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Abstract

Although there are many techniques and tools available to support the software testing

process, one of the most crucial parts of testing, generating the test data, is usually done by

hand. Test data generation is one of the most technically challenging steps in testing software,

but unfortunately, most practical systems do not incorporate any automation in this step. This

paper presents a new method for automatically generating test data that incorporates ideas

from symbolic evaluation, constraint-based testing, and dynamic test data generation. It takes

an initial set of values for each input, and \pushes" the values through the control-
ow graph

of the program in a dynamic way, modifying the sets of values as branches in the program

are taken. This method is an outgrowth of previous research in constraint-based testing, and

combines several of the steps that were previously separate into one coherent process. The

major di�erence is that this method is dynamic, and resolves path constraints immediately;

it also includes an intelligent search technique, and improved handling of arrays, loops, and

pointers.
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1 Introduction

Software testing is an expensive and labor-intensive task. It has been estimated that software testing
accounts for up to 50% of software development [Mye79, Som92]. If most of software testing could
be automated, then the cost of software development could be greatly reduced. One of the most
di�cult and expensive technical problems of software testing has been the actual generation of test
data|which has traditionally been done by hand. Test data generation is the process of creating
program input data that satisfy some testing criterion. An automatic test data generator is a
tool that helps the tester create test data. Test data generators have been categorized into three
groups: structural-oriented test data generators [BKM91, BEL75, Cla76, DO91, How77, Kor90,
RHC76], data speci�cation generators [BF79, MM75, Mau90], and random test data generators
[Stu85, VMM91, MDL87]. This paper focuses on structural-oriented generators, which are based
on covering certain structural elements in the program. Usually, these generators attempt to
generate test data to meet a testing criterion such as path coverage, branch coverage, mutation,
etc.

Structural-oriented test data generators typically use the CFG of the program and some form
of symbolic evaluation [DK78]. Symbolic evaluation executes a program using symbolic values for
variables instead of actual values. Symbolic evaluation derives a path constraint for a path in the
program, which is a constraint system on the program input variables. The path constraint must be
satis�ed for the path to be traversed; the path constraint is usually derived �rst, then an attempt
to satisfy it is made. Although symbolic evaluation is a very powerful analysis tool, it has several
problems such as determining array indexes and handling pointers and indeterminate loops.

In previous work [DO91, DO93], we presented an approach to test data generation that uses
symbolic evaluation and other information about the program to automatically generate test data
to satisfy the mutation testing criterion [DLS78, DGK+88]. This approach, called constraint-
based testing (CBT), uses a novel constraint satisfaction technique called the \domain reduction
procedure". CBT su�ers from several problems, including problems handling arrays, loops, and
nested expressions. In this report, we present a new approach to test data generation, called the
dynamic domain reduction procedure, which combines several of the previously separated steps into
one smooth process. The dynamic domain reduction procedure (DDR) uses elements of the CBT
approach, but also draws from Korel's dynamic test data generation approach [Kor90] and symbolic
evaluation. It uses a direct \domain reduction" method for deriving values, rather than function
minimization methods [Kor90] or linear programming-like methods [Cla76].

Previous approaches occasionally failed to �nd test cases, and for some programs failed a
large percentage of the time. This is partly because of problems with handling arrays and loops,
partly because of insu�ciently general approaches to handling expressions, and partly because of
unsophisticated search procedures. The DDR procedure is capable of succeeding where others fail
because of several improvements. Its dynamic nature, combining symbolic evaluation with domain
reduction, allows better handling of arrays and expressions. DDR also incorporates a sophisticated
back-tracking search procedure that allows test data to be generated when previous methods would
fail.
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The DDR procedure walks through the program CFG, generating test data along the way.
Each variable is initially given a large set of possible values (its domain), and as branches are
taken in the CFG, the domains for the variables involved in the predicates are reduced to re
ect
the truth values of the predicates. When choices for how to reduce the domains must be made, a
search process is initiated to try to make a choice that allows the subsequent edges on the path
to be executed. When the procedure is �nished, the remaining values for the variable's domains
represent the set of test cases that will cause execution of the path. If any variable's domain is
empty, the search process failed, indicating that either the path was infeasible or there are relatively
few inputs that will execute the path.

The next section introduces some background terminology and concepts. In Section 3, a formal
description of the test data generation problem is given, and Section 3.1 describes the domain
reduction procedure. Our new procedure for generating test data is presented in Section 3.2. A
discussion of how arrays, loops, and pointers are handled in this procedure is given in Section 4
and future research is suggested in the Conclusions.

2 Background

In this section, some basic concepts used in this report are introduced, a formal description of the
test data generation problem is given, and �nally the domain reduction procedure is introduced.

2.1 Concepts

A basic block is a maximum sequence of program statements such that if any one statement of the
block is executed, then all statements in the block are executed. A basic block has only one entry
point and one exit point. A junction is a point in the program where di�erent control 
ows merge.
For instance, the ENDIF of an IF statement is a junction. A decision is a point in a program where
the control 
ow can diverge. For instance, each IF, DO, WHILE, GOTO and CASE is a decision
point.

A control 
ow graph (CFG) of a program is a directed graph that represents the structure
of the program. Each node is either a basic block node, a junction node or a decision node. The
edges represent potential control 
ow from node to node. A control path is a directed path from
an entry node to a terminal node of a CFG. A predicate is a controlling function associated with a
decision node whose value evaluates to TRUE or FALSE, which determines which branch will be
followed. The 
ow of control in the CFG will change according to the evaluation of the predicate
expression. A constraint is a mathematical algebraic expression that restricts the space of the input
program variables to certain input domains so that the constraint can be satis�ed. For example, a
constraint A > 0 describes the portion of the input domain where A is positive.

Each path is represented by a list of constraints, one constraint for each predicate along the
control path. The predicates are initially expressed in terms of program variables; since each of
these program variables can be ultimately expressed in terms of the input variables using assignment
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statements along the control path, the predicates can be re-expressed as constraints in terms of
only the input variables.

If input data that satisfy the path condition exist, the control path is also an execution path
and can be used to test the program. If the path condition can not be satis�ed by any input values,
the control path is said to be infeasible.

