
Algebraic Query Languages on Temporal Databases

with Multiple Time Granularities�

X. Sean Wang

Technical report ISSE-TR-94-107

Revised April 1995

Abstract

This paper investigates algebraic query languages on temporal databases. The data model used is

a multidimensional extension of the temporal modules introduced in [WJS95]. In a multidimensional

temporal module, every non-temporal fact has a timestamp that is a set of n-ary tuples of time points. A

temporal module has a set of timestamped facts and has an associated temporal granularity (or temporal

type), and a temporal database is a set of multidimensional temporal modules with possibly different

temporal types. Temporal algebras are proposed on this database model. Example queries and results of

the paper show that the algebras are rather expressive. The operations of the algebras are organized into

two groups: snapshot-wise operations and timestamp operations. Snapshot-wise operations are extensions

of the traditional relational algebra operations, while timestamp operations are extensions of first-order

mappings from timestamps to timestamps. Multiple temporal types are only dealt with by these timestamp

operations. Hierarchies of algebras are defined in terms of the dimensions of the temporal modules in the

intermediate results. The symbol TALG
m;n
k is used to denote all the algebra queries whose input, output and

intermediate modules are of dimensions at mostm, n and k, respectively. (Most temporal algebras proposed

in the literature are in TALG
1;1
1 .) Equivalent hierarchies TCALC

m;n
k are defined in a calculus query language

that is formulated by using a first-order logic with linear order. The addition of aggregation functions into

the algebras is also studied.

�This work was partly supported by the NSF grant IRI-9409769 and also by an ARPA grant, administered by the Office of Naval

Research under grant number N0014-92-J-4038.

1 Introduction

Temporal information plays an important role in various database applications, and because of this, many

temporal data models and their query languages are proposed [TCG+93]. These data models address many

fundamental issues in temporal information modeling and manipulation. However, one important aspect

that is missing from most of temporal database research in the literature is the data models and their query

languages that deal with multiple time granularities (or temporal types).1 In [WJS95], we introduced such a

data model and its calculus query language. The purpose of this paper is to propose and investigate algebraic

query languages that incorporate multiple temporal types.

Temporal modules defined in [WJS95] can be viewed as an abstract (or conceptual) temporal data model

in which (a) each tuple is associated with a set of time points (i.e., a timestamp) and (b) each time point

is associated with a set of tuples (i.e., the facts that hold at the time). In temporal module jargon, we

model the aspect (a) into a tuple-windowing function � , and aspect (b) time-windowing function '. A

tuple-windowing function accepts a tuple and returns the timestamp (i.e., a set of time points) of the tuple,

and a time-windowing function accepts a time point and returns the facts (i.e., a set of tuples) that hold at

the given time. These two windowing functions are the two views of the same information.

As our running example, we assume there is a group of robots who are performing certain tasks.

The task that each robot is performing and the power consumptions at certain time are listed in the

table of Figure 1. (The time points are in seconds that are measured from the first second that the

robots were activated.) In this example, the tuple-windowing function returns the set f1; 130g if the tuple

Robot Task PowerConsumption Time (second)

Dan Pick 10.2 1

Niel Move 7 1

Wuyi Flash 2 2

Bliss Move 6.8 10

Dan Move 7 10

Wuyi Move 7.1 45

Wuyi Pick 11 61

Dan Flash 2.3 61

Bliss Pick 10.8 130

Niel Move 7 130

Figure 1: Robots and tasks.

hNiel;Move; 7i is given, i.e., �(hNiel;Move; 7i) = f1; 130g, and the time-windowing function returns the

set fhDan; Pick; 10:2i; hNiel;Move; 7ig if time 1 is given, i.e.,'(1) = fhDan; Pick; 10:2i; hNiel;Move; 7ig.

Temporal modules abstract many of the data models proposed in the literature. Such an abstraction

1See Related Work section for details.

1

allows us to arrange our algebraic operations on temporal modules into two groups: The first group is what

we call snapshot-wise operations and the second group timestamp operations. A snapshot of a temporal

module is the set of tuples (i.e., a relation) that hold at a given time point. A snapshot-wise operation

is simply an operation that operates on each snapshot of a temporal module. Clearly, any operation on

(non-temporal) relations can be straightforwardly extended to a snapshot-wise operation. Here, we extend

the traditional relational algebra operations into snapshot-wise operations. As an example, the selection

operation that selects the tuples using the conditionRobot =0 Bliss0^Task =0 Pick0 will be performed on

6 snapshots: namely the 6 non-empty relations that are returned by the application of the time-windowing

function on times 1, 2, 10, 45, 61 and 130, respectively. The result of this particular snapshot-wise operation

gives empty set on the first 5 snapshots. At time 130, the selection returns a tuple hBliss; P ick; 10:8i.

Thus, the result of this snapshot-wise operation returns a temporal module whose only non-empty snapshot

is at time 130 and there is only one tuple hBliss; P ick; 10:8i at that time.

The more interesting group of operations is the timestamp operations. This is where we differ from most

proposals in the literature. A timestamp operation takes as input one or more timestamps (i.e., sets of time

points) and returns one timestamp (i.e., one set of time points). Such a mapping is extended to temporal

modules by applying the mapping on each non-empty result of the tuple-windowing function on every tuple.

For example, let f be the mapping such that f(I) = fij9j 2 I(i < j)g, i.e., f returns all the time points

that is smaller than some time point in the given set. Applying f to the temporal module corresponding

to the table of Figure 1, among other things, we know that the new timestamp for hBliss; P ick; 10:8i is

f1; : : : ; 129g since the timestamp for this tuple in the given module is f130g. Intuitively, a timestamp

operation changes the time that facts hold for the purpose of user query. This is a powerful way of extracting

temporal information. As an example, assume we want to find out if Dan ever moves before Bliss picks. We

may do so by applying the above f mapping to the timestamp of each tuple, and then look at each snapshot

of this new temporal module along with the corresponding snapshot of the original module: Obviously, iff

there is a snapshot when Dan moves in the original module and Bliss picks in the new module, we know

that Dan moves before Bliss picks. This last test on snapshots can be accomplished by a snapshot-wise

natural join and snapshot-wise selection on the new temporal module and the original one. (The answer

for this is “yes” based on the table in Figure 1 since in the new module, i.e., the temporal module after f

is applied, contains a tuple hBliss; P ick; 10:8i at time point 10, and the original modules contains tuple

hDan;Move; 7i at the same time point 10.)

This arrangement of timestamp operation also gives rise natural treatment of multiple temporal types.

For example, assume that a user is interested in knowing that if Dan and Bliss ever perform the same task

in one minute. This query can be easily accomplished by first changing the timestamp (by some timestamp

operation) into minutes. For the table in Figure 1, the first 6 rows will be labeled as in minute 1, the next

two rows minute 2 and the last two rows minute 3. Snapshot-wise operations can then be used to see if in

any snapshot (now in terms of minutes), Dan and Bliss perform the same task. (The answer is “yes” since

the rows 4 and 5 are now both labeled 1, i.e., Bliss and Dan both move in minute 1.) Such operations are

similar to the scale operation of [DS94].

