
The LyriC Language: Querying Constraint Objects

Alexander Brodsky

Dept. of Information and Software Systems Engineering

George Mason University

Fairfax, Virginia, 22030-4444, USA

brodsky@isse.gmu.edu

Yoram Kornatzky

Dept. of Computer Science

University of Toronto,

6 King's College Road, Toronto, Canada

yoramk@db.toronto.edu

Abstract

Proposed in this paper is a novel data model and its language for querying object-oriented

databases where objects may hold spatial, temporal or constraint data, conceptually represented

by linear equality and inequality constraints. The proposed LyriC language is designed to pro-

vide a uniform and exible framework for diverse application realms such as (1) constraint-based

design in two-, three-, or higher-dimensional space, (2) large-scale optimization and analysis,

based mostly on linear programming techniques, and (3) spatial and geographic databases.

LyriC extends at constraint query languages, especially those for linear constraint databases,

to structurally complex objects. The extension is based on the object-oriented paradigm, where

constraints are treated as �rst-class objects that are organized in classes. The query language is

an extension of the language XSQL, and is built around the idea of extended path expressions.

Path expressions in a query traverse nested structures in one sweep. Constraints are used in a

query to �lter stored constraints and to create new constraint objects.

1 Introduction

We propose the LyriC data model and query language - a novel language for querying object-oriented

databases where objects hold spatial, temporal or constraint data, conceptually represented by equal-

ity and inequality constraints. LyriC provides an integration of the object-oriented and constraint

paradigms in one uni�ed framework. LyriC is intended to be used in application realms such as (1)

constraint-based design in two-, three-, or higher-dimensional space, (2) large-scale optimization and

analysis, based mostly on linear programming techniques, and (3) spatial and geographic databases.

LyriC is based on the object-oriented paradigm [BEER89] by treating constraints as �rst-class ob-

jects with a logical object identity. The meaning of such objects is maintained by including the

mapping from a constraint object (identity) into the in�nite collection of points it represents as part

of the logical model of the database [KV84, KLW90]. Constraints are organized in classes like other

objects and can have attributes and methods that attach additional information to them (e.g. names

of regions in a GIS), and operations to manipulate them (e.g. constraint conjunction), respectively.

Constraint objects are used as attributes of other objects, where such attributes have an attached

list of the variables that may be used to express constraints assigned to these attributes. These are

used in order to allow for the possibility of jointly constraining di�erent attributes when they are

operated on together by constraint operations.

LyriC extends at constraint query languages [KKR93], especially those for linear constraint

databases [BJM93], by incorporating constraints as a basic tool for describing spatio-temporal infor-

mation in constraint databases. The LyriC model treats each constraint object separately, instead

of viewing each constraint tuple as a conjunction of all constraints, and a constraint relation as

a disjunction of constraint tuples. This corresponds to the needs of spatio-temporal applications

where information has to be viewed from multiple perspectives in a exible way. Thus, we conjoin

constraints in an object and its parts i� they share some variables, and appear together within the

scope of a constraint operation in a query. Integrating constraints as another means of descrip-

tion of objects within an object-oriented data model is a natural requirement for supporting larger

and more complex applications with constraint technology. Existing proposals for at relational con-

straints databases [KKR93, BJM93], have the same problems in supporting complex spatio-temporal

applications that standard relational systems have [KLW90].

The LyriC query language is a superset of XSQL [KKS92], suggested by Kifer, Kim and Sagiv,

as an extension of SQL to object-oriented databases, and is built around the idea of extended path

expressions. These traverse complex nested structures by specifying paths in the database schema,

while extracting parts of these for further manipulation and �ltering. Constraint operations may be

used in the WHERE clause of XSQL as boolean tests and in the SELECT clause to generate new

constraint objects. Using constraints as higher-order variables permits exible de�nition of classes

in views whose set of instances is de�ned by means of constraint formulas, e.g. de�ning a subclass

of geographical objects corresponding to each region described as a constraint. LyriC provides great

practical expressive power while still having PTIME evaluation data complexity. We describe a

naive implementation of LyriC through its translation into at SQL with constraints. A future

implementation will be based on a constraint algebra to be developed.