For example, given a program that calculates GCD of integer A and B using Euclid's algorithm
as follows:

int euclid(A,B)
int A, B;

f
int div, rem;

1. rem = 1;

2. WHILE (rem > 0)

f
4. div = A/B;

5. rem = A - Div * B;

6. A = B ;

7. B = rem;

g;
8. return (A)

g

The CFG of this program is shown in Figure 1.

1

2

34return (A)

Figure 1: The CFG of program euclid

In Figure 1, node 1 is a basic block node; it contains statement 1 of the program: rem = 1.
Node 2 is a decision node because the control 
ow diverges into two directions: 2-4 and 2-3. Node
2 is also a junction node since control 
ow from node 3 merges to node 2. The predicate associated
with decision node 2 is (rem > 0) in the WHILE statement. If this predicate evaluates to TRUE,
then the program will proceed to node 3; otherwise node 4. Node 4 is the exit node, return(A).
Path 1-2-4 is a control path, 1-2-3-4 is another control path.

A test case is a set of input data that is used in the software to execute on so as to determine
if the software is correct on these inputs. Test data generation in software testing is the process of
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identifying a set of test data that satis�es a selected testing criterion. The domain of a variable is
the set of possible values that the variable can have. The domain does not have to be continuous,
there can be many discrete sets of values.

A constraint system is a hierarchical structure composed of expressions, constraints, and
clauses. An algebraic expression is composed of variables, parentheses, and programming language
operators. Expressions are taken directly from the test program and are derived from predicates
within decision statements and right-hand sides of assignment statements during symbolic evalu-
ation. A constraint is a pair of algebraic expressions related by one of the conditional operators
f>; <; =; �; �; 6=g. Constraints evaluate to one of the binary values TRUE or FALSE and can
be modi�ed by the negation operator NOT (:). A clause is a list of constraints connected by the
two logical operators AND (

V
) and OR (

W
). A conjunctive clause uses only the logical AND and a

disjunctive clause uses only the logical OR. A constraint system is considered to be a constraint or
clause that represents one complete test case. In CBT systems, all constraint systems are kept in
disjunctive normal form (DNF), which is a list of conjunctive clauses connected by logical ORs.

3 A TEST DATA GENERATION PROBLEM

The problem of automatic test data generation has been looked at by a number of researchers.
Korel [Kor90] gives a formal description of the problem in terms of �nding inputs to execute a
particular path in the program. In earlier work [DO91], we described this problem in terms of
killing a mutant. In this paper, we present this problem in terms of reaching a particular node
using an arbitrary path. Executing a particular path is a special case of this treatment, and it is
easily extended to incorporate testing criteria such as data 
ow or mutation.

Let ng be a node in the CFG of a program P with input domain D; we call ng the \goal"
node. The test data generation problem is to �nd a program input t 2 D such that when P is
executed on t, ng will be reached. To express the speci�c path version of this problem, we say
that given a path in the program p =< n1; n2; :::; ng >, t must cause that path to be executed.
For mutation testing, the goal node ng contains the statement that is mutated, and we impose
the additional requirement that after ng is executed, the necessity condition must be true. The
necessity condition [DO91] is the condition that expresses what is necessary for a test case to kill
the mutant. Our problem statement can also be extended to include data 
ow testing criteria. The
All-uses data 
ow criterion [FW88] requires that each de�nition of a variable reach all possible uses
of that variable. Thus, the goal node ng in the test data generation problem becomes the node
that contains a de�nition of the variable x, and we add the requirement that after ng is reached,
the node containing the use of x must also be reached (nu), with the restriction that the subpath
from ng to nu must not contain another de�nition of x.
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3.1 THE DOMAIN REDUCTION PROCEDURE

The CBT approach uses separate procedures to derive constraints that represent conditions under
which a particular statement will be reached (reachability constraints), derive constraints that
represent conditions under which a mutant will be killed (necessity constraints), apply symbolic
evaluation to rewrite the constraint systems to be in terms of input variables, and �nally to �nd
test case input values that will satisfy the constraints (constraint satisfaction). These procedures
are described in detail elsewhere [DO91, O�91] and have been implemented in a test data generation
tool Godzilla [DGK+88].

The constraint satisfaction procedure used by Godzilla is known as \domain reduction" [O�91]
and is based on the topological sort algorithm. The domain reduction procedure uses local informa-
tion in the constraint systems to �nd values for variables, then uses back-substitution to simplify
the remaining constraints in the constraint system. Initially, each variable is given a domain of
values. This domain can be supplied by the tester or derived automatically from speci�cations or
preconditions. Each constraint within the system is viewed as a statement that reduces the domain
of values for the variable(s) in the constraint. Constraints of the form x < c, where x is a variable,
c a constant and < a relational operator, are used to reduce the current domain of values for x.
Constraints of the form x < y, where both x and y are variables, are used to reduce the domain of
values for both x and y.

When no additional simpli�cation can be done, a heuristic is employed to choose a value for
one of the remaining variables in the constraints. The variable chosen is the variable with the
smallest current domain. The value for this variable is chosen arbitrarily from its current domain
of values and is then back-substituted into the remaining constraints. This process is repeated until
all variables have been assigned a value. The expectation is that by choosing a variable with the
smallest current domain size, there is less chance of making a mistake (that is, choosing a value
that will cause a solvable constraint system to become unsolvable).

Each time a variable is assigned a value, the input space for the program is e�ectively reduced
by one dimension. As the number of dimensions is reduced, the constraints in the system become
progressively simpler. Each variable assignment implicitly introduces a new constraint into the
system of the form (x = c), where c is a constant. If chosen poorly, this new constraint may
make the constraint system infeasible, and the procedure will have to make a new choice. The
basic assumption is that because of the simple form of the test case constraints, these dimension
reducing constraints will rarely make the region infeasible. When they do, CBT employs a very
simple search procedure; a di�erent value is chosen for the same variable and the system is re-
evaluated.

Weaknesses of the Domain Reduction Procedure

The domain reduction procedure uses the entire constraint system, which contains many con-
straints. Each time a constraint is used, the procedure reduces the domains by choosing one de�nite
value from that domain and then uses this value throughout the reduction procedure on other con-
straints. This does not give much 
exibility in the values chosen, which in turn may decrease
the chance for other constraints to be satis�ed. As a result, the procedure may have to re-choose
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values more often, which decreases the e�ciency and e�ectiveness of the procedure. Also, since
the domain reduction procedure uses random guessing of variable values in its searching procedure,
this leaves the search procedure poorly organized and same values may be chosen more than once.
The domain reduction procedure also has very simple expression handling mechanisms. Most real
world programs have more complicated expressions, which the domain reduction procedure has to
either skip or modify into a format that can be handled. This limits the scope of the programs
that can be tested by the procedure.