Algebraic operations on temporal modules should preserve the structure of temporal modules. Each

2

algebraic operation should be a mapping from temporal modules to temporal modules, i.e., the input of

the operation is one or more temporal modules and the output must also be a temporal module. The

aforementioned operations all satisfy this property. The temporal modules as defined in [WJS95] are one

dimensional, i.e., each fact is associated with a set of time points. In other words, only one kind of time (i.e.,

either valid time, or transaction time, or user time, etc.) is supported in temporal modules of [WJS95]. Such

an arrangement may limit the expressiveness of algebraic query languages, for the information extracted

by an operation must be encoded by such a one-dimensional temporal module. We conjecture in this paper

that if we increase the dimensions of the intermediate temporal modules, the algebra will become more

expressive. In this paper, we link this conjecture to the conjecture that calculus query languages based on

first-order logic with linear order is strictly more expressive than those based first-order logic with temporal

modalities Since and Until [CCT94, Cho94]. Specifically, we show that the hierarchy in the algebra that is

defined by the dimensions of intermediate temporal modules is equivalent to a hierarchy, which is defined on

the number of free time variables in certain subformulas, in a calculus query language based on first-order

logic with linear order.

In light of the above discussion, we extend the temporal modules into multidimensional. That is, each

timestamp is a set of n-ary tuples of time points, for some positive integer n. Such an extension can be

intuitively viewed as to include valid time, transaction time, user time, reference time, etc [SA85, CI94].

However, our intension is that the multidimensionality is used more for the intermediate results rather than

for the stored temporal modules. The snapshot-wise operations and the timestamp operations mentioned

earlier are easily extended to multidimensional temporal modules.

When dealing with multiple temporal types, we not only need to convert timestamps in terms of one

temporal type into that in terms of another temporal type, but often we need to change the facts accordingly.

For example, one may ask the power consumptions of each robot in each minute, assuming the power

consumption of a minute is the sum of the power consumption at the seconds within the minute. In this

case, the aggregation function sum is needed. In order to perform this aggregation function, the tuples are

grouped not only according to their attribute values, but also according to the timestamp: In this particular

example, only if two seconds are within the same minute, the corresponding tuples can then be in a group.

We introduce such aggregation operations into our algebra.

The rest of the paper is organized as follows: Related work is discussed in Section 2. In Section 3,

temporal types and multidimensional temporal modules are defined. In Section 4, algebraic operations on

temporal modules are given. Based on these operations, temporal algebras TALG, TALGk and TALG
m;n
k are

presented. Section 5 introduces corresponding calculus query languages TCALC, TCALCk and TCALC
m;n
k which

are to be used to compare with the algebras of Section 4. Section 6 proves that the algebras are equivalent

in expressiveness to the corresponding, data-domain independent (a notion defined here) calculus. The

addition of aggregation functions into temporal algebras is investigated in Section 7. Section 8 concludes

the paper.

3

2 Related work

After a diversified, active research period, the temporal database area appears to have started to turn to

unification. The design of TSQL2 [TSQ94] and the study of conceptual temporal models, which include the

bi-temporal conceptual relations [JSS94] and the temporal module model [WJS95], are two developments

within this general trend. The current paper continues the investigation of conceptual temporal data models,

namely algebraic query languages we call TALG on temporal modules. We are not aware of any other

algebraic query languages that incorporate multiple temporal types, which places TALG in a unique position.

However, we find the work of TSQL2 [TSQ94], including the algebra for TSQL2 [SJS94], the bi-temporal

data model [JSS94], and the work on temporal aggregations [SGM93, Tan87] are related to the current

paper.

As mentioned earlier, most of the temporal data models and their query languages in the literature

do not support multiple temporal types. One important exception is TSQL2. The TSQL2 language

displays an impressive array of features that include the support for multiple calendars and granularities

and aggregation. However, the algebra that is designed for TSQL2 [SJS94] does not consider the issue of

multiple granularities. Therefore, the TALG algebra can be viewed as a complement to the algebra of [SJS94].

Some of the features that are in TSQL2, such as “sliding window” aggregation (e.g., three-month averages

starting from each month), are not expressible in TALG and worth further investigation.

Although it does not deal with multiple granularities, the algebra for the bi-temporal relational model

[JSS94] is also an algebraic query language on a conceptual model. However, one important difference

between TALG and the algebra of [JSS94] is in the organization of operations. TALG operations are orga-

nized into two groups: snapshot-wise operations and timestamp operations, while the bi-temporal algebra

operations are more integrated. We believe that the separation of the two groups in TALG makes the query

language more intuitive, and gives rise natural treatment of multiple temporal types. Another important

difference is that in TALG, we allow multidimensional temporal modules in the intermediate results, even if

the input and output are restricted to one dimensional. We conjecture that this makes TALG more expressive

than the bi-temporal algebra.

The addition of aggregation functions into TALG is different from that of TSQL2, [SGM93] and [Tan87].

In TSQL2, [SGM93] and [Tan87], aggregates are performed on a set of timestamped facts. In contrast,

we believe that an aggregation function should not take the time into consideration. Any time related

manipulation should be dealt with by other constructs. This separation follows the spirit of the separation

of snapshot-wise operations and timestamp operations. Also, the aggregation in the current paper takes

advantage of the multitude of temporal types. On the other hand, the dependence on the temporal types

limits the ability to express certain intuitive aggregates that are expressible in TSQL2.

Another research area that is related to the current paper is the work on multiple calendars, e.g.,

[CR87, NS92, CSS94, SS92]. These work are more focused on the management or description of calendars

but not on incorporating them into query languages.

4

3 Data model

This section introduces a data model that is an extension of the one presented in [WJS95].

3.1 Temporal types

We start with defining temporal types that model typical (and atypical) calendar units.2 We assume there is

an underlying notion of absolute time, represented by the setN of all positive integers.

Definition Let IN be the set of all intervals on N , i.e., IN = f[i; j] j i; j 2 N and i � jg [f[i;1] j i 2

Ng.3 A temporal type is a mapping � from the set of the positive integers (the time ticks) to the set IN [f;g

(i.e., all intervals on N plus the empty set) such that for each positive integer i, all following conditions are

satisfied:

(1) if �(i) = [k; l] and �(i+ 1) = [m;n], then m = l + 1.

(2) �(i) = ; implies �(i+ 1) = ;.

(3) there exists j such that �(j) = [k; l] with k � i � l.