1.1 Constraints, Space and Time

Although spatio-temporal information that incorporates aspects of space and time, seems quite

di�erent from the constraint information, which is basic in applications of analysis, design and plan-

ning, these two types of information have fundamental commonality. A collection of constraints can

be geometrically viewed as an object in multidimensional space, containing all points in the space

that satisfy the constraints; Spatio-temporal objects or, at least, their approximations, can be de-

scribed using constraints, although their physical representation can di�er for e�cient manipulation.

Thus, constraints can serve as a unifying data type for (conceptual) representation of heterogeneous

(spatio-temporal) data. In this paper we will not distinguish between constraint and spatio-temporal

information. In the following, we will be referring to Constraint or Spatio-Temporal information col-

lectively as CST-information, or CST-objects. A CST-object is thus a (possibly in�nite) collection

of points in a multi-dimensional space.

Using a uni�ed constraint-based framework in LyriC has a number of advantages. First, the

uniformity of representation of spatio-temporal data and operations in terms of constraints and

their manipulations avoids the need to separately build into the database system many spatio-

temporal relationships (e.g. containment is expressed by implication), and predicates/operators

(e.g. intersection is expressed by conjunction). Moreover, it permits an extensible collection of

operations in spatio-temporal objects with a single implementation of linear constraint technology.

Also, inmany applications, CST-objects are more intuitively described as constraints (e.g. submarine

maneuver decision aid [BVCS93]). A exible representation of spatio-temporal relationships using

linear constraints enables a combination of a number of layers of CST-objects based on di�erent

coordinate systems in the same query, by expressing with linear equalities the relationship between

the coordinate systems. Linear constraint technology, including e�cient algorithms for manipulating

higher-dimensional constraints, can perform an order of magnitude better than ad hoc methods

working on direct representations of CST-objects. For low-dimensional space, the best known data

structures and algorithms will be used.

A �ne trade-o� between expressiveness and e�ciency is crucial in the integration of constraint

and database technologies. We believe that the domain of linear constraints that we incorporate in

an object-oriented model and its query language is both expressive and potentially e�cient, based on

the state of art in linear constraint and computational geometry areas. We limit ourselves to linear

constraints for this reason even though the data model and the LyriC language can be generalized

to any familiar kind of constraint.

There are many applications in which both conceptual representation of spatio-temporal objects

and queries using constraints, and answering queries using a combination of constraint and database

technologies can provide a great deal of exibility and performance edge. We provide a brief descrip-

tion of two of these below. As a running example throughout the paper we would use the following

o�ce (architectural) design example.

1.2 Examples of Applications

One type of applications is design in multidimensional space. Suppose we keep a catalog of o�ce

objects such as desks, �les cabinets, chairs etc. Each object has attributes such as name, color, and

a spatial attribute extent, describing this object shape. The extent can be represented as a union

of 3D polygons, which are described relatively to a local system of coordinates, e.g. one whose origin

is located in the center of volume of the object. Since we want to reason on how o�ce objects are to

be located one with respect to the other, we capture the translation between the di�erent coordinate

systems by means of equations in the translation attribute.

Assume further that each desk has drawer. A drawer in turn, is characterized by its shape, or

extent. Since a drawer can move relatively to the desk, its extent would be described in a local

system of coordinates, probably with origin in the drawer's center of volume. To describe possible

drawer's location in the desk's system of coordinates, we can keep drawer center attribute which

is a constraint describing a bounded line along which the center of the drawer is moving when the

drawer is opening and closing. Thereby, it can be used to describe the translation between the

coordinate systems of the drawer and the desk containing it, per each drawer center location.

Other o�ce objects may have similar descriptions.