Also, the domain reduction procedure views an array as one variable, and does not di�erentiate
values between individual elements in the array. This will impact the power of the test data
generation process on programs that make heavy use of arrays.

3.2 The Dynamic Domain Reduction Procedure

DDR procedure is an automatic test case generating method that uses constraints derived from the
test program that control the execution paths in a CFG to reduce domains of variables progressively
until test data that satisfy these constraints are found for the test program. This method �nds
variable values by walking through the CFG, using one predicate at a time and reducing domains
step by step. DDR procedure uses certain mechanisms to generate test cases. These mechanisms
include reducing domain spaces by splitting variable domains, using a binary search algorithm when
bad choices were made, and using a improved expression handling technique.

3.3 Representations and Assumptions

Predicates and constraints are used to reduce variable domains in the dynamic domain constraint
satisfaction procedure. DDR procedure handles certain types of predicates and constraints in the
test program and therefore makes the following assumptions:

� Predicates are always in disjunctive normal form.

� Constraints and expressions are put in a canonical form where constants are always on the
right.

Predicate = ORClause

OrClause = AndClause1 _ AndClause2 _..._ AndClausen
AndClause = Constraint1 ^ Constraint2 ^ ... ^ Constraintm
Constraint = LeftExpr Relation RightExpr

LeftExpr = Expr

RightExpr = Expr | Const

Expr = Var aop Var | Var aop Const | Expr aop Expr |

Expr aop Var | Expr aop Const | Var

aop = + | - | * | /

relation = < | > | >= | <= | = | !=
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3.4 Overview of the Dynamic Domain Reduction Procedure

DDR procedure 
ow diagram is shown in Figure 2. In the diagram, bubbles represent inputs and
outputs of the procedure, rectangles represent process steps, and diamonds represent branches in
the execution. Three kinds of input data are needed in this procedure: the value domains of the
input variables to the test program; the CFG of the program; and the starting node N1 and goal
node Ng in the CFG.

In Find Path, a path that starts from node N1 and ends at Ng in the CFG is chosen. How
this is done will vary depending on the testing technique. For instance, in path-coverage testing,
the input will be a complete path, while in data 
ow testing Ng may be a def node and there may
be many possible paths from N1 to Ng. The Is P empty? decision checks whether all paths in
path set P have already been searched. If all paths in path set P have been checked and no test
data has been found, the procedure fails; either there are no feasible paths from N1 to Ng or the
test case that will execute a feasible path is too di�cult to �nd. The Select one path procedure
selects a subpath Pi to satisfy from the subpath set P. This subpath is removed from the path set
P so that it will not be chosen again.

The rest of the procedure walks through the CFG along the subpath Pi, attempting to �nd a
test case that will execute the subpath. If the current node is a decision node then the constraint
associated with the appropriate outgoing branch is used to reduce the corresponding variable do-
mains. If the current node is not a decision node, then the statements associated with this node
are used to do symbolic evaluation, which also modi�es the variable domains.

The Reduce domains step is the key process of DDR procedure. Variables related to the
constraint are used to check if they satisfy the constraint or not. The constraint is then used to
reduce the variable domains. An important function SplitPoint is used here to reduce the domains
of the variables.

SplitPoint encodes our major heuristics for selecting test case values and is the key for our
searching process. SplitPoint takes a constraint and two expressions with overlapping domains and
�nds a point at which the two domains can be split so that the constraint will be true for all values
in the domains. Initially, the domains are split so that each domain \loses" approximately the
same number of values. During the search process, the split point is successively reevaluated with
the split point moved halfway in one direction, then the other, and so on until the choice succeeds
in resulting in a test case, all choices have been exhausted, or a predetermined constant number
of choices have been made. After the domains have been reduced, the status of the domains are
reevaluated. If the new domain values satisfy the predicate, the procedure either goes to the next
node, or if the current node is the goal node, the procedure is �nished. If there are any variables left
with domains containing more than one value, it is certain that any value from within the domain
will satisfy the test requirement, and a value is chosen arbitrarily.

If the new domain values do not satisfy the predicate, the search process is triggered. The
procedure goes back to the most recent decision node that was encountered, and tries to satisfy the
predicate again using di�erent split points. If there are no previous decision nodes to evaluate, the
procedure gives up on this path and goes to the next one. If there have been too many attempts to
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�nd a feasible split point at the most recent decision node (more than a some constant value K),
then the procedure goes to the previous decision node.

3.4.1 Functions

Six key functions used in DDR procedure are described in this section. Functions are �rst described,
and then the algorithm name and variables are declared, �nally the pseudo code of the function is
listed.

1. Function TCGenerator: The main function of the DDR procedure.

The inputs to this function are the variable domains, which are a list of bottom and top
values for each variable's domain. Domain Data Stores (DDS) stores domains of expressions
of the program, and is initialized as the domains of input variables. The TCGenerator �rst
initializes DDS using domains of input variables. Then for a given start node and an end node
of the CFG (De�ned as def-use in the function), the function gets all the possible subpaths
that starts and ends at the given nodes. For each subpath chosen from the SubPathSet,
predicate on each edge e in the subpath is read and used to check if the current domains
satisfy this predicate or not, this is processed in the function FoundSuitableDom(DDS,P). If
current domains satisfy the predicate, then next edge on the subpath is checked until all edges
on the subpath has been checked or a test case is found where test-case-found 
ag TCFound
is assigned TRUE, otherwise, another subpath is chosen to generate the test cases.

Declarations and pseudo code of this function are given as follows:

algorithm TCGenerator ()

declare DefUse: DefUse Type

SubPathSet: the set of all def clear subpaths from a def to a use

SubPath: a subpath in the SubPathSet

Pred[i]: the predicate on the i th edge of a subpath

DomSatisfyPred: Boolean

TCFound: Boolean

SubPathSetEmpty: Boolean

p: a predicate

BEGIN
Get domain values and initialize the DDS.