For each positive integer i and temporal type �, �(i) is called the i-th tick (or tick i) of �. Condition

(1) states that the ticks of a temporal type need to be monotonic and contiguous, i.e., the subsequent tick (if

not empty) is the next contiguous interval. Condition (2) disallows a temporal type to have an empty tick

unless all its subsequent ticks are empty. And condition (3) requires that each absolute time value must be

included in a tick. One particular consequence of the above three conditions is that the last non-empty tick

(if it exists) must be an interval of the form [i;1].

Typical calendar units, e.g., day, month, week and year, can be defined as temporal types that follow

the above definition, when the underlying absolute time is discrete.

An important relation regarding temporal types involves time ticks. For example, we would like to say

that a particular month is within a particular year. For this purpose, we assume there is a binary (interpreted)

predicate IntSec�;� for each pair of temporal types � and �:

Definition For temporal types � and �, let IntSec�;� be the binary predicate on positive integers such that

IntSec�;�(i; j) is true if �(i)\ �(j) 6= ;, and IntSec�;�(i; j) is false otherwise.

In order words, IntSec�;�(i; j) is true iff the intersection of the corresponding absolute time intervals

of tick i of � and tick j of � is not empty. For instance, IntSecmonth;year(i; j) is true iff the month i falls

within the year j.

2This subsection borrows heavily from [BWBJ95].
3An interval [i; j] ([i;1], resp.) is viewed as the set of all integers k such that i � k � j (k � i, resp.).

5

3.2 Temporal module schemes and temporal modules

We assume there is a set of attributes and a set of values called the data domain. Each finite setR of attributes

is called a relation scheme. A relation scheme R = fA1; : : : ; Ang is usually written as hA1; : : : ; Ani. For

relation scheme R, let Tup(R) denote the set of all mappings, called tuples, from R to the data domain.

A tuple t of relation scheme hA1; : : : ; Ani is usually written as ha1; : : : ; ani, where ai = t(i) for each

1 � i � n.

Definition For each positive integer n, an n-dimensional temporal module scheme is a triple (R; �; n)

where R is a relation scheme and � a temporal type. A n-dimensional temporal module on (R; �; n) is a

5-tuple (R; �; n; '; �), where

1. ' is a mapping, called time windowing function, from N � � � � � N (n times) to 2Tup(R), and

2. � is a mapping, called tuple windowing function, from Tup(R) to 2N�����N (N appears n times),

such that (a) for positive integers i1, : : : , in, '(i1; : : : ; in) = ; if �(ij) = ; for some 1 � j � n, and (b) for

all positive integers i1, : : : , in and tuple t, (i1; : : : ; in) 2 �(t) iff t 2 '(i1; : : : ; in).

Throughout the paper, we assume that the temporal modules are finite, i.e.,
S
i�1 '(i) is a finite set,

where ' is the time windowing function of a temporal module. Note that this finiteness does not exclude

those temporal modules that have an infinite number of i such that '(i) 6= ;. We do require, however, that

the number of distinct tuples (regardless of time) is finite. In other words, we require that there are only a

finite number of tuples t such that �(t) 6= ;, where � is the tuple windowing function of a temporal module.

Intuitively, the time windowing function ' in a temporal module (R; �; n; '; �) gives the tuples (facts)

that hold at (the combination of) non-empty time ticks i1, : : : , in of temporal type �. This is a generalization

of many temporal models in the literature. Here, the multidimensionality reflects the valid time, transaction

time, user time, and so on [TCG+93]. However, it will become clear later that we will be focusing on

unary temporal modules when we consider the expressiveness of our query languages. Condition (b) above

requires that tuple windowing function � be the inverse of '. Thus, when defining a temporal module, we

only need to tell what ' (� , resp.) is and � (', resp.) will be “derived” from ' (� , resp.).

Another viewpoint is that the time-windowing function of an n-dimensional temporal module gives, for

positive integers i1, : : : , in, the snapshot of the temporal module at time i1, : : : , in, while tuple-windowing

function gives, for each tuple t, the (n-dimensional) timestamps of t in the temporal module. These two

views allow us to organize our algebraic operations (described later) into two categories: “snapshot-wise”

operations and “timestamp” operations.

Example 1 The table in Figure 1 gives the temporal module Robots = (R;second; 1; '; �), where

R = hRobot; Task; PowerConsumptioni and ' is defined as follows:

6

'(1) = fhDan; Pick; 10:2i; hNiel;Move; 7ig

'(2) = fhWuyi; F lash; 2ig

'(10) = fhBliss;Move; 6:8i; hDan;Move; 7ig

'(45) = fhWuyi;Move; 7:1ig

'(61) = fhWuyi; P ick; 11i; hDan; F lash; 2:3ig

'(130) = fhBliss; P ick; 10:8i; hNiel;Move; 7ig

and '(i) = ; for all other times. The tuple-windowing function can be derived from the above time-

windowing function. 2

A temporal database scheme is a finite set of temporal module schemes, each of which is assigned a

unique name. A temporal database is a finite set of temporal modules, each of which is associated with a

scheme name and is a temporal module on the corresponding temporal scheme.

4 Temporal algebras

In this section, we first present our algebraic operations on temporal modules. By using these operations,

we then define our temporal algebras.

The operations are of two kinds. The first kind is “snapshot-wise operations”. Here we adopt the

traditional relational algebra operations. These traditional operations will operate on each “snapshot” of

temporal modules. A snapshot of an n-ary temporal module (R; �; n; '; �) at time i1, : : : , in is the relation

'(i1; : : : ; in).

4.1 Snapshot-wise operations

We have the following operations that map from a single temporal module to a single temporal module. We

assume M = (R; �; n; '; �). Note that � and � in the following definitions are the traditional projection

and selection operations, respectively, in the relational algebra.

Projection. If fA1; : : : ; Akg � R, then �mA1;:::;Ak
(M) = (hA1; : : : ; Aki; �; n; '

0; � 0), where for all positive

integers i1, : : : , in, '0(i1; : : : ; in) = �A1;:::;Ak('(i1; : : : ; in)).

Selection. If P is a selection condition in the traditional relational algebra that involves only attributes

in R, then �mP (M) = (R; �; n; '0; � 0), where for all positive integers i1, : : : , in, '0(i1; : : : ; in) =

�P ('(i1; : : : ; in)).

The following are operations that map from two temporal modules to a single one. We assume

M1 = (R1; �; n; '1; �1) and M2 = (R2; �; n; '2; �2). Note that M1 and M2 have the same temporal type

and the same dimension, and ./ in the following definition is the natural join in the traditional relational

algebra.

7

Natural join. M1 ./
m M2 = (R1[R2; �; n; '

0; � 0), where for all positive integers i1, : : : , in,'0(i1; : : : ; in) =

'1(i1; : : : ; in) ./ '2(i1; : : : ; in).

We have the following extension of the standard set operations. In the following definitions, M1 and M2

are as given above, but with the condition that R1 = R2. Note [and � are the standard set union and

difference, respectively.

