[R;]) foreach1 < i < k) }

That is, for each combination of % tuplesty, ..., t; that are from My, ..., M}, respectively, and have
common values for common attributes, we create one tuple ¢ and the timestamp of ¢ is a m-dimensiona
timestamp that is the result of applying f on the timestampsof ¢4, .. ., ;. Another point of view isthat we
take the natural join of al the tuplesfrom the & (if £ = 1, no natural join is needed) temporal moduleswith
no regard of their timestampsfirst. Then we assign timestamp for each tuplet by using theresult of applying
f function on the timestamps of the tuples that contributeto ¢. A tuple¢; contributesto ¢ if ¢[R;] = t; for
eachi=1,... k.

Asan example, assumethat My = ((A, B), u1, 1, ¢1,71) and My = ((B, C), 2, ¢2, 72), Wwhere 7 and
mp aregiven asfollows: (i) m1((a1, b1)) = {1,2,3,5}, m1({az, b2)) = {2, 3}, and 71 on al other tuples gives
the empty set, and (ii) m2((b1,¢)) = {3,4} and » gives the empty set on dl other tuples. Let f be the
mapping of the signature (1, y11, 1, u2) — (1,v) defined by {i|i € 1 A3j(7 > i A j € I2)},i.e,iisinthe
output if 7 isin I3 and j isin I for somelater time j. Now [f](M1, M2) = ((A, B,C),v,1,¢',7"), where
7" isdefined asfollows: 7/({a1, b1, c)) = {1, 2, 3} and gives the empty set on all other tuples.

MFO=

There are many natural timestamp operation systems. Here we use a particular system, namely MFOS,
adopted from formulas of many sorted first-order logic with linear order. The sorts are the temporal
types that we use. Each constant and variable has a particular temporal sort. (We shall use temporal sort
and temporal type interchangeably.) Each predicate has a tempora type associated for its arguments (all
arguments of a predicate are of the same type). The atomic formulas are of the form (1) p;(i1,. .., %),
where p; is an n-ary predicate of type p and 14, ..., 2, are constants or variables of type y, for some
temporal type u, (2) i160i2, where i; and i, are of the same temporal typeand 8 € {=,#, <, <,>, >}, and
(3) IntSec,, , (i1, i2), where i1 and i are type i and v, respectively. The formulas of thislogic is defined
recursively as usua by allowing Boolean connectors and quantifiers. Furthermore, if & distinct predicate
appear in aformula, we shal use py, .. ., p, astheir names, and pg, .. ., 1, asther temporal types. Asa

syntactic sugar, when a quantifier is used, we may write 3::u to indicate the type of 7 isu (smilarly for V).
A formula isin MFOS iff itisaformulain the abovelogic and all its free variables are of the sametype v.
Suppose p1, . . ., py, are al the predicates appearing in the MFOS formulas), whose arities and types are n1,
cooyngand g, ..., g, respectively. Furthermore, suppose the number of free variables of +» ism and all
these m free variables of 1) are of type v. Then we say ¢ hasthe signature (n1, p1, . . ., ng, i) — (m, v).

Example 2 Let ¢ be thefollowing formulaof signature(1,second) — (1, m nut e):
pl(l)AEl]lm nut e(l nt%Csecondm‘i nut e(l,jl)/\VZ/SeCOHd((pl(ll)/ﬂ nt%Csecond7m nut e(i/,jl)) - i/ <

Thus, 1(7), where 7 is a second, is true if 7 is a second that makes p1 true (i.e., p1(7)), and we can find a
minute j1 such that second ¢ isin minute j;, and all seconds (i') that are in minute j; and that make p; true
should be before second . Therefore, 1(7) istrueiff ¢ isthe last second in a minute that makes p; true. o

Assume ¢ is a MFOS formula of the signature (na, j1, - . ., 7k, itx) — (m,v). Then this formula can
be viewed as a k-ary timestamp operations of the signature (n1, p1, - . ., ng, i) — (m,v). Indeed, if a
subset /; of A is viewed as the interpretation of the n;-ary predicate p;() such that p;(i1,...,,,) is
trueiff (i1,...,7,,) € I, then ¢ givesthe following set: {71, ..., %, |¥ (i1, ..., 1,) istrue}. We call such
atemporal operation system also as MFOS (when no confusion arises) and, unless specified otherwise, all
timestamp operations we use in the sequel arein MFOS.