FOR each var
Init (DDS, Var, Domain)

END FOR

FOR each DefUse
Get SubPathSet

TCFound = FALSE

DomSatisfyPred = TRUE

SubPathSetEmpty = FALSE

WHILE (:TCFound AND :SubPathSetEmpty)
Get one SubPath from SubPathSet
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Is P empty?

Start from N1 on path Pi.
Node = N1

Read predicate on
the branch edge

Does current inputs
satisfies the predicate?
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no
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reduced input
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test cases

infeasible
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      point?
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  More than K
split attempts?

Node = most recent
       decision node

Choose a set of test data
from the input domains

Select one path Pi from P.
P = P − Pi

Symbolic execute
basic block
statements

Reduce domains. Use predicate
on related input variables.

Node = Ni + 1 (next node)

Start node N1,
goal node Ng

Find Path
P = set of paths from N1 to Ng

Is Node = Ng?

Figure 2: The data
ow diagram
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FOR each edge e on SubPath
p = Pred[e]

IF (:FoundSuitableDom (DDS, p)) { Modify DDS to satisfy p.
DomSatisfyPred = FALSE

BREAK FOR LOOP
END IF

END FOR
IF (DomSatisfyPred) { Entire subpath is satis�ed

Generate test case by using DDS -- a function call in DDS that also saves TC.

TCFound = TRUE

Reset DDS

ELSE { Did not satisfy that subpath, try another.
SubPathSet = SubPathSet - SubPath

END WHILE
END FOR

END TCGenerator

2. Function FoundSuitableDom: The function �nds suitable domains for variables that
satisfy the predicates.

The input to this function is a predicate and DDS. This function outputs a boolean value
indicating whether current DDS satisfy the predicate or not. The function checks each AND
clause in the predicate, makes a temporary copy of DDS to TempDDS, and then check each
constraint in the AND clause. If the domains �t each constraint in the AND clause, then
the function terminates and returns boolean value TRUE to the caller function. When the
function returns, TempDDS is copied to DDS to update any modi�cations. If any one of the
constraints is not satis�ed by current domains, the function returns FALSE notifying that
the constraints are not satis�ed.

Declarations and pseudo code of this function are as follows:

algorithm FindSuitableDom (DDS, p) : Boolean

declare AndCl[i]: the i th AndClause in p

Cnst[i]: the i th Constraint in an AndClause

TmpDDS: DDS Type -- a temporary DDS

Infeasible:boolean

cl: a clause

c: a constraint

BEGIN
FOR each AndClause cl in p

Infeasible = FALSE

Copy (DDS, TmpDDS)

FOR each constraint c in cl
IF (:DomFitCnst (c, TmpDDS)) { Attempt to modify TmpDDS to satisfy c

Infeasible = TRUE

BREAK FOR LOOP
END IF

END FOR
IF (:Infeasible)

Copy (TmpDDS, DDS)

RETURN TRUE
ELSE
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RETURN FALSE
END IF

END FOR

END FoundSuitableDom

3. Function DomFitCnst: The function that checks whether an expression's domain �ts a
constraint.

The input to this function is a copy of DDS, named TempDDS and a constraint. The con-
straint contains two expressions and a relational operator that connects the two expressions.
The expression on the left-hand side of the relational operator is called left-expression and the
right-hand side right-expression. The function reads the left-expression, right-expression and
the relational operator, then assign them to corresponding variables. There are two cases in
this constraint, the �rst is when left-expression is a variable and right-expression is a constant;
the second case is when both expressions are variables. These two cases are dealt di�erently.
GetSplit function is called to �nd a split point for the two expressions. Getsplit function is
to be discussed next.

Pseudo code of this function are listed as follows:

algorithm DomFitCnst (Cnst, TmpDDS) : Boolean

declare rel: a relation in Cnst

fit: Boolean

lexpr: left side expr of Cnst

rexpr: right side expr of Cnst

ldomain: left expr's domain with Bot and Top values

rdomain: right expr's domain with Bot and Top values

const: a constant value

split: a split point of a domain

lsucceed: Boolean -- lexpr update TmpDDS succeeded

rsucceed: Boolean -- rexpr update TmpDDS succeeded

BEGIN
lexpr = GetLExpr (Cnst)

rexpr = GetRExpr (Cnst)

rel = GetRel (Cnst)

IF (rexpr is a constant)
ldomain = ExprDomain (lexpr)

const = GetValue (rexpr)

CASE (rel)
WHEN ">":

IF (ldomain.Bot > const)
RETURN TRUE { TmpDDS stays the same.

END IF
IF (ldomain.Top � const)

RETURN FALSE
END IF
lsucceed = Update (lexpr, const+1, ldomain.Top, TmpDDS)

ELSE
ldomain = ExprDomain (lexpr)

rdomain = ExprDomain (rexpr)
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CASE (rel)
WHEN ">":

IF (ldomain.Bot > rdomain.Top)
RETURN TRUE { TmpDDS stays the same.

END IF
IF (ldomain.Top <= rdomain.Bot)

RETURN FALSE
END IF
-- find a split point to split the domain.

split = GetSplit (ldomain, rdomain)

-- Now we might have a loop here, if one of following updates is

-- unsuccessful, then adjust split, do again.

lsucceed = Update (lexpr, split+1, ldomain.Top, TmpDDS)

rsucceed = Update (rexpr, rdomain.Bot, split, TmpDDS)

END IF
IF (lsucceed AND rsucceed)

RETURN TRUE

ELSE
RETURN FALSE

END IF

END DomFitCnst

4. Function GetSplit: The function that �nds a split point for variable domains.

The input to this function are two domains for two expressions. Each expressions has domain
(ldomain.Bot .. ldomain.Top) and (rdomain.Bot .. rdomain.Top) respectively. A split point
is found based on the given domains. The split point found is then returned to the caller
functions to reduce the domains. The split point is calculated based on the two given domains.
There are four cases described as follows:

(a) (ldomain.Bot � rdomain.Bot) and (ldomain.Top � rdomian.Top) :

SplitPoint = (ldomain.Top - ldomain.Bot)*i + ldomain.Bot

(b) (ldomain.Bot � rdomain.Bot) and (ldomain.Top � rdomain.Top) :

SplitPoint = (rdomain.Top - rdomain.Bot)*i + rdomain.Bot

(c) (ldomain.Bot � rdomain.Bot) and (ldomain.Top � rdomain.Top) :

SplitPoint = (ldomain.Top - rdomain.Bot)*i + rdomain.Bot

(d) (ldomain.Bot � rdomain.Bot) and (ldomain.Top � rdomain.Top) :

SplitPoint = (rdomain.Top - ldomain.Bot)*i + ldomain.Bot

i is a value from a set ( 1/2, 1/4, 3/4, 1/8, 7/8, ...).