Union. M1 [
m M2 = (R1; �; n; '

0; � 0), where for all positive integers i1, : : : , in, '0(i1; : : : ; in) =

'1(i1; : : : ; in) ['2(i1; : : : ; in).

Difference. M1 �
m M2 = (R1; �; n; '

0; � 0), where for all positive integers i1, : : : , in, '0(i1; : : : ; in) =

'1(i1; : : : ; in)� '2(i1; : : : ; in).

As usual, we may define our intersection \m by using�m.

The notations for snapshot-wise operations all include a superscript m, signifying that the corresponding

operations are applied to each snapshot of temporal modules. In the sequel, when no confusion is possible,

we shall drop this superscript m.

4.2 Timestamp operations

The other kind is “timestamp operations”. The first such operation is derived from IntSec. We assume

M = (R; �; n; '; �).

Temporal type conversion. If � is a temporal type, then ��(M) = (R; �; n; '0; � 0), where for each tuple

t 2 Tup(R),

� 0(t) = f(j1; : : : ; jn)j9(i1; : : : ; in) 2 �(t)(IntSec�;�(ip; jp) = true for each 1 � p � n)g:

In other words, a fact is taken to be valid at the tick combination (j1; : : : ; jn) of � if it is valid at tick

combination (i1; : : : ; in) of � such that tick each ip of � intersects with the corresponding tick jp of �. For

example, �minute(Robots), where Robots = (R; second; 1; �; �) is as in Example 1, gives the temporal

module (R; minute; 1; �0; � 0), where �0(1) = �(1)[�(2)[�(10)[�(45),�0(2) = �(61), �0(3) = �(130),

and �0(i) = ; for each i � 4.

It is easily seen that the operation here only changes the timestamps of the facts, but not the facts

themselves. In Section 7, we will see how the facts themselves are manipulated via aggregation functions.

Another suite of time operations are from any given class of mappings on timestamp sets. A k-ary

timestamp operation is a mapping from 2N
n1 � � � � � 2N

nk to 2N
m

, where n1, : : : , nk and m are positive

integers. That is, it is a mapping whose input is k sets of n1-ary tuples of time points, : : : , nk-ary tuples of

time points, respectively, and whose output is a set of m-ary tuples of time points. And furthermore, the

input sets and the output set of the mapping are of fixed temporal types. We call these arities and types as

the signature of the mapping, denoted by (n1; �1; : : : ; nk; �k)! (m; �). Intuitively, we take the input sets

8

as nj-ary timestamps in terms of the temporal type �j (1 � j � k) and the output set as m-ary timestamps

in terms of �. Thus, a timestamp operation of signature (n1; �1; : : : ; nk; �k) ! (m; �) converts k sets of

timestamps into one set of timestamps in terms of �. A collection of such timestamp operations is called a

timestamp operation system.

The timestamp operations in a timestamp operation system are extended to operations on temporal

modules as follows. LetM1 = (R1; �1; n1; '1; �1), : : : , Mk = (Rk; �k; nk; 'k; �k) be temporal modules.

General time operation. If f is a k-ary timestamp operation and (n1; �1; : : : ; nk; �k) ! (m;�) its sig-

nature, then [[f]](M1; : : : ;Mk) = (R; �;m; '0; � 0), where R = R1 [� � � [Rk and for each tuple

t 2 Tup(R),

� 0(t) = f(j1; : : : ; jm)j9t1; : : : ; tk((j1; : : : ; jm)2 f(�1(t1); : : : ; �k(tk)) and

(�i(ti) 6= ; ^ ti = t[Ri]) for each 1 � i � k) g

That is, for each combination of k tuples t1, : : : , tk that are from M1, : : : , Mk , respectively, and have

common values for common attributes, we create one tuple t and the timestamp of t is a m-dimensional

timestamp that is the result of applying f on the timestamps of t1, : : : , tk. Another point of view is that we

take the natural join of all the tuples from the k (if k = 1, no natural join is needed) temporal modules with

no regard of their timestamps first. Then we assign timestamp for each tuple t by using the result of applying

f function on the timestamps of the tuples that contribute to t. A tuple ti contributes to t if t[Ri] = ti for

each i = 1; : : : ; k.

As an example, assume that M1 = (hA;Bi; �1; 1; �1; �1) and M2 = (hB;Ci; �2; �2; �2), where �1 and

�2 are given as follows: (i) �1(ha1; b1i) = f1; 2; 3; 5g, �1(ha2; b2i) = f2; 3g, and �1 on all other tuples gives

the empty set, and (ii) �2(hb1; ci) = f3; 4g and �2 gives the empty set on all other tuples. Let f be the

mapping of the signature (1; �1; 1; �2) ! (1; �) defined by fiji 2 I1 ^ 9j(j � i ^ j 2 I2)g, i.e., i is in the

output if i is in I1 and j is in I2 for some later time j. Now [[f]](M1;M2) = (hA;B;Ci; �; 1; �0; � 0), where

� 0 is defined as follows: � 0(ha1; b1; ci) = f1; 2; 3g and gives the empty set on all other tuples.

MFO�

There are many natural timestamp operation systems. Here we use a particular system, namely MFO�,

adopted from formulas of many sorted first-order logic with linear order. The sorts are the temporal

types that we use. Each constant and variable has a particular temporal sort. (We shall use temporal sort

and temporal type interchangeably.) Each predicate has a temporal type associated for its arguments (all

arguments of a predicate are of the same type). The atomic formulas are of the form (1) pj(i1; : : : ; in),

where pj is an n-ary predicate of type � and i1, : : : , in are constants or variables of type �, for some

temporal type �, (2) i1�i2, where i1 and i2 are of the same temporal type and � 2 f=; 6=; <;�; >;�g, and

(3) IntSec�;�(i1; i2), where i1 and i2 are type � and �, respectively. The formulas of this logic is defined

recursively as usual by allowing Boolean connectors and quantifiers. Furthermore, if k distinct predicate

appear in a formula, we shall use p1, : : : , pk as their names, and �1, : : : , �n as their temporal types. As a

9

syntactic sugar, when a quantifier is used, we may write 9i:� to indicate the type of i is � (similarly for 8).

A formula is in MFO� iff it is a formula in the above logic and all its free variables are of the same type �.

Suppose p1, : : : , pk are all the predicates appearing in the MFO� formula , whose arities and types are n1,

: : : , nk and �1, : : : , �k , respectively. Furthermore, suppose the number of free variables of is m and all

these m free variables of are of type �. Then we say has the signature (n1; �1; : : : ; nk; �k) ! (m; �).