Note that the type conversion operation (from a temporal module with a specific tempora type and
dimension) can be expressed as a genera time operation with the appropriate timestamp operations. Fur-
thermore, the natura join operation on tempora modules with the specific temporal type x and specific
dimension n can be defined by ageneral time operation using the binary timestamp function f of signature
(n, pym, 1) — (n, p) defined by the MFOS formulapy(iq, .. ., i) N p2(it, .-, in).

Example 3 By using the genera timestamp operation, we can achieve the following query on Example 1:
“Find the last action of Blissduring thefirst minute.” This query can be written as the following sequences
of operations:

TTask([f1(ORobot="B1iss'(RODOL S))),

where

f(l) = pl(l) /\ Int%CsecondJﬁ nut e(i, 1) /\ Vllsecond((pl(ll) /\ Int&CsecondJﬁ nut e(i/, 1)) — i/ < 'L))

and:isinsecond. o
We note in passing here that al snapshot-wise operations are defined in terms of the time windowing
functionsy since each application of thetimewindowing function givesasnapshot, whileall time operations

are defined interm of thetuplewindowing functions+ sinceeach application of the tuplewindowingfunction
gives the timestamp of the given tuple.

10

)

4.3 Thetemporal algebra TALG and algebras TALG,,

We now define our algebra TALG. For a given database scheme 5, the following are TALG expressionson 5.
Each expression has a corresponding temporal module scheme.

Constant module. If « isa constant in the data domain, A an attribute, 1 atemporal type, and ¢4, . .
positiveintegerssuch that pu(i;) # 0,1 < j < k, then (A, a, p, i1, . .

., 1) isaTALG expression on .

Database module. If Misaschemenamein 5, thenMisaTALG expression on 5.

Snapshot-wise operations. If e; and e are TALG expressionson .5, then 74, 4, (e1), op(e1), (e1 < €2),
(e1U e2), (e1 — ep) are dl TALG expressionson S'.

Timeoperations. If eq, ..., e are TALG expressions on 5, v a tempora type and f a k-ary timestamp
operation, then s, (e1) and [f](ex, . . ., ex) are both TALG expressionson 5.

Rename. If A and B are two attributesand e isa TALG expressionon S, then p 4. g(e) isa TALG expression
ons.

InFigure2, wesummarizeall thealgebraic operationswe havedefined. Notethat we dropped the superscript
™ from the notations for the snapshot-wise operations.

Group Name Notation
Snapshot-wise operations Projection TAy,...A.(€)
Selection op(e)
Natural join €14 e
Union e1Ues
Difference €2 — €
Time operations Temporal type conversion | x,(e)
Generad timeoperation | [f](e1,...,€ex)
Misc. operations Constant Module (Aya, i1, .., 0%)
Database Module M
Rename pa—nle)

Figure 2: All the operationsin TALG.

Each TALG expression on S has a tempora scheme. The scheme of (A, a, j, i1, ..., %) IS ((A), u, k)
and the schemes of the the rest of the expressions are given naturaly. Since each operation is a partial
mapping depending on the scheme(s) of the input expression(s) (seethe definitions of the operations), certain
expressions are not correctly typed, i.e., the operations are not defined on the input modules of the given
schemes.

11

Definition For each temporal database scheme 5, the collection of all the correctly typed TALG expressions
on S iscalled the TALG algebra on 5, or simply the TALG algebra when 5" is understood.