If new domain values do not satisfy the predicate, the the most recent decision node that was
encountered has to be used to �nd di�erent split points. The value of i changes sequentially
according to the values in the given set each time this redo happens.

For example, given ldomain (-20, 20), rdomain (-40, 30),

this �ts case 1 where (rdomain.Bot < ldomain.Bot) and (rdomain.Top > ldomian.Top),

so, SplitPoint = (ldomain.Top - ldomain.Bot)*i + ldomain.Bot = (20 - (-20))/2 + (-20) = 0
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If the domains reduced based on this split point do not satisfy later constraints, then this
split point needs to be calculated again.

In this case, i=1/4,

SplitPoint = (ldomain.Top - ldomain.Bot)*i + ldomain.Bot = (20 - (-20))/4 + (-20) = -10

Declarations and the algorithm are listed as follows:

algorithm GetSplit (ldomain, rdomain)

BEGIN
-- Try to equally split leftexpr's and rightexpr's domain.

IF (ldomain.Bot >= rdomain.Bot AND ldomain.Top <= rdomain.Top)

split = (ldomain.Top - ldomain.Bot)/2 + ldomain.Bot

ELSE IF (ldomain.Bot <= rdomain.Bot AND ldomain.Top >= rdomain.Top)

split = (rdomain.Top - rdomain.Bot)/2 + rdomain.Bot

ELSE IF (ldomain.Bot >= rdomain.Bot AND ldomain.Top >= rdomain.Top)

split = (ldomain.Top - rdomain.Bot)/2 + rdomain.Bot

ELSE
split = (rdomain.Top - ldomain.Bot)/2 + ldomain.Bot

END IF
RETURN split

END GetSplit

5. Function ExprDomain: The function that �nds a possible domain for an expression.

The inputs to this function are an expression and DDS. Since expression is de�ned recursively,
this domain reduction process may run recursively until domains for each speci�c variables
are found. This function processes recursively by determining the domains of the variables
and constants at the leaves of the expression and propagating these domains up by applying
the operations. If there are any changes that are necessitated by decisions, then they are
propagated back down to the leaves of the expressions. An expression could be algebraic
expressions consists several variables, or it could be a single variable or constant, this depends
on the content of the CFG. The process will be the same except that domain range for
algebraic expressions will need expression evaluation techniques.

Declarationa and pseudo code are as follows:

algorithm ExprDomain (Expr, TmpDDS) : Domain

declare L: left side of Expr

R: right side of Expr

aop: arithmetic operator in Expr

tmpBot: a var to hold Bot value temporarily

tmpTop: a var to hold Top value temporarily

BEGIN
IF (Expr is a constant)

exprdom.Bot = exprdom.Top = constant

RETURN exprdom
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END IF
IF (Expr is a var)

exprdom.Top = Topn in this var's domain in DDS

exprdom.Bot = Bot1 in this var's domain in DDS

RETURN exprdom

END IF
IF (Expr is an expr)

L = GetLExpr (Expr)

R = GetRExpr (Expr)

aop = GetAop (Expr)

CASE (aop)

WHEN "+":

exprdom.Top = ExprDomain (L, TmpDDS).Top + ExprDomain (R, TmpDDS ).Top

exprdom.Bot = ExprDomain (L, TmpDDS).Bot + ExprDomain (R, TmpDDS ).Bot

WHEN "-":

exprdom.Top = ExprDomain (L, TmpDDS).Top - ExprDomain (R, TmpDDS ).Bot

exprdom.Bot = ExprDomain (L, TmpDDS).Bot - ExprDomain (R, TmpDDS ).Top

WHEN "*":

exprdom.Top = ExprDomain (L, TmpDDS).Top * ExprDomain (R, TmpDDS ).Top

exprdom.Bot = ExprDomain (L, TmpDDS).Bot * ExprDomain (R, TmpDDS ).Bot

WHEN "/":

tmpTop = ExprDomain (R, TmpDDS).Top

tmpBot = ExprDomain (R, TmpDDS).Bot

IF (tmpTop == 0) -- Avoid division by zero.

tmpTop = -1

END IF
IF (tmpBot == 0)

tmpBot == 1

END IF
exprdom.Top = ExprDomain (L, TmpDDS).Top / tmpBot

exprdom.Bot = ExprDomain (L, TmpDDS).Bot / tmpTop

IF (exprdom.Top < exprdom.Bot)

exprdom = Flip (TmpDDS, Expr, exprdom)

Add (TmpDDS, Expr, exprdom)

RETURN exprdom

END IF

END ExprDomain

6. Function Update: The function that updates the temporary domains data stores (Tem-
pDDS).

TempDDS is modi�ed if the domain of an expression has no values less than the bottom of the
domains or no greater than the top of the domains. Domains of variables in the expression are
also modi�ed, they are processed recursively. If update is feasible, return TRUE, otherwise
return FALSE.

This function has the following declaration and pseudo code:

algorithm Update (Expr, Bot, Top, TmpDDS)
declare L: left expr

R: right expr
aop: arithmetic operator
rdomain: right expr's domain with Bot and Top
ldomain: left expr's domain with Bot and Top
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s: subdomain

BEGIN
IF (Expr is Const)

RETURN TRUE
END IF
IF (Expr is Var)

{ domain of Var = < (Bot1:Top1), ... (Botn:Topn) >
IF (Bot � Bot1 AND Top � Topn)

RETURN TRUE
ELSE IF (Bot > Topn OR Top < Bot1)

RETURN FALSE
ELSE

FOR each domain (Boti:Topi) in Var's domain
{ Handle Top �rst. Processing is done from Topn to Top1

IF (Top � Topn)
BREAK FOR LOOP{ Don't bother to check any more.