Example 2 Let be the following formula of signature (1;second)! (1;minute):

p1(i)^9j1:minute(IntSecsecond;minute(i; j1)^8i
0:second((p1(i

0)^IntSecsecond;minute(i0; j1))! i0 < i))

Thus, (i), where i is a second, is true if i is a second that makes p1 true (i.e., p1(i)), and we can find a

minute j1 such that second i is in minute j1, and all seconds (i0) that are in minute j1 and that make p1 true

should be before second i. Therefore, (i) is true iff i is the last second in a minute that makes p1 true. 2

Assume is a MFO� formula of the signature (n1; �1; : : : ; nk; �k) ! (m; �). Then this formula can

be viewed as a k-ary timestamp operations of the signature (n1; �1; : : : ; nk; �k) ! (m; �). Indeed, if a

subset Ij of N nj is viewed as the interpretation of the nj -ary predicate pj() such that pj(i1; : : : ; inj) is

true iff (i1; : : : ; inj) 2 I , then gives the following set: fi1; : : : ; imj (i1; : : : ; im) is trueg. We call such

a temporal operation system also as MFO� (when no confusion arises) and, unless specified otherwise, all

timestamp operations we use in the sequel are in MFO�.

Note that the type conversion operation (from a temporal module with a specific temporal type and

dimension) can be expressed as a general time operation with the appropriate timestamp operations. Fur-

thermore, the natural join operation on temporal modules with the specific temporal type � and specific

dimension n can be defined by a general time operation using the binary timestamp function f of signature

(n; �; n; �)! (n; �) defined by the MFO� formula p1(i1; : : : ; in) \ p2(i1; : : : ; in).

Example 3 By using the general timestamp operation, we can achieve the following query on Example 1:

“Find the last action of Bliss during the first minute.” This query can be written as the following sequences

of operations:

�Task([[f]](�Robot=0Bliss0(Robots)));

where

f(i) = p1(i)^ IntSecsecond;minute(i; 1)^ 8i0:second((p1(i
0)^ IntSecsecond;minute(i0; 1))! i0 < i))

and i is in second. 2

We note in passing here that all snapshot-wise operations are defined in terms of the time windowing

functions' since each application of the time windowing function gives a snapshot, while all time operations

are defined in term of the tuple windowing functions � since each application of the tuple windowing function

gives the timestamp of the given tuple.

10

4.3 The temporal algebra TALG and algebras TALGk

We now define our algebra TALG. For a given database scheme S, the following are TALG expressions on S.

Each expression has a corresponding temporal module scheme.

Constant module. If a is a constant in the data domain, A an attribute, � a temporal type, and i1, : : : , ik
positive integers such that �(ij) 6= ;, 1 � j � k, then (A; a; �; i1; : : : ; ik) is a TALG expression on S.

Database module. If M is a scheme name in S, then M is a TALG expression on S.

Snapshot-wise operations. If e1 and e2 are TALG expressions on S, then �A1;:::;Ak (e1), �P (e1), (e1 ./ e2),

(e1 [e2), (e1 � e2) are all TALG expressions on S.

Time operations. If e1, : : : , ek are TALG expressions on S, � a temporal type and f a k-ary timestamp

operation, then ��(e1) and [[f]](e1; : : : ; ek) are both TALG expressions on S.

Rename. If A andB are two attributes and e is a TALG expression on S, then �A!B(e) is a TALG expression

on S.

In Figure 2, we summarize all the algebraic operations we have defined. Note that we dropped the superscript
m from the notations for the snapshot-wise operations.

Group Name Notation

Snapshot-wise operations Projection �A1;:::;Ak(e)

Selection �P (e)

Natural join e1 ./ e2

Union e1 [e2

Difference e2 � e2

Time operations Temporal type conversion ��(e)

General time operation [[f]](e1; : : : ; ek)

Misc. operations Constant Module (A; a; �; i1; : : : ; ik)

Database Module M

Rename �A!B(e)

Figure 2: All the operations in TALG.

Each TALG expression on S has a temporal scheme. The scheme of (A; a; �; i1; : : : ; ik) is (hAi; �; k)

and the schemes of the the rest of the expressions are given naturally. Since each operation is a partial

mapping depending on the scheme(s) of the input expression(s) (see the definitions of the operations), certain

expressions are not correctly typed, i.e., the operations are not defined on the input modules of the given

schemes.

11

Definition For each temporal database scheme S, the collection of all the correctly typed TALG expressions

on S is called the TALG algebra on S, or simply the TALG algebra when S is understood.

We may now define two hierarchies within TALG:

Definition For each positive integer k, a TALG expression e (on S) is said to in the TALGk algebra (on S)

if the dimension of each subexpression of e is at most k. A TALG expression e is said to be in the TALG
m;n
k

algebra (on S) if (a) it is in TALGk, (b) all the temporal module scheme names appearing in it is at most

m-dimensional, and (c) the scheme for e is n-dimensional.

In other words, expressions in TALG
m;n

k have three properties: (a) the dimensions of the input temporal

modules are at most m, (b) the dimension of the output temporal module is at most n, and (c) for each

intermediate temporal module (as the result of a subexpression), the dimension is at most k. Note here that

n � k and m � k by definition since an expression is also a subexpression of itself, and each temporal

module scheme name appearing in the expression is also a subexpression.

Note that most valid-time temporal algebras that appeared in the literature are equivalent to TALG
1;1
1 .

Example 4 We now use TALG to express the following queries:

1. “Who moved before the first time Bliss picked?”

�Robot[[f2]](�Task=0Move0(Robots); �([[f1]](�Robot=0Bliss0^Task=0Pick0(Robots))));

where f1(i) = 9i0(i < i0 ^ p1(i0) ^ :9j(j < i0 ^ p1(j))) and f2(i) = p1(i) ^ p2(i). Note that all

temporal variables are of type second and the project � gets rid of all data attributes.

2. “Did Dan and Bliss ever perform the same task during the same minute?”

�Task([[f1]](�Robot=0Dan0(Robots))) ./ (�Task[[f1]](�Robot=0Bliss0(Robots)));

where f1(i:minute) = 9j :second(IntSecsecond;minute(j; i)^ p1(j)). The answer is “yes” iff the

above query returns a non-empty set.

3. “Find the time when the workshop state is first repeated.” Here, a “workshop state” is a function

from robots to tasks. That is, the tasks that robots are performing defines the workshop state. And

“first repeated” means that the first time that workshop is in the same state as at a previous time. Let

States = �Robot;Task(Robots). Then the this query is expressed in TALG as follows:

[[f2]](�([[f1]](States;States)));

where f1(i; j) = i < j^:(p1(i)_p2(j)) and f2(j) = 9i(:p1(i; j))^8j0(j0 < j ! :9i0:p1(i0; j0)).

Intuitively, the timestamp operation done by f1 gives a two dimensional temporal module such that if

(i; j) is in the timestamp of hr; ti, then the robot r is not doing the same task t at time i and j. The

12

projection � without any subscript is, in effect, the union all these pairs (i; j) such that some robot

r is not doing the same task at i and j. So the negation of these pairs are the times that each robot

r is performing the same task (different robots may be performing different tasks). The timestamp

operation given by f2 is to retrieve the second time point this happens, i.e., the first time the workshop

state is repeated. All the temporal types in the above expression are insecond.