We may now define two hierarchies within TALG:

Definition For each positive integer &, a TALG expression e (on 5) is said to in the TALG; algebra (on 5)
if the dimension of each subexpression of e isa most k. A TALG expression ¢ is said to be in the TALG, "
algebra (on \5) if (a) itisin TALG, (b) al the temporal module scheme names appearing in it is at most
m-dimensional, and (c) the schemefor e is n-dimensional.

In other words, expressionsin TALG, " have three properties: (a) the dimensions of the input temporal
modules are at most m, (b) the dimension of the output temporal module is at most », and (c) for each
intermediate temporal module (as the result of a subexpression), the dimensionis at most k. Note here that
n < k and m < k by definition since an expression is aso a subexpression of itself, and each temporal
modul e scheme name appearing in the expression is also a subexpression.

Note that most valid-time temporal algebras that appeared in the literature are equivalent to TALG}’l.

Example 4 We now use TALG to express the following queries:
1. “Who moved before thefirst time Bliss picked?’

T Robot [[fZ]](UTask:’Move’(RObOt S)7 ﬂ-([[fl]](URObOtZIBliSS'/\TaSkZIPiCk/(RObOt S))))7

where f1(i) = 3'(i < &/ Ap(i') A =355 < ¢ Apa(F))) and fo(i) = pa(2) A po(7). Note that all
temporal variables are of typesecond and the project = getsrid of all data attributes.

2. “Did Dan and Bliss ever perform the same task during the same minute?’

7T-Task([[fl]](O-Robot:’Dan’(RObOt S))) > (ﬂ-Task [[fl]](URobot:’Bliss’(RObOt S)))7

where fi(i:m nut e) = 3j:second(IntSeCsecond,mi nute(J, ¢) A p1(7)). Theanswer is“yes’ iff the
above query returns anon-empty set.

3. “Find the time when the workshop state is first repeated.” Here, a “workshop state” is a function
from robots to tasks. That is, the tasks that robots are performing defines the workshop state. And
“first repeated” means that the first time that workshop isin the same state as at a previoustime. Let
St at €S = TRrobot, Task(RODOL). Then the this query is expressed in TALG as follows:

[fA(z([A:](St ates, St at es))),
where fi(i,) = i < jA~(pa(i)Vp2(5)) and f2(5) = Fi(—pa(i, §)) AVS'(§' < § — ~Fi'~pa(d, 5')).

Intuitively, the timestamp operation done by f; givesatwo dimensional temporal module such that if
(,7)isinthetimestamp of (r,t), then therobot r is not doing the same task ¢ at time ¢ and j. The

12

projection = without any subscript is, in effect, the union all these pairs (¢, j) such that some robot
r is nhot doing the same task at 7 and 5. So the negation of these pairs are the times that each robot
r is performing the same task (different robots may be performing different tasks). The timestamp
operation given by f, istoretrieve the second time point thishappens, i.e., thefirst timethe workshop
stateisrepeated. All the tempora typesin the above expression areinsecond.

Note that the first two queries arein TALG}’1 and the last oneisin TALG%’l. We conjecture that the last query
cannot be expressed in TaLG . o

5 Temporal calculi

A tempora moduleschemeM = ({ A4, ..., Ax), u,n) can beviewed asa(k + n)-ary predicate with thefirst
k position being of data sort and thelast » positionsbeing of atimesort (of typeu). A tempora module M =
((A1,...,Ar), 1, n,p,7) can be viewed as an interpretation of the predicate for M = ((Aq, ..., A), p, n)
defined as follows: M(z1,..., 2k, i1,...,4,) IS true (under the interpretation M) iff (z1,...,2) isin
o(i1,...,1,) (or equivdently, iff (¢1,...,7,) € 7({(2z1,...,2k))). Thus, it isnatural to use a many-sorted
first-order logic to construct a calculus query language on temporal modules.*

In our many sorted logic, we assume we have one data sort and many temporal sorts. Each temporal type
we use givesrise to adistinct temporal sort. Each variable and constant has afixed sort. We use z, possibly
subscripted, to denote a variable or constant of the data sort, and : and j, possibly subscripted, to denote a
variable or constant of atemporal sort. We shall use “temporal type’ and “temporal sort” interchangeably
if no confusion arises.