{ Topn is the biggest in the domain.
ELSE IF (Top � Boti AND Top � Topi)

{ Remove < (Boti+1:Topi + 1), ... (Botn:Topn) > from Var's d omain.
FOR each subdomain s from (Boti + 1:Topi), ... (Botn:Topn)
Remove (TmpDDS, Var, s)

END FOR
{ Replace subdomain (Boti:Topi) with (Boti:Top)
Replace (TmpDDS, Var, (Boti:Top), (Boti:Topi))
BREAK FOR LOOP

ELSE IF (Top > Topi AND Top < Boti + 1)
{ Remove < (Boti + 1:Topi + 1), ... (Botn:Topn) > from Var's d omain.
FOR each subdomain s from (Boti + 1:Topi), ... (Botn:Topn)
Remove (TmpDDS, Var, s)

END FOR
BREAK FOR LOOP

END IF
END FOR
{ Now do Bot
{ Note that the domain of Var might be modi�ed now.
{ domain = < (Bot1:Top1), ... (Botm:Topm) > .
{ m � n
FOR each subdomain (Boti:Topi) in Var's domain

IF (Bot � Bot1)
RETURN TRUE { Don't bother to check the rest, and

{ since top part is done, we can return.
ELSE IF (Bot � Boti AND Bot � Topi)

{ Replace subdomain (Boti:Topi) with (Bot:Topi)
Replace (TmpDDS, Var, (Bot:Topi), (Boti:Topi))
{ Remove < (Bot1:Top1), ... (Boti � 1:Topi � 1) > from
{ Var's domain and shift the domain list (the i th subdomain
{ becomes the 1st subdomain).
FOR each subdomain s from (Bot1:Top1) to (Boti � 1:Topi � 1)
Remove (TmpDDS, Var, s)

RETURN TRUE
ELSE IF (Bot > Topi AND (Bot < Boti + 1)

{ Remove < (Bot1:Top1), ... (Boti:Topi) > from
{ Var's domain and shift the domain list (the i+1 th
{ subdomain becomes the 1st subdomain).
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FOR each subdomain s from (Bot1:Top1) to (Boti:Topi)
Remove (TmpDDS, Var, s)

RETURN TRUE
END IF

END FOR
{ if execution reaches here, the (Bot:Top) is in a gap
{ between subdomains, so TmpDDS does not contain any values
{ between Bot and Top.
RETURN FALSE

END IF
END IF { (Expr is Var)

{ Now it is the only case left: Expr is expr.
{ First modify the domain for Expr.
Bot = Max (Bot, TmpDDS (Expr).Bot)
Top = Min (Top, TmpDDS (Expr).Top)
Replace (TmpDDS, Expr, (Bot:Top), (TmpDDS (Expr).Bot:TmpDDS (Expr).Top))

{ Then determine the domains for left and right side exprs of the Expr.
L = GetLExpr (Expr)
R = GetRExpr (Expr)
aop = GetAop (Expr)
aop = GetAop (Expr)
CASE (aop)

WHEN "+":
ldomain.Bot = rdomain.Bot = Bot/2
ldomain.Top = rdomain.Top = Top/2

WHEN "-":
{ There is a general form to get the domains of LExpr and RExpr:
{ ldomain.Bot = Top + n*(Top - Bot)/2,
{ ldomain.Top = (Top-Bot)/2 + Top + n*(Top - Bot)/2,
{ rdomain.Bot = (Top-Bot)/2 + n*(Top - Bot)/2,
{ rdomain.Top = Top - Bot + n*(Top - Bot)/2,
{ (where n = ... -3, -2, -1, 0, 1, 2, 3, ...)
{ In our algorithm here, we choose n=0 now.
ldomain.Bot = Top
ldomain.Top = (Top-Bot)/2 + Top
rdomain.Bot = (Top-Bot)/2
rdomain.Top = Top -Bot

WHEN "*":
IF (Top � 0 AND Bot � 0)

IF (CheckStatus (TmpDDS, Expr).
ipped == TRUE)
ldomain.Top = rdomain.Top = - SquareRoot (Bot)
ldomain.Bot = rdomain.Bot = - SquareRoot (Top)

ELSE
ldomain.Top = rdomain.Top = SquareRoot (Top)
ldomain.Bot = rdomain.Bot = SquareRoot (Bot)

ELSE IF (Top < 0 AND Bot < 0)
ldomain.Top = Abs (Top)
ldomain.Bot = 1
rdomain.Top = -1
rdomain.Bot = Bot/Abs (Top)

ELSE IF { Bot < 0 AND Top � 0
ldomain.Bot = - SquareRoot (Abs (Bot))
ldomain.Top = Min (Floor (SquareRoot (Abs (Bot))),

Floor (Top/SquareRoot (Abs (Bot))))
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rdomain.Bot = - Min (Floor (SquareRoot (Abs (Bot))),
Floor (Top/SquareRoot (Abs (Bot))))

rdomain.Top = SquareRoot (Abs (Bot))
WHEN "/":

{ There is a general form to get the domains of LExpr and RExpr:
{ ldomain.Bot = (Top+1)/(Bot+1) * Bot**(i+1) * Top**i,
{ ldomain.Top = Bot**i * Top**(i+1),
{ rdomain.Bot = Bot**i * Top**i,
{ rdomain.Top = (Top+1)/(Bot+1) * Bot**i * Top**(i+1),
{ (where n = ... -3, -2, -1, 0, 1, 2, 3, ...)
{ For this algorithm, we choose n=0.
ldomain.Bot = (Top+1)/(Bot+1) * Bot
ldomain.Top = Top
rdomain.Bot = 1
rdomain.Top = (Top+1)/(Bot+1) * Top

IF (ldomain.Top < ldomain.Bot)
ldomain = Flip (TmpDDS, L, ldomain)

IF (rdomain.Top < rdomain.Bot)
rdomain = Flip (TmpDDS, R, rdomain)

RETURN (Update (L, ldomain.Bot, ldomain.Top, TmpDDS) AND
Update (R, rdomain.Bot, rdomain.Top, TmpDDS))

END Update

3.5 Examples

Two examples are given in this section to show how DDR procedure is used to reduce the input
domains and to generate test data. The �rst example shows a case when input domains can be
successfully reduced. The second example illustrates a case when the reduced domain at certain
node do not satisfy the later constraints, then the domains have to be re-chosen at previous decision
point. Test cases are generated in both examples.

Example 1

Given a program that shows a function mid(x, y, z) which determines the middle value of three
given integers x, y and z.