A designer then may ask queries such as: Given a room and location of a number of objects in

it, can we put an additional desk such that its drawer will not touch any other object in the room,

and still have an unoccupied 4 � 4 feet space? Can we put in a room two desks, two �le cabinets

and two chairs such that (1) no two objects or their opened drawers will touch each other or the

walls, and (2) there will be at least 4 feet between the front of each desk and the opposite wall? Can

the system give constraints describing possible interconnections of centers of objects such that the

above goals are achieved? What would be the location of the above mentioned objects if we want to

maximize the size of a square of available empty space? Given a collection of objects in the room,

show a projection of their cut at the height of 1/2 feet. All these queries can be e�ciently answered

in LyriC without using user implemented predicates or functions as will be shown below.

Somewhat similar design application, which deals with 4-dimensional space, is the submarine

Maneuver Decision Aid (MDA) [BVCS93] currently being developed at the Naval Undersea Warfare

Center. In every situation there is a large collection of goals such as \avoid land obstacle," \minimize

speed," \maintain depth at 200ft," as well as many battle-management goals. Maneuvers are ex-

pressed as points in a 4-dimensional space, where the dimensions are: course, speed, depth and time.

LyriC queries can express �nding the best suitable maneuver regions under interlated and possibly

contradicting goals, where both maneuver regions and goals are expressed using constraints.

An interesting class of problems for LyriC is a powerful extension of classical linear programming

(LP) applications dealing with manufacturing and warehouse support such as allocation of scarce

resources, scheduling production and inventory, and cutting stock. In those application a system of

constraints in LPmust be generalized to a database containing constraints, and the objective function

is generalized to a database query containing constraints. Of course, the answer to this query may

also contain constraints. Consider for example a chemical factory where di�erent products are

manufactured using a hierarchy of manufacturing processes, each described using linear constraints,

and raw materials.

Using LyriC queries one could answer questions such as: For each order of a product, what

is the connection (described by constraints) among the required raw materials? Is it possible to

improve the pro�t by 5% by buying some amount of a single raw material and then using a better

manufacturing process? How much of each raw material should be purchased in order to satisfy all

current orders? What are the ranges of and the connection among the quantities of all products

that can be produced using the raw materials currently in stock? What is the best manufacturing

process for a given set of orders? Can an order be �lled only by using raw materials in inventory? etc.

That type of queries involves both regular database aspects such as orders, invoicing, and ordering,

whereas supplier selection, the warehousing strategy, the manufacturing process to use, and the

scheduling of machines and orders on the factory oor are mathematical programming programs.

Organization of the Paper

Section 2 reviews the XSQL data model and language and is excerpted from [KKS92]. The constraint

object model is presented in section 3, while section 4 describes its query language LyriC . The

complexity of evaluating LyriC queries by means of a naive implementation is discussed in section 5.

Related work is discussed in section 6

2 XSQL Review

2.1 An Object-Oriented Data Model

We briey review the object-oriented data model on which XSQL is based [KLW90, KKS92]. The

description here is excerpted from [KKS92].

Objects and object identity. Objects are abstract or concrete entities in the real world, and are

referred via their logical object ids (oid). These are syntactic terms in the query language such as 20,

john23, secretary(dept77). We use explicit id-functions (such as secretary above) to create oids.

Any oid uniquely identi�es an object. Oids may carry certain semantic information. For instance,

we consider `20' to be the oid of the abstract object with the usual properties of the number 20.

Attributes. Objects are described via attributes, and all our objects are tuple-objects, whose

�elds are the values of the object's attributes. If the attribute is scalar, then the value is a single

oid; if the attribute is set-valued, then the value is a set of oids.

Methods. A method, invoked in the scope of an object on a tuple of arguments, returns an

answer, and, possibly, changes the state of that object (e.g., by changing the value of an attribute).

As a function, each method has arity|the number of its arguments. An attribute is regarded as a

0-ary method.