The range of each data variable is the data domain and the range of each tempora sort variable is
N. Atomic TeaLc formulas are of the following four types: (a) 1 = z, where z; and z, are data terms;
(b) IntSec,, . (i1,172), where i1 and i, are variables or constants respectively of sorts ¢ and v; () i16i2,
where i and i, are variables or constants of the same temporal sort and 6 € {=, #,<,<,>,>}, and (d)
M(z1,..., %5, 01,...,0,), WhereM = ((A41,..., A), i, n) isascheme name of the database scheme with &
being the arity of R, each z; is a non-temporal variable name or constant and each :; atemporal variable
or constant of sort x. A TeaLc formula isformed by Boolean connectives and the existential and universal
guantifiersin ausual way. As asyntactic sugar, we may change the quantification of temporal sortsto the
form: 3¢:p and Vi:pu, where t is of sort 1. This syntactic sugar allows us to tell the sorts of bounded
variables from the formulaitself. The predicates | ntSec are interpreted earlier, < etc are interpreted on the
integer order, and = isthe standard equality.

Note that TcaLc formulas are similar to MFOS formula, except that MFOS has no temporal module
predicates M() and no data variables.

A TeaLc query isof theform

{wl...wk,il,...,inil/|¢($1,...,$k,i1,...,in)}

“Here again, we borrow heavily from [BWBJ95] for the definition of TcaLC.

13

wherez . .. z; arevariablenamesor constantsof thedatasort, i1, . . ., ¢, aretemporal variables or constants
of (the same) type v, and v(z1, . .., ¢k, i1, . . ., i,) iISA TCALC formulawhose only free variables are among
Z1,...,%k,11,---,1,. Theformula can obviously contain temporal variables of sorts different from v,
provided that they are bounded.

The answer of aTcaLc query @ is defined naturally by considering the whole data domain as the range
of data variables and the positiveintegers as the range of time variables.

Definition The collection of all TcaLc queries on a database scheme 5 is called the TeaLc calculuson S, or
simply TcaLc calculus when ' is understood.

Similar to TALG, we now define two hierarchies of TcaLc as follows:

Definition For each positiveinteger k, aTcALC query {z1, ..., zp, 1,. .., i;:v|1} (0N .S) issaid to bein the
Tealc;, caleulus (on S) if ¢ < & and for al subformulaof « of the form Jz¢’ or Ya¢)’, where z is a data
variable, ' has at most k free time variables. Furthermore, a TcALC query {z1,...,%p,11,. .., v|1} IS
said to bein the Teac; " calculus (on S), where n < k and m < k, if (8) itisin TeaLCy, (b) the dimensions
of al tempora module schemes appearing in ¢ are at most m, and (¢) ¢ < =, i.e.,, the number of time
variables or constantsin the answer set isat most .

Note that we only count the number of free time variables in the subformulasfor TcaLc;,. There can be any
number of bounded time variables.

Intuitively, aquery in TcaLc; " isaquery whose inputs are temporal modules of dimensionsat most 72,
whose output is atemporal module of dimension at most », and the number of free time variablesin each
subformulathat startswith quantificationson datavariablesisat most £. Thislast point actually corresponds
to the idea that the intermediate temporal modules shall be at most £-dimensional.

For example, the following query isin TeaLcy:

{i1, i2:day|Vizdy:day(M(y, i1) A M(y, i2) A M(y, i3))}.

This query finds out the pairs of days such that for al days, there isa common value that holds at all these
three days.