The program is given as follows:

int mid(x, y, z)
int x, y, z;

f
int mid;

mid = z;

if (y<z)

f
if (x<y)

mid = y;

else

if (x<z)

mid = x;
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g
else

f
if (x>y)

mid = y;

else

if (x>z)

mid = x;

g
return(mid);

g

The CFG of this program is shown in Figure 3.

mid = z

y < zy >= z

x < yx >= y

mid = y

x < y
x >= y

mid = y

x > z

mid = x

x < z

mid = x

Return(mid)

1

2

3 4

5

6

7 8

9

10

Figure 3: The Control Flow Graph of mid

Assume that the domains of input variables x, y and z are given as follows:

x: < -10 .. 10 >; y: < -10 .. 10 >; z: < -10 .. 10 >;

In order to generate test cases for the program, a control path in the CFG needs to be selected. If
path 1-2-3-5-10 is chosen in this case, then three predicates encountered in this path are the ones
on edge 1-2, 2-3 and 3-5 respectively.

At the start point, the input domains are the given ones.

Next node on the given path is node 2. Since node 1 is a decision node, the constraint on edge 1-2
(y < z) is used to reduce domains of variables y and z. According to function GetSplit, it is case
1 where
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(ldomain.Bot � rdomain.Bot) and (ldomain.Top � rdomian.Top),

SplitPoint = (ldomain.Top - ldomain.Bot)*i + ldomain.Bot = (10 - (-10))/2 + (-10) = 0

Therefore the domains of variables y and z are reduced. Domain of y is now < -10 .. 0 > and z <
1 .. 10 >. The reduced domains are then substituted into all remaining constraints that contain
the corresponding variables.

After edge 1-2 is traversed, now node 2 is a decision node, constraint on edge 2-3 (x � y) is used
to reduce domains of variable x and y. It is case 2 in the GetSplit function, where

(ldomain.Bot � rdomain.Bot) and (ldomain.Top � rdomain.Top) :

SplitPoint = (rdomain.Top - rdomain.Bot)*i + rdomain.Bot = (0 - (-10))/2 + (-10) = -5

So the domain for variable x is < -5 .. 10 >, and y is < -10 .. -5 >.

Next, edge 3-5 is to be traversed, since node 3 is a decision node branch 3-5 is on the given path,
next constraint to be used is (x < z). Current domains for these two variables �t case 1 in GetSplit
function, where

(ldomain.Bot � rdomain.Bot) and (ldomain.Top � rdomian.Top) :

SplitPoint = (ldomain.Top - ldomain.Bot)*i + ldomain.Bot= (10- (-5))/2 +(-5) = 2

Domain of x is now < -5 .. 2 >, and z is < 3 .. 10 >.

The domains of each input variable after each constraint has been used are reduced progressively
shown as follows:

x y z

1. Start : -10 .. 10 -10 .. 10 -10 .. 10
2. y< z: -10 .. 10 -10 .. 0 0 .. 10
3. x� y: -5 .. 10 -10 .. -5 0 .. 10
4. x< z: -5 .. 2 -10 .. -5 3 .. 10

After these three constraints on path 1-2-3-5-10 are used to reduce the domain of the inputs, the
input domains �nally become: x: -5 .. 2; y: -10 .. -5 ; and z: 3 .. 10.

Test data can be chosen randomly from within these input domains and they should satisfy all the
constraints on path 1-2-3-5-10. For instance, one test case is generated by randomly selecting one
value for each input variables from their domains: (x=0, y=-10, and z=8); this test case is executed
as follows:
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Start : mid = z; (mid = 8)
edge 1-2 : y<z; (-10 < 8)
edge 2-3 : x�y; (0 � -10)
edge 3-5 : x< z; (0 < 8)
node 5: mid = x; (mid = 0)
node 10: Return(4).

From this example, it can be seen that DDR Procedure reduces domains of inputs by traversing
paths in the CFG, using one constraint at a time. Then it generates test cases for each from the
reduced input domains. Therefore, test cases are generated based on the given path.

Example 2

Given a program Value that determines the value of a variable V based on the values of

variable A, B and C. The program is as follows:

int Value(A, B, C)
int A, B, C;
f
int V;
V = 0;
if (A< B)
f

C = 16 ;
if (A< C)
V = A + 30 ;

else
V = A;

g
else
f

C = 30 ;
V = C+ B +A ;

g
return(V);

g

The CFG of this program is shown in Figure 4.

Assume that domains of the input variables are:

A: < 0 .. 20 >; B: < 10 .. 40 >; C: < 0 .. 100 >;

Path 1-2-4-6-8 is selected to generate test cases for the program.

Node 1 is a decision node, The constraint associated with branch 1-2 on the given path is (A < B).
Domains of variables A and B satisfy case 4 in the GetSplit function, where
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V=0

A<B
A>=B

C=16 C=30

A>C A<C

V=A+B+C

V=A V=A+30

Return(V)

Figure 4: The Control Flow Graph of value

(rdomain.Bot � ldomain.Bot) and (rdomain.Top � ldomain.Top )

so, SplitPoint = (ldomain.Top - rdomain.Bot)*i + rdomain.Bot = (20 - 10)* 1/2 + 10 = 15

Domain of A is reduced to < 0 .. 15 >, and B is < 15 .. 40 >.

Next node in the given path is node 2. It contains a statement C = 16. Therefore, variable C is
given a value 16. Its domain is < 16 .. 16 >.

Next, the procedure reaches node 4. It is a decision node, Constraint associated with branch 4-6
is (A > C). The current domains of A and C do not satisfy constraint (A > C). This means that
the split point found at the previous decision node was not chosen appropriately. A di�erent split
point should be calculated to reduce the domains.

Now, back to the most recent decision node �� node 1. Apply the same GetSplit function
except that the value of i is 1/4 this time. so, new SplitPoint is : (ldomain.Top - rdomain.Bot)*i +
rdomain.Bot = (20 - 10 )* 1/4 + 10 = 12

The reduced domains for A and B are < 0 .. 12 > and < 12 .. 40 > respectively. But these domains
still do not satisfy constraint (A > C) as the procedure proceeds on the given path. so, another
split point needs to be calculated. And the procedure is now back to node 1 again. The value of i
is given 3/4 this time.

so, SplitPoint = (ldomain.Top - rdomain.Bot)*i + rdomain.Bot = (20 - 10)* 3/4 + 10 = 17

A and B are now reduced to < 0.. 17 > and < 17 .. 40 >.