Note that the first two queries are in TALG
1;1
1 and the last one is in TALG

1;1
2 . We conjecture that the last query

cannot be expressed in TALG
1;1
1 . 2

5 Temporal calculi

A temporal module scheme M = (hA1; : : : ; Aki; �; n) can be viewed as a (k+n)-ary predicate with the first

k position being of data sort and the last n positions being of a time sort (of type�). A temporal moduleM =

(hA1; : : : ; Aki; �; n; '; �) can be viewed as an interpretation of the predicate for M = (hA1; : : : ; Aki; �; n)

defined as follows: M(x1; : : : ; xk; i1; : : : ; in) is true (under the interpretation M) iff hx1; : : : ; xki is in

'(i1; : : : ; in) (or equivalently, iff (i1; : : : ; in) 2 �(hx1; : : : ; xki)). Thus, it is natural to use a many-sorted

first-order logic to construct a calculus query language on temporal modules.4

In our many sorted logic, we assume we have one data sort and many temporal sorts. Each temporal type

we use gives rise to a distinct temporal sort. Each variable and constant has a fixed sort. We use x, possibly

subscripted, to denote a variable or constant of the data sort, and i and j, possibly subscripted, to denote a

variable or constant of a temporal sort. We shall use “temporal type” and “temporal sort” interchangeably

if no confusion arises.

The range of each data variable is the data domain and the range of each temporal sort variable is

N . Atomic TCALC formulas are of the following four types: (a) x1 = x2 where x1 and x2 are data terms;

(b) IntSec�;�(i1; i2), where i1 and i2 are variables or constants respectively of sorts � and �; (c) i1�i2,

where i1 and i2 are variables or constants of the same temporal sort and � 2 f=; 6=; <;�; >;�g, and (d)

M(x1; : : : ; xk; i1; : : : ; in), where M = (hA1; : : : ; Aki; �; n) is a scheme name of the database scheme with k

being the arity of R, each xi is a non-temporal variable name or constant and each ij a temporal variable

or constant of sort �. A TCALC formula is formed by Boolean connectives and the existential and universal

quantifiers in a usual way. As a syntactic sugar, we may change the quantification of temporal sorts to the

form: 9t :� and 8t :�, where t is of sort �. This syntactic sugar allows us to tell the sorts of bounded

variables from the formula itself. The predicates IntSec are interpreted earlier, � etc are interpreted on the

integer order, and = is the standard equality.

Note that TCALC formulas are similar to MFO� formula, except that MFO� has no temporal module

predicates M() and no data variables.

A TCALC query is of the form

fx1 : : :xk; i1; : : : ; in:� j (x1; : : : ; xk; i1; : : : ; in)g

4Here again, we borrow heavily from [BWBJ95] for the definition of TCALC.

13

where x1 : : : xk are variable names or constants of the data sort, i1, : : : , in are temporal variables or constants

of (the same) type �, and (x1; : : : ; xk; i1; : : : ; in) is a TCALC formula whose only free variables are among

x1; : : : ; xk; i1; : : : ; in. The formula can obviously contain temporal variables of sorts different from �,

provided that they are bounded.

The answer of a TCALC query Q is defined naturally by considering the whole data domain as the range

of data variables and the positive integers as the range of time variables.

Definition The collection of all TCALC queries on a database scheme S is called the TCALC calculus on S, or

simply TCALC calculus when S is understood.

Similar to TALG, we now define two hierarchies of TCALC as follows:

Definition For each positive integer k, a TCALC query fx1; : : : ; xp; i1; : : : ; iq:�j g (on S) is said to be in the

TCALCk calculus (on S) if q � k and for all subformula of of the form 9x 0 or 8x 0, where x is a data

variable, 0 has at most k free time variables. Furthermore, a TCALC query fx1; : : : ; xp; i1; : : : ; iq :�j g is

said to be in the TCALC
m;n
k calculus (on S), where n � k and m � k, if (a) it is in TCALCk, (b) the dimensions

of all temporal module schemes appearing in are at most m, and (c) q � n, i.e., the number of time

variables or constants in the answer set is at most n.

Note that we only count the number of free time variables in the subformulas for TCALCk. There can be any

number of bounded time variables.

Intuitively, a query in TCALC
m;n
k is a query whose inputs are temporal modules of dimensions at mostm,

whose output is a temporal module of dimension at most n, and the number of free time variables in each

subformula that starts with quantifications on data variables is at most k. This last point actually corresponds

to the idea that the intermediate temporal modules shall be at most k-dimensional.

For example, the following query is in TCALC
1;2
3 :

fi1; i2:dayj8i39y:day(M(y; i1)^ M(y; i2)^ M(y; i3))g:

This query finds out the pairs of days such that for all days, there is a common value that holds at all these

three days.

It is interesting to note that, a (valid time) temporal query language (such as TL of [CCT94]) based

on temporal logic with temporal modalities Until and Since is basically5 TCALC
1;1
1 , while a (valid time)

temporal query language based on first-order logic with linear-order (such as TC of [CCT94]) is basically

TCALC1;1 =
S
k�1 TCALC

1;1
k

. The question whether TCALC
1;1
1 is equivalent to TCALC1;1 is still open, even if there

is only one temporal type involved. Evidences show that they are not [Cho94]. In the next section, we

prove that a safe segment of TCALC
m;n
k is equivalent in expressiveness to TALG

m;n
k , for positive integers k, m

and n. Thus, that TCALC
1;1
1 is equivalent to TCALC1;1 implies that the hierarchy TALG

1;1
k (k � 1) collapse to

TALG
1;1
1 . However, we conjecture that the TALG

1;1
k

hierarchy does not collapse:

5Since our query languages deal with multiple temporal types while other languages do not, we have to restrict our queries to

those that use only one temporal types to compare with other query languages.

14

Conjecture The hierarchy TALG
m;n
k does not collapse for fixed m and n. That is TALGm;n

p � TALG
m;n
p+1 � � � �,

where p = min(m;n). As a consequence, all the hierarchies TALGk, TCALC
m;n
k and TCALCk do not collapse.

The above hold even if there is only one temporal type involved.

Example 5 We now use TCALC to express the queries given in Example 4:

1. “Who moved before the first time Bliss picked?”

fr; jj9i; j9p1; p2(i < j ^ Robots(r;0Move0; p1; i)^ Robots(
0Bliss0;0Pick0; p2; j))g

Note that all temporal variables are of type second.