It is interesting to note that, a (valid time) temporal query language (such as T'1, of [CCT94]) based
on tempora logic with temporal modalities Until and Since is basically® TOALC}’l, while a (valid time)
temporal query language based on first-order logic with linear-order (such asT'C' of [CCT94]) is basically
Toach! = (Jy»4 Toac) ™. The question whether Toaic)™ is equivalent to Toach ! is still open, even if there
is only one ter_nporal type involved. Evidences show that they are not [Cho94]. In the next section, we
prove that a safe segment of TcaLC;"™ is equivalent in expressivenessto TALG, ", for positiveintegers k, m
and n. Thus, that Toacy” is equivalent to Toacht implies that the hierarchy TaLg, ™ (k > 1) collapse to
TALG}’l. However, we conjecture that the TALGi’l hierarchy does not collapse:

5Since our query languages deal with multiple temporal types while other languages do not, we have to restrict our queries to
those that use only one temporal typesto compare with other query languages.

14

Conjecture Thehierarchy TaLG;"" does not collapse for fixed m and . ThatisTALG)™™ C TALG) [} C -+,
where p = min(m,n). As aconsequence, al the hierarchies TALG,, TeaLc,”" and TeaLC;, do not collapse.
The above hold even if there is only one temporal typeinvolved.

Example5 We now use TCALC to express the queries given in Example 4:

1. “Who moved before thefirst time Bliss picked?’
{r,713%, j3p1, p2(i < j A Robot s(r, Move', p1,i) A Robot s('Bliss') Pick’, pp, 7))}
Notethat all temporal variables are of typesecond.
2. “Did Dan and Bliss ever perform the same task during the same minute?’
{i:m nut e|3j1:second3jz:secondIydps, p2(Robot s('Dan’, y, p1,j1) A Robot s('Bliss', y, p2, j2)A
INtSeCsecond,m nut e(j1,7) A INtSECsecond,m nut e(j2, 7))}

3. “Find the time when the workshop state is first repeated.” (See the explanation in Example 4.) Let
P(i,7) =t < j AVrdy, p1, p2(Robot s(r,y,p1,¢) A Robot s(r,y, p2, 7). Thatis, ¥(¢,) istrueif
each robot is performing the same task (different robots may perform differently). Now the query can
be expressed as follows:

{33 (0,) AV (" < i — =T i)}
Note all the temporal typesarein second.

Note that the first two queriesarein TOALC}’l and thelast oneisin TOALC%’l. We conjecture that thelast query
cannot be expressed in Teacy™. o

6 Data-domain independent Tcac,”" and its equivalence to TALG, "

In this section, we assume k, m and n are fixed positiveintegerssuch that m < k and n < k.

As a well-known fact, an unrestricted relationa calculus query may lead to infinite answers. Since
TeaLc; can express al relational calculus queries, unrestricted TeaLC;. queries may lead to infinite answers.
Inthissection, we define asafe segment of TcaLc,.. We usethefollowing version of data-domainindependent
gueries. First, we need the notion of active data domains:

Definition Givenaset M of temporal modules and a TcaLC;, query (), then the active domain of M and @),
denoted adom (M,), isthe set of valuesin the datadomain that appear in some temporal modulein M or

ingQ.

Note that a data value v appears in a tempora module (R, i, p, ¢, 7) if v isin a tuple ¢, where
t € ¢(i1,...,1,) for some positiveintegers iy, . . ., i,. Note that the active domain is a set of values from
the data domain. The time instances are not involved.

15

Definition A query @ = {z1,..., 2, 1,...,1, 1|t} issaid to be data-domain independent if (1) all the
datavaluesin theresult of the query isfrom the active datadomain (of thisquery and theinvolved temporal
modules), and (2) the result of the query would not changeif for each subformuladz+)’ or V¢’ of 4, where
r isadatavariable, the range of values considered were only the active data domain.

The above definition is similar to that on pages 151-152 [U1188]. However, here we only talk about the
data variables, instead of all variables. Thus, in evaluating a data domain independent query, we only need
to consider the data values from the active data domain (which isfinite) as the range of datavariables. The
range for time variablesis till the whole set of positive integers.