These domains satisfy constraint (A > C) as the procedure reaches branch 4-6. For this con-
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straint, domains of A and C satisfy case 2 where (ldomain.Bot � rdomain.Bot) and (ldomain.Top �
rdomain.Top) :

SplitPoint = (rdomain.Top - rdomain.Bot)*i + rdomain.Bot = (16 - 16)*1/2 + 16 = 16

Therefore A domain is now < 17 .. 17 >. C remains value 16.

Finally, the procedure reaches at node 6, where variable v is given value of A and exits at node 8.
At this point, the domains of variables A, B and C are: A < 17 .. 17 >, < 17 .. 40 >, and 16
respectively.

The result of each procedure sequence is listed as follows:

A B C

1. Start : 0 .. 20; 10 .. 40; 0 .. 100;
2. A< B: 0 .. 15; 15 .. 40; 0 .. 100;
3. C=16; 0 .. 15; 15 .. 40; 16 .. 16;
4. A> C: A: constraint is not satis�ed

Go back to decision node 1 where the SplitPoint was chosen:

A B C

2. A< B: 0 .. 12; 12 .. 40; 0 .. 100;
3. C=16; 0 .. 12; 12 .. 40; 16 .. 16;
4. A> C: constraint is not satis�ed.

Go back the third time to decision node 1 where the SplitPoint was chosen:

A B C

2. A < B: 0 .. 17; 17 .. 40; 0 .. 100;
3. C=16; 0 .. 17; 17 .. 40; 16 .. 16;
4. A> C: 17 .. 17; 17 .. 40; 16 ..16;

Test cases can be generated by randomly choosing one set of data in the domains of the variables.
A set of inputs such as (A=17, B=25, c=16) will execute on path 1-2-4-6-8. This test case is
executed in the program as follows:

Start : v = 0 ;
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edge 1-2 : if (A<B; ( 17 < 25 ) |- true
node 2 : C = 16;
edge 4-6: if (A<C) ( 17 < 16 ) |- false
node 6: else V = A; ( V = 17 )
node 8: Return(V); ( return(17)

4 ARRAYS, POINTERS, AND LOOPS

Arrays are handled in the dynamic domain reduction procedure in such a way that each element in
an array is treated as a distinct variable. To do this, we use the index of an array as an expression,
and it is then used to di�erentiate each element of the array and perform domain reduction on
these elements the same way as the other variables. This is of course limited to the extent that
array indexes can be fully analyzed during a static execution of the program. Pointers are also
handled as variables when we read pointers as expressions and �nd their corresponding domains.

Loop handling is done in a novel way by the dynamic domain reduction procedure. There are two
general ways to handle loop structures. The �rst is to discover all possible paths that start from
the given start node to the goal node. If there is a loop structure in the CFG, the number of paths
between these two nodes is potentially in�nite. Therefore, constraints on the decision nodes and
control variables of the loop structures need to be checked and updated to decide which path to
take. This method is obviously not e�cient because among all the possible paths found, many of
them do not satisfy the loop constraint and have to be thrown away.

In the dynamic domain reduction procedure, loops are handled more dynamically. Instead of �nding
all possible paths, the procedure �nds all the paths that contain at most one loop structure. It then
marks those decision nodes that a�ect whether another cycle on the loop is made. Then as the
path is traversed, when the decision node is encountered, the loop constraint and control variables
are checked dynamically to decide whether to continue with another iteration or to exit the loop. If
the control variable satis�es the constraint, another loop is carried out and the loop control variable
is updated, otherwise the procedure exits the loop and continues traversing the path on the node
after the loop.

5 CONCLUSIONS

This paper presents a new method for automatically generating test data. It uses elements from
several other test data generation methods and o�ers novel solutions to problems encountered by
previous methods. The dynamic domain reduction procedure is based on the domain reduction
procedure, symbolic evaluation, and the dynamic test data generation approach. It integrates
constraint satisfaction, symbolic evaluation, and a robust search process into one dynamic process.
These advantages mean that the dynamic domain reduction procedure is less likely to fail to �nd a
test case when a test case exists, and that implementations can be more e�cient. In this approach,
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array indexes and pointers can be calculated symbolically at the same time that values are being
found, allowing the test data generation to overcome previous di�culties with arrays and pointers.

The search process uses a novel technique, domain splitting,to make intelligent choices at certain
steps in the process.This allows maximum 
exibility in the values being chosen, and allows an
e�cient search procedure (binary search) to be used, which in turn increases the chances for success.
This process also allows complicated expressions to be handled uniformly.

Of course, any technique for automated test data generation has inherent limitations. The problems
of arrays, loops, and pointers cannot be completely solved. But this technique uses more information
about such constructs than previous methods, allowing for more power in the test data generation
process.This paper also makes no claims about optimality. Test data generation is an extremely
complex problem and we can only hope to �nd partial solutions that are general and robust enough
to work most of the time in the real world. Moreover, this is an ongoing research program and we
anticipate future research using this method.

5.1 Future Work

We are currently working on an implementation of the dynamic domain reduction procedure. Algo-
rithms have been designed and software is currently being built. This implementation will be used
to compare the dynamic domain reduction procedure with other test data generation procedures,
and as a tool for comparing testing criteria such as mutation and data 
ow.

One common problem in test data generation is that of detecting infeasible paths. This shows
up in various testing criteria in di�erent forms { in mutation it is part of the equivalent mutant
problem, in data 
ow testing the term infeasible DU-pairs has been used [FW88]. In Pan's thesis
[Pan94], a technique for detecting equivalent mutants was presented that is based on recognizing
infeasible systems of constraints. Whereas the procedure here will fail in the presence of infeasible
paths, the fact that the path is infeasible is not explicitly known. We hope to modify the results
of Pan's thesis to work with the dynamic domain reduction procedure to explicitly recognize most
infeasible paths.

Most of the work in automated test data generation has been intra-procedural rather than inter-
procedural. There is no reason why the technique here could not be applied in an intra-procedural
manner. Because the constraint systems are analyzed and disposed of in-process,

the combinatorial explosion of constraints that happens with traditional techniques can be avoided.
Hopefully, this will allow test data to be generated inter-procedurally, during integration and even
system testing.
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