Classes. Classes have the function of organizing objects into sets of related entities. The instance-

of relationship between objects and classes determines which objects belong to which classes. The

IS-A or subclass relationship, is de�ned between classes and acyclic. If a class C is a subclass of

another class C0, then all instances of C must also belong to C0.

Types. In object-oriented languages, the abstract values of interest are objects; types provide

one of the important means of classifying objects. Another means of classi�cation is the concept of

a class discussed earlier. The type of a class is determined by the types of its methods. The type of

a method in a class C is described as a signature of the form

Mthd : Arg1; : : : ; Argk) Result or Mthd : Arg1; : : : ; Argk)) Result

that is attached to the de�nition of class C, where Argi and Result are class names. The single

arrow,), is used in the declarations of scalar methods, while the double arrow,)), is used for

set-valued methods. The above signature is meant to say that when the method Mthd is passed

arguments that are instances of classes Arg1; : : : ; Argk, respectively, the result is expected to be

an instance, or a set of instances of the class Result, depending on whether Mthd is scalar or set-

valued. Note that there are actually k + 1 (rather than k) arguments, where the 0th argument is

not mentioned, because it is the object of class C for which the signature is de�ned.

A method can have several signatures, each constraining the behavior of the method on di�erent

sets of arguments. When this is the case, the method is said to have a polymorphic type.

inv# : INV

location : CST(x,y)

catalog_object : (x,y)

drawer_center :
 CST(p,q)

(x,y)

drawer : (p,q)

drawer_center* :
 CST(p1,q1)

drawer: (p1,q1)

cat# : CAT

name : string

color : Color

extent: CST(w,z)

translation :
 CST(w,z,x,y,u,v)

color : Color

extent : CST(w,z)

translation :
 CST(w,z,x,y,u,v)

Object_
in_Room Desk

File_Cabinet

Drawer (x,y)Office_
Object

Figure 1: An Object-Oriented Database Schema

Inheritance. Methods de�ned in the scope of a class C are inherited by the subclasses of C.

Figure 1 shows an object-oriented schema of our o�ce design example. Dashed arrows describe

the IS-A hierarchy and solid arrows describe the composition (aggregation) hierarchy. (Attribute

names that end with an asterisk denote set-valued attributes; other attributes are scalar.) For the

moment, ignore the use of variables in attribute de�nitions and class names (to be explained in

section 3). The schema describes objects in an o�ce such as desks and �le cabinets, and their

parts such as drawers. Each object in the room (of class Object in Room) has a location in terms

if the room coordinate system, and an inventory number. To simplify the example, we assume a

tweo-dimensional world. Corresponding to such an object, there is a description of the corresponding

catalog object (of class Office Object) This is described in terms of a local coordinate system whose

origin translation with respect to the room coordinate system is described via the translation

attribute. The description of a catalog object includes its volume (the attribute extent), and for

each subclass, a description of its parts. In the example, these are the drawers which are specied

relative to a local coordinate system whose translation with respect to the o�ce object coordinate

system is described in the drawer center attribute. The translation of the later, when the drawer

is pulled in or out of the desk is speci�ed via the translation attribute. We assume all drawers

have the same orientation with respect to the �le cabinet. Attributes of objects which range over

classes of CST-objects, to be introduced in section 3 are described below.

2.2 Path Expressions

Path expressions describe paths along the composition hierarchy, and can be viewed as compositions

of methods (some of them may be attributes). For example, the expression

desk123:drawer:color (1)

describes a path that starts in the object of class Desk denoted by desk123, continues to the drawer

of desk123, and ends in the color of that drawer. In (1), desk123 is called a selector, and drawer

and color are called attribute expressions.