We are now ready to show that following.

Theorem 1 Thedata-domain independent TcaLc,”" is equivalent to TALG; " in expressiveness. Hence, the
data domain independent TCALC;, is equivalent to TALG, in expressiveness.

Proof. (Sketch) We need to construct an equivalent query in the Teac; " calculus for each query in the
TaLG,"" agebra, and vise versa. (Here, “equivalent” means that the queries return the same result module
if the input database modules are the same.) The direction from algebrato calculusis straightforward. We
only need to notethat at each intermediate step, sincethe result moduleisat most & dimensional, the number
of free time variables is a most k. The direction from calculus to algebrais only alittle more involved.
We need to take each subformula that starts with a quantification on a data variable and convert it to an
equivalent algebraic expression. We do this recursively from the bottom up. If thereis no quantification on
data variables, then it is easily seen that general time operations (plus perhaps a number of snapshot-wise
operations) will suffice. Since at each of these steps, there are only at most & free time variables, we only
need a k-dimensiona temporal moduleto store the intermediate results. O

Asan example, let the following be aToALCi’1 guery

{z,i:day | Mi(x,i) A Jj:day(j < i AMp(a,j))}

Thisquery intuitively picks up thetuples (a) of M; at tick ¢ if the sametuple () isat someearlier tick of M.
This query compares facts at two different ticks. The following is an equivaent algebra query:

Mz O [f](Ma)

where f(i) = 3j(j < i A pi(7)). Intuitively, [f] “extends’ the validity of tuplesin M; and picks up the
common tuples from M, and this extended M;. The paralld structure of the algebra query and the calculus
guery is apparent.
As another example, consider the following TeaLcy™ query:
{l:day | Vi1:dayVip:dayda(M(z, 11) A M(z,42))}
Intuitively, the query returns anon-empty set if for all possiblepairs of days, you can dwaysfind acommon

tupleinthesetwo days. (Kamp used such aquery to show that TOALCi’l isnot equivaent to TOALC%’l [Kam71],

16

if the domain of thetimeticksisthe rational numbers and the temporal modules are alowed to be infinite.)
The equivaent TALG%’l guery isasfollows:

AN, 1)),

where f(7,7) = p1(i) A p2(4), fa(i') = (ViVgp(e, j)) A7 = 1. (We omit the types, namely day, of the
timevariables.) Intuitively, f organize timestampsinto pairs and f1 just checksto seeif all pairs are there.
(Note the temporal module scheme for [f](M,M)) is 2 dimensional.) The projection = gets rid of al data
attributes from the resulting tempora module.

Asalast note of this section, safety can be defined via a syntactic restriction similar to [BWBJ95]. We
omit that here.

7 Adding aggregation functions to TALG

In many situations, information that ison onetemporal typeis converted to be on another temporal typevia
certai n aggregation or other functions. For example, given atemporal module((Name, Income), month, ¢, 7),
to find the total income of a person for a particular year, we need to sum up all the income figures of the

months belonging to that year. To support such aquery, we need to perform aggregation functions based on

temporal types.

An aggregation function maps a subset of the data domain to a single value of the data domain. For
example, sum, avg (average), count etc are aggregation functions. Note that we differ here from [Tan87].
In [Tan87], an aggregation function maps a set of pairs of the form (v, ¢), where v isadatavalue and i a
timestamp. Since timestamps are included in the set, the aggregation function in [Tan87] perform many
time related tasks. For example, last is an aggregation function in [Tan87] that retrieves the last tuple from
the set. In this paper, we use aggregation functionsin the traditional sense, namely a function that maps a
set of valuesto asinglevalue. Any time related tasks will be performed by other operationsin the algebra
For instance, Example 2 gives a query that retrieves the last tuple (of the first minute). Obvioudly, if the
temporal type mi nut e is replaced by the temporal type TOP,® then the query in Example 2 will retrieve
the very last action for Bliss.