2. “Did Dan and Bliss ever perform the same task during the same minute?”

fi:minutej9j1:second9j2:second9y9p1; p2(Robots(0Dan0; y; p1; j1) ^ Robots(0Bliss0; y; p2; j2)^

IntSecsecond;minute(j1; i)^ IntSecsecond;minute(j2; i))g

3. “Find the time when the workshop state is first repeated.” (See the explanation in Example 4.) Let

 (i; j) = i < j ^ 8r9y; p1; p2(Robots(r; y; p1; i)^ Robots(r; y; p2; j)). That is, (i; j) is true if

each robot is performing the same task (different robots may perform differently). Now the query can

be expressed as follows:

fij9i0((i0; i)^ 8i00(i00 < i! :9i000 (i000; i00)))g

Note all the temporal types are in second.

Note that the first two queries are in TCALC
1;1
1 and the last one is in TCALC

1;1
2 . We conjecture that the last query

cannot be expressed in TCALC
1;1
1 . 2

6 Data-domain independent TCALC
m;n
k and its equivalence to TALG

m;n
k

In this section, we assume k, m and n are fixed positive integers such that m � k and n � k.

As a well-known fact, an unrestricted relational calculus query may lead to infinite answers. Since

TCALCk can express all relational calculus queries, unrestricted TCALCk queries may lead to infinite answers.

In this section, we define a safe segment of TCALCk. We use the following version of data-domain independent

queries. First, we need the notion of active data domains:

Definition Given a set M of temporal modules and a TCALCk query Q, then the active domain of M and Q,

denoted adom(M; Q), is the set of values in the data domain that appear in some temporal module in M or

in Q.

Note that a data value v appears in a temporal module (R; �; p; '; �) if v is in a tuple t, where

t 2 '(i1; : : : ; ip) for some positive integers i1, : : : , ip. Note that the active domain is a set of values from

the data domain. The time instances are not involved.

15

Definition A query Q = fx1; : : : ; xp; i1; : : : ; iq :�j g is said to be data-domain independent if (1) all the

data values in the result of the query is from the active data domain (of this query and the involved temporal

modules), and (2) the result of the query would not change if for each subformula 9x 0 or 8x 0 of , where

x is a data variable, the range of values considered were only the active data domain.

The above definition is similar to that on pages 151–152 [Ull88]. However, here we only talk about the

data variables, instead of all variables. Thus, in evaluating a data domain independent query, we only need

to consider the data values from the active data domain (which is finite) as the range of data variables. The

range for time variables is still the whole set of positive integers.

We are now ready to show that following.

Theorem 1 The data-domain independent TCALC
m;n
k is equivalent to TALG

m;n
k in expressiveness. Hence, the

data domain independent TCALCk is equivalent to TALGk in expressiveness.

Proof. (Sketch) We need to construct an equivalent query in the TCALC
m;n
k calculus for each query in the

TALG
m;n
k algebra, and vise versa. (Here, “equivalent” means that the queries return the same result module

if the input database modules are the same.) The direction from algebra to calculus is straightforward. We

only need to note that at each intermediate step, since the result module is at most k dimensional, the number

of free time variables is at most k. The direction from calculus to algebra is only a little more involved.

We need to take each subformula that starts with a quantification on a data variable and convert it to an

equivalent algebraic expression. We do this recursively from the bottom up. If there is no quantification on

data variables, then it is easily seen that general time operations (plus perhaps a number of snapshot-wise

operations) will suffice. Since at each of these steps, there are only at most k free time variables, we only

need a k-dimensional temporal module to store the intermediate results. 2

As an example, let the following be a TCALC
1;1
1 query

fx; i ::day j M1(x; i)^ 9j :day(j � i^ M2(x; j))g

This query intuitively picks up the tuples hai of M1 at tick i if the same tuple hai is at some earlier tick of M2.

This query compares facts at two different ticks. The following is an equivalent algebra query:

M2 \ [[f]](M1)

where f(i) = 9j(j � i ^ p1(j)). Intuitively, [[f]] “extends” the validity of tuples in M1 and picks up the

common tuples from M2 and this extended M1. The parallel structure of the algebra query and the calculus

query is apparent.

As another example, consider the following TCALC
1;1
2 query:

f1:day j 8i1:day8i2:day9x(M(x; i1)^ M(x; i2))g

Intuitively, the query returns a non-empty set if for all possible pairs of days, you can always find a common

tuple in these two days. (Kamp used such a query to show that TCALC
1;1
1 is not equivalent to TCALC

1;1
2 [Kam71],

16

if the domain of the time ticks is the rational numbers and the temporal modules are allowed to be infinite.)

The equivalent TALG
1;1
2 query is as follows:

�[[f1]]([[f]](M; M));

where f(i; j) = p1(i) ^ p2(j), f1(i0) = (8i8jp(i; j))^ i0 = 1. (We omit the types, namely day, of the

time variables.) Intuitively, f organize timestamps into pairs and f1 just checks to see if all pairs are there.

(Note the temporal module scheme for [[f]](M; M)) is 2 dimensional.) The projection � gets rid of all data

attributes from the resulting temporal module.

As a last note of this section, safety can be defined via a syntactic restriction similar to [BWBJ95]. We

omit that here.

7 Adding aggregation functions to TALG

In many situations, information that is on one temporal type is converted to be on another temporal type via

certain aggregation or other functions. For example, given a temporal module (hName; Incomei; month; '; �),

to find the total income of a person for a particular year, we need to sum up all the income figures of the

months belonging to that year. To support such a query, we need to perform aggregation functions based on

temporal types.

An aggregation function maps a subset of the data domain to a single value of the data domain. For

example, sum, avg (average), count etc are aggregation functions. Note that we differ here from [Tan87].

In [Tan87], an aggregation function maps a set of pairs of the form (v; i), where v is a data value and i a

timestamp. Since timestamps are included in the set, the aggregation function in [Tan87] perform many

time related tasks. For example, last is an aggregation function in [Tan87] that retrieves the last tuple from

the set. In this paper, we use aggregation functions in the traditional sense, namely a function that maps a

set of values to a single value. Any time related tasks will be performed by other operations in the algebra.

For instance, Example 2 gives a query that retrieves the last tuple (of the first minute). Obviously, if the

temporal type minute is replaced by the temporal type TOP,6 then the query in Example 2 will retrieve

the very last action for Bliss.

Following [Klu82], we assume that we have an aggregation function gA for each (data) attributeA of a

temporal module, where g is a regular aggregation function such as sum etc. The semantics is that the values

under the attribute (regardless of the timestamps) will be used as the input to the aggregation function.

AssumeM = (R; �; n; '; �) is a temporal module and g an aggregation function.

Aggregation. If A is an attribute of R, X � R � fAg, and � a temporal type, then �g;A;X;�(M) =

(XA; �; n; '0; � 0), where

'0(j1; : : : ; jn) = ftj9i11; : : : ; i1n; 9t1(t1 2 '0(i11; : : : ; i1n)^

t[X] = t1[X]^ t[A] = gA(�X=t1[X](Mj1;:::;jn))

6The type TOP is defined as follows: TOP(1) = N and TOP(i) = ; for each i � 2.