Path expressions can be more general than the one above. Formally, a path expression is of the

form

selector0:AttEx1f[selector1]g: � � � :AttExmf[selectorm]g (2)

where m � 0, and braces denote optional terms (i.e., only the �rst selector is mandatory). A selector

is either ground (abbr. g-selector) or variable (abbr. v-selector). A g-selector is just an object id,

and a v-selector is an individual variable that ranges over id's of individual objects. The attribute

expressions AttEx1; : : : ; AttExm in (2) are either attribute names or attribute variables that range

over attribute names. (We usually omit the classi�ers, \individual" or \attribute", of variables when

they are clear from the context.) Note that \higher-order" variables do not make the underlying logic

second-order (see [KV84, KLW90]). Also note that any selector is also a (trivial) path; this follows

from the above de�nition when m = 0. Higher-order variables over attribute and class names enable

querying the database without full knowledge of its schema and are used to query and manipulate

the schema. We omit a description of these here, and will provide an example of their usage in

LyriC below.

The formal de�nition of the meaning of a path expression requires several concepts which will

be de�ned next. A database path (or just path when confusion does not arise) is any �nite se-

quence of database objects, o0; o1; : : : ; on (n � 0); the object o0 is the head of the path and on

is called its tail. A ground instance of a path expression is obtained by substituting an object

id for each v-selector, and an attribute name for each attribute variable. Formally, a path ex-

pression E describes a set consisting of all database paths p, such that p satis�es some ground

instance of E. A path o0; o1; : : : ; om, where the oi's are objects, satis�es the ground instance

sel0:attr1f[sel1]g: � � � :attrmf[selm]g, if all of the following hold: (a) o0 = sel0; (b) for every

j = 1; : : : ; m, if the selector selj is speci�ed in the above path expression (recall that these selectors

are optional, by de�nition) then oj = selj ; (c) for all i = 1; : : : ; m, the attribute attri must be

de�ned on oi�1. Furthermore, if attri is scalar, then oi must equal the value of attri on object oi�1;

if attri is set-valued then oi must belong to the value of attri on oi�1.

The set of database paths satisfying ground instances of the path expression E could be empty.

This may happen because of a type error or because the path expression describes an empty set of

paths in the current state of the database. For example, if E is the path expression (1) and desk123

is not an object of the database, then the set of paths described by E is empty. In this abstract we

do not discuss typing and type errors in XSQL queries (see [KKS92] for details).

Since the path expression (1) is ground (i.e., has no variables), its last attribute is scalar, it may

satis�ed by at most one database path. In comparison, the path expression,

file cabinet db.drawer.color

would normally be satis�ed on database paths that begin with the File Cabinet object

file cabinet db , pass through one of its drawers, and end in the object representing the color

of this drawer. If �le cabinet db had several drawers, then there will be several such database paths.

An expression similar to (1), can be utilized in the following query:

SELECT Y

FROM Desk X

WHERE X.drawer[Y].color['red']

Now we should consider all ground instances of the path expression in the WHERE clause. For

each ground instance x:drawer[y]:color['red'], we should �rst check consistency with the FROM

clause; in this case, consistency means that x should be an oid of a desk. If the ground instance is

consistent, then y is in the answer provided that (at least) one database path satis�es the ground

instance. Observe that a path expression is used as a Boolean predicate, and a ground instance of

a path expression is either true or false depending on whether it is satis�ed by some database path

or not.

Path expressions can be compared using the comparators =, >, etc., which compare the sets

of objects in their tail (called the value of the expression). Comparisons can be combined using

Boolean connectives (e.g., and). In addition, since path expressions are evaluated to sets they can

be compared using such standard set-comparators such as contains.

The formal semantics of a query Q is de�ned as follows: all substitutions of oid's for variables

are considered. For each substitution that is consistent with the FROM clause, all ground path

expressions are evaluated. Next, the WHERE clause is evaluated. If the WHERE clause evaluates

to true, then the scalar ground path expressions in the SELECT clause are evaluated. The result

of this evaluation is a tuple of oid's that is added to the answer of the query.