Following [KIu82], we assume that we have an aggregation function ¢ 4 for each (data) attribute A of a
temporal module, where g isaregular aggregation function such assum etc. The semanticsisthat thevalues
under the attribute (regardless of the timestamps) will be used as the input to the aggregation function.

Assume M = (R, i, n, e, 7)isatemporal moduleand ¢ an aggregation function.

Aggregation. If A is an attribute of R, X C R — {A}, and v a temporal type, then o, 4 x (M) =
(XA,v,n, ¢ "), where

gol(jl, . ,]n) = {t|5|i11, ey Un, Htl(tl € cp’(ill, ceey iln)/\
UX] = [X]AUA] = galox=iyx)(Mjy,..5.))

®The type TOP is defined asfollows: TOP(1) = A and TOP(7) = @ for eachs > 2.

17

where Mj, ;. = (R, p.n, ¢, 7') = [A1cp<nlNtSeC, , (125, 7,)] (M).

The temporal module A, . ;. isby selecting the tuples from M those that have timestampsintersect with
J1,---»,Jn- The above formula says that atuple ¢ isin thetick (j1,...,j,) of the resulting module if its
vaues for the attributes X are from atuplein M, . anditsvaluefor A isthe result of the aggregation
function ¢ applying on attribute A (i.e., g4) of dl thetuples ¢, in M;, ;. suchthat o[X] = ¢[X]. The
attributesin R — (X A) are dropped from the tempora module.

In other words, attributes X and the tick (j1, .. ., j,) of v serve to partition the tuples of the origina
module. Thetuplet; at tick (i1, ...,14,) of u and thetuplet; at tick %, . .., i/, of x arein the same group iff
t1[X] = t2[X] and IntSec,, , (i, j,) = INntSec, (7}, j,) = true foreach p = 1,...,n. The aggregation
function isthen applied to each group on the attribute A values. For each such group, thereisonly onetuple
returned.

Notice that if the temporal type v in the above definition is the same as ;:, the aggregation functions
here are used in same way as in the algebra of [KIu82]. That is, the way we use aggregation functionsis a
proper extension of that in [Klu82].

As an example, the following query finds the power consumptions by Wuyi in each minute:

Qgum,PowerConsumption,Robot,minute (URobot:’Wuyi’ (RObOt S)) .

8 Conclusion

In this paper, we introduced temporal agebras on a tempora database model that incorporate multiple
tempora types. The novel features of the algebra include its separation of two groups of operations, its
multidimensionality and its aggregation functions. The separation of the operations of operationsinto two
groups makes the algebramore intuitive and givesrise natural manipulation of multipletemporal types. We
conjecture that the multidimensionality increases the expressive power of the algebra, even if the input and
output are all of one dimensional. The aggregation functions in the algebra take advantage of the multiple
temporal typesto group tuples.

To simplify the presentation, we defined our temporal types on the discrete absolute time line. We
believe that continuous absolute time can be incorporated without much difficulty. Another simplification
we made was that each multidimensional tempora moduleis of one temporal type. This restriction can be
easily lifted by giving each dimension adifferent temporal type. The algebra and calculus query languages
given in this paper can easily been modified to work on such tempora modules.

This paper also introduced the notion of data-domain independence. The purposeisto restrict the range
that data variables must go through in order to evaluate the query. The time domain still remains infinite.
And obviously, certain querieswill haveinfiniteanswersin thetimedimension. One solutionto thisproblem
isto set an upper limit on the time dimension. Another isto study the structure of these infinite answers. In
[BWBJ95], the notion of “first-order finitely partitioned” isintroduced as such an aternative.

18

Regarding future research, we believe aproof or disproof of our conjecture that TALGi’l doesnot collapse
isimportant not only theoretically, but also for practical purposes. Indeed, if the hierarchy does collapse, we
can simplify our algebras tremendously. Another important area is the evaluation and optimization of TALG
expressions. Designing a cal culus with aggregation functionsis also of some interest, which we believe can
be achieved following the line of [KIu82].