17

where Mj1;:::;jn = (R; �; n; '0; � 0) = [[^1�p�nIntSec�;�(i2p; jp)]](M).

The temporal module Mj1;:::;jn is by selecting the tuples from M those that have timestamps intersect with

j1; : : : ; jn. The above formula says that a tuple t is in the tick (j1; : : : ; jn) of the resulting module if its

values for the attributes X are from a tuple in Mj1;:::;jn and its value for A is the result of the aggregation

function g applying on attribute A (i.e., gA) of all the tuples t2 in Mj1;:::;jn such that t2[X] = t[X]. The

attributes in R� (XA) are dropped from the temporal module.

In other words, attributes X and the tick (j1; : : : ; jn) of � serve to partition the tuples of the original

module. The tuple t1 at tick (i1; : : : ; in) of � and the tuple t2 at tick i01; : : : ; i
0
n of � are in the same group iff

t1[X] = t2[X] and IntSec�;�(ip; jp) = IntSec�;�(i0p; jp) = true for each p = 1; : : : ; n. The aggregation

function is then applied to each group on the attributeA values. For each such group, there is only one tuple

returned.

Notice that if the temporal type � in the above definition is the same as �, the aggregation functions

here are used in same way as in the algebra of [Klu82]. That is, the way we use aggregation functions is a

proper extension of that in [Klu82].

As an example, the following query finds the power consumptions by Wuyi in each minute:

�sum;P owerConsumption;Robot;minute(�Robot=0Wuyi0 (Robots)):

8 Conclusion

In this paper, we introduced temporal algebras on a temporal database model that incorporate multiple

temporal types. The novel features of the algebra include its separation of two groups of operations, its

multidimensionality and its aggregation functions. The separation of the operations of operations into two

groups makes the algebra more intuitive and gives rise natural manipulation of multiple temporal types. We

conjecture that the multidimensionality increases the expressive power of the algebra, even if the input and

output are all of one dimensional. The aggregation functions in the algebra take advantage of the multiple

temporal types to group tuples.

To simplify the presentation, we defined our temporal types on the discrete absolute time line. We

believe that continuous absolute time can be incorporated without much difficulty. Another simplification

we made was that each multidimensional temporal module is of one temporal type. This restriction can be

easily lifted by giving each dimension a different temporal type. The algebra and calculus query languages

given in this paper can easily been modified to work on such temporal modules.

This paper also introduced the notion of data-domain independence. The purpose is to restrict the range

that data variables must go through in order to evaluate the query. The time domain still remains infinite.

And obviously, certain queries will have infinite answers in the time dimension. One solution to this problem

is to set an upper limit on the time dimension. Another is to study the structure of these infinite answers. In

[BWBJ95], the notion of “first-order finitely partitioned” is introduced as such an alternative.

18

Regarding future research, we believe a proof or disproof of our conjecture that TALG
1;1
k does not collapse

is important not only theoretically, but also for practical purposes. Indeed, if the hierarchy does collapse, we

can simplify our algebras tremendously. Another important area is the evaluation and optimization of TALG

expressions. Designing a calculus with aggregation functions is also of some interest, which we believe can

be achieved following the line of [Klu82].

References

[BWBJ95] C. Bettini, X. Wang, E. Bertino, and S. Jajodia. Semantic assumptions and query evaluation in

temporal databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data. ACM, 1995.

To appear.

[CCT94] J. Clifford, A. Croker, and A. Tuzhilin. On completeness of historical relational query languages.

ACM Transactions on Database Systems, 19(1):64–116, March 1994.

[Cho94] J. Chomicki. Temporal query languages: A survey. In D.M.Gabbay and H.J. Ohlbach, editors,

Temporal Logic, First International Conf., pages 506–534, Bonn, Germany, 1994. Springer-

Verlag.

[CI94] J. Clifford and T. Isakowitz. On the semantics of (bi)temporal variable databases. In Proc.

EDBT, pages 215–230, March 1994.

[CR87] J. Clifford and A. Rao. A simple, general structure for temporal domains. In Proceedings of the

Conference on Temporal Aspects in Information Systems, pages 23–30, France, May 1987.

[CSS94] R. Chandra, A. Segev, and M. Stonebraker. Implementing calendars and temporal rules in next

generation databases. In Proceedings of the International Conference on Data Engineering,

1994.

[DS94] C. E. Dyreson and R. T. Snodgrass. Temporal granularity and indeterminacy: Two sides of the

same coin. Technical report, Computer Science Department, University of Arizona, February

1994. TR 94-06.

[JSS94] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying temporal data models via a conceptual

model. Information systems, 19(7):513, 1994.

[Kam71] H. Kamp. Formal properties of ’now’. Theoria, 37:227–273, 1971.

[Klu82] A. Klug. Equivalence of relational algebra and relational calculus query languages having

aggregate functions. Journal of ACM, 29(3):699–717, July 1982.

[NS92] M. Niezette and J.-M. Stevenne. An efficient symbolic representation of periodic time. In Proc.

of First International Conference on Information and Knowledge management, 1992.

19

[SA85] R. Snodgrass and I. Ahn. A taxonomy of time in databases. In S. Navathe, editor, Proc. ACM

SIGMOD Int. Conf. on Management of Data, pages 236–246, Austin, TX, May 1985. ACM.

[SGM93] R. T. Snodgrass, S. Gomez, and L. E. McKenzie, Jr. Aggregates in the temporal query language

TQuel. IEEE Transactions on Knowledge and Data Engineering, 5(3):826–842, October 1993.

[SJS94] M.D. Soo, C. S. Jensen, and R. T. Snodgrass. An algebra for TSQL2. A part of the TSQL2

commentaries, see [TSQ94], September 1994.

[SS92] M.D. Soo and R. Snodgrass. Multiple calendar support for converntional database management

systems. Technical Report 92-7, Computer science department, University of Arizona, Feb

1992.

[Tan87] A. U. Tansel. A statistical interface for historical relational databases. In Proc. Data Engineering,

pages 538–546, February 1987.

[TCG+93] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors. Temporal

databases: Theory, design, and implementation. Benjamin/Cummings, 1993.

[TSQ94] Announcement: The temporal query language TSQL2 final language definition. SIGMOD

Record, September 1994. Vol. 23, No. 3.

[Ull88] J. D. Ullman. Priciples of Database and Knowledge-base Systems. Computer Science Press,

1988.

[WJS95] X. Wang, S. Jajodia, and V.S. Subrahmanian. Temporal modules: An approach toward federated

temporal databases. Information Sciences, 82:103–128, 1995. A preliminary version of this

paper appeared in Proceedings of the ACM SIGMOD International Conference on Management

of Data, Washington, DC, May 1993, pp. 227–236.

20