Instead of merely viewing the result of a query as an ordinary relation, we can also view tuples

produced by queries as new objects:

SELECT name=X.name, drawer=W

FROM Office Object X

OID FUNCTION OF X,W

WHERE X.drawer[W]

This query has two new features. First, the SELECT clause gives explicit names to attributes of

the output relation. Second, the OID FUNCTION OF clause determines an object id for each tuple

in the result. A tuple of the result is generated from a pair of object id's, say x and w, that are

assigned to variables X andW, respectively, and its object identity is a function of x and w, f(x;w),

produced by some id-function f [KLW90].

XSQL can be used to de�ne views which are new classes containing oids generated by the query

through an oid function. For example, to �nd all pairs of objects in the example schema which

occupy the same volume of space due to a wrong design, we de�ne the view1:

CREATE VIEW Overlap AS SUBCLASS OF Object

SELECT first = X, second = Y

SIGNATURE first)) Office Object, second)) Office Object

FROM Office Object X, Office Object Y

OID FUNCTION OF X,Y

WHERE X.extent[U] and Y.extent[V] and (U overlap V)

1The overlap predicate would be latter de�ned through satisfaction of constraint conjunction.

3 A Constraint Object Data Model

The object-oriented data model treats any kind of object such as an integer or a string as a logical

object identity which might have an associated semantic meaning if it belongs to a particular class.

Thus, the object '2' is identi�ed with the usual integer 2 due to being an instance of the integer

class which has the required methods such as addition and subtraction. To seamlessly integrate

constraints into the data model, we view them as another kind of logical object identity, similarly to

the way we view oids representing attributes and methods. The semantics is de�ned via a mapping,

that is part of the model theory of the data model, from logical oids to in�nite collections of points

which represent the appropriate CST object. Thus, the semantics of CST objects which are higher-

order objects, is de�ned based on the idea of general structures [End72], as in the whole family of

F-logic languages. CST objects are organized into CST classes according to their dimension. The

CST superclasses de�ne polymorphic operations on CST objects. These are the familiar constraint

manipulations such as intersection and union that can be used in logical formulas on constraints,

Subclasses of these de�ne additional attributes and methods on these objects to be used in particular

applications. We next supply the de�nitions of linear constraints and canonical forms needed in the

sequel.

3.1 Linear Constraints and Canonical Forms

We need to carefully construct the family of constraints allowed to represent CST objects, and the

operators allowed in the query language, so that the data model will be closed under the language

and computational costs be under control. In particular, we design the constraint domain to avoid

exponential space and time explosion in terms of data complexity during constraint manipulation.

To do that, we suggest four interlated families of constraints (and thus CST objects) de�ned formally

in this subsection: conjunctive, disjunctive, existential conjunctive, and disjunctive existential. The

idea is that these families will have representations as conjunction, disjunction of conjunctions,

existentially quanti�ed conjunctions, and disjunctions of existentially quanti�ed conjunctions of

linear arithmetic constraints, respectively. Moreover, we want to guarantee that for a �xed number

of logical connectives, the size of the above representations and time required to achieve them be at

most polynomial in the size of linear constraints. This would not be the case, for example, had we

required quanti�er elimination even of conjunctions of linear constraints.

In de�nition of the families of constraints, we introduce for convenience the projection logical

connector. It is a variant of existential quanti�er where we specify the free, rather than the quanti�ed

variables. If � is a logical formula, than its projection on x1; : : : ; xn is denoted

((x1; : : : ; xn) j �)

The variables x1; : : : ; xn are called free. Opposed to a regular existential quanti�er, they do not have

to appear in �, and thus a projection can add new free variables. The truth value of, ((x1; : : : ; xn) j �),

for a given instantiation of constants into free variables, is de�ned recursively as the truth value of

(9~y) �

where ~y denotes all free variables in � that are not in (x1; : : : ; xn).

A linear arithmetic constraint has the form, r1x1 + � � �+ rmxm relop r, where r; r1; : : : ; rm are

real number constants and relop is one of =; <;�; >;�; 6=.