References

[BWBJ95] C. Bettini, X. Wang, E. Bertino, and S. Jgjodia. Semantic assumptions and query evaluationin

[CCT94]

[Cho94]

[C194]

[CR87]

[CSS94]

[DS94]

[JSS94]

[Kam71]

[KIu82]

[NS92]

temporal databases. In Proc. ACM SSGMOD Int. Conf. on Management of Data. ACM, 1995.
To appear.

J. Clifford, A. Croker, and A. Tuzhilin. On completenessof historical relational query languages.
ACM Transactions on Database Systems, 19(1):64-116, March 1994.

J. Chomicki. Tempora query languages: A survey. In D.M.Gabbay and H.J. Ohlbach, editors,
Temporal Logic, First International Conf., pages 506-534, Bonn, Germany, 1994. Springer-
Verlag.

J. Clifford and T. Isakowitz. On the semantics of (bi)temporal variable databases. In Proc.
EDBT, pages 215-230, March 1994.

J. Clifford and A. Rao. A simple, general structurefor temporal domains. In Proceedings of the
Conference on Temporal Aspectsin Information Systems, pages 2330, France, May 1987.

R. Chandra, A. Segev, and M. Stonebraker. Implementing calendars and temporal rulesin next
generation databases. In Proceedings of the International Conference on Data Engineering,
1994.

C. E. Dyreson and R. T. Snodgrass. Temporal granularity and indeterminacy: Two sides of the
same coin. Technica report, Computer Science Department, University of Arizona, February
1994. TR 94-06.

C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying temporal data models via a conceptua
model. Information systems, 19(7):513, 1994.

H. Kamp. Formal properties of 'now’. Theoria, 37:227-273, 1971.

A. Klug. Equivalence of relational algebra and relational calculus query languages having
aggregate functions. Journal of ACM, 29(3):699-717, July 1982.

M. Niezette and J.-M. Stevenne. An efficient symbolic representation of periodic time. In Proc.
of First International Conference on Information and Knowledge management, 1992.

19

[SA85]

[SGM93]

[SJS94]

[SS92]

[Tan87]

[TCG+93]

[TSQ94]

[ull8s]

[WJSO5]

R. Snodgrass and I. Ahn. A taxonomy of time in databases. In S. Navathe, editor, Proc. ACM
S GMOD Int. Conf. on Management of Data, pages 236-246, Austin, TX, May 1985. ACM.

R. T. Snodgrass, S. Gomez, and L. E. McKenzie, Jr. Aggregatesin thetemporal query language
TQuel. IEEE Transactions on Knowledge and Data Engineering, 5(3):826-842, October 1993.

M.D. Soo, C. S. Jensen, and R. T. Snodgrass. An algebra for TSQL2. A part of the TSQL2
commentaries, see [TSQ94], September 1994,

M.D. Soo and R. Snodgrass. Multiplecaendar support for converntional database management
systems. Technical Report 92-7, Computer science department, University of Arizona, Feb
1992.

A.U.Tansd. A statistical interfacefor historical relational databases. In Proc. Data Engineering,
pages 538-546, February 1987.

A. Tansd, J. Clifford, S. Gadia, S. Jgodia, A. Segev, and R. Snodgrass, editors. Temporal
databases: Theory, design, and implementation. Benjamin/Cummings, 1993.

Announcement: The tempora query language TSQL2 fina language definition. SIGMOD
Record, September 1994. Vol. 23, No. 3.

J. D. Ullman. Priciples of Database and Knowledge-base Systems. Computer Science Press,
1988.

X.Wang, S. Jgodia, and V.S. Subrahmanian. Tempora modules: An approach toward federated
temporal databases. Information Sciences, 82:103-128, 1995. A preliminary version of this
paper appeared in Proceedings of the ACM SIGMOD International Conference on Management
of Data, Washington, DC, May 1993, pp. 227—236.

20