A conjunctive constraint is one of the following: (a) linear arithmetic constraint; (b) if � and �0

are conjunctive constraints, then so are �^ �0 and and a projection, ((x1; : : : ; xn) j �), where either

(1) at most one, or (2) all but one of the free variables of � appear in (x1; : : : ; xn). The last operator

corresponds in fact to a restricted quanti�er elimination of one, or all but one variables. The idea

here is that we can perform each restricted quanti�er elimination in polynomial time and represent

the result as a conjunction (without quanti�ers) of linear arithmetic constraints.

An existential conjunctive constraint is one of the following: (a) a conjunctive constraint; (b) if �

and �0 are existential conjunctive constraints, then so are �^�0, and a projection, ((x1; : : : ; xn) j �)

Here, as opposed to conjunctive constraints, we do not have any restriction on projection (existential

quanti�cation). Clearly, any existential conjunctive constraint can be represented in linear time as

an existentially quanti�ed conjunction of linear arithmetic constraints.

A disjunctive constraint is one of the following: (a) a conjunctive constraint or its negation (:);

(b) if � and �0 are disjunctive constraints, then so are �_�0, �^�0, and a projection ((x1; : : : ; xn) j �),

where either (1) at most one, or (2) all but one of the free variables of � appear in (x1; : : : ; xn).

The projection here, as in the case of conjunctive constraints, corresponds to a restricted quanti�er

elimination of one, or all but one variables. The idea here again is that we can perform each

restricted quanti�er elimination in polynomial time, and thus represent any disjunctive constraint

as disunction of conjunctions (without quanti�ers) of linear constraints.

Finally, disjunctive existential constraints are one of the following: (a) disjunctive or existential

conjunctive constraints; (b) if � and �0 are disjunctive existential constraints, then so are �_�0, and

the projection ((x1; : : : ; xn) j �), where all free variables of � are in x1; : : : ; xn. The last condition

essentially avoids having existential quanti�cation on a disjunctive existential constraint. Thus,

any disjunctive existential constraint can be represented as a disjunction of possibly existentially

quanti�ed conjunctions of linear constraints.

According to our de�nitions, existential conjunctive and disjunctive constraints each include

conjunctive constraints. Disjunctive existential constraints include all the others.

We briey discuss now some computational issues related to constraints manipulation and their

canonical forms, that will be used for representation of CST objects. It is important to mention that

all families of constraints discussed earlier can be represented as disjunction of possibly existentially

quanti�ed linear constraints. We adopt here the canonical forms and their description suggested for

at constraint relations in [BJM93] to CST objects. A canonical form for constraints is a useful

standard form of the constraints, and is generally computed by simpli�cation and the removal of

redundancy. In addition to the advantages of a standard presentation of constraints, canonical forms

can provide savings of space and time.

In the class of linear arithmetic constraints, there are many plausible canonical forms. However,

they can be costly to compute. Detecting redundant disjuncts is a co-NP-complete problem [Sri92],

so we will perform only two simpli�cations of disjunctions: the deletion of each inconsistent disjunct

and the deletion of syntactic duplicates. Similarly, while it is theoretically possible to eliminate

all existential quanti�ers from existential conjunctive constraints (as required in the framework of

[KKR93]), the cost of this elimination and the size of the resulting constraint can grow exponentially

in the size of the original constraint. Since we expect applications with large constraints, it is

unrealistic to expect that all quanti�ers can be eliminated. We perform only simplifying quanti�er

eliminations, similar to what is done in CLP(R) [JMSY92]. The conjunctive constraints o�er the

greatest scope in choosing a canonical form and can be found in [BJM93].

To sum up, the canonical form chosen is orthogonal to the LyriC language, and will inuence

the semantics of the data model and language only in the sense that we may have constraints with

di�erent canonical form which represent the same CST object. This issue will be taken below when

we consider the comparison of oids of CST objects.

3.2 Constraint Objects

As in [JaL87, KKR93, BJM93]), we view constraints as another means to represent a (possibly

in�nite) collection of points in (n-dimensional) space. For example, a constraint such as ((x; y)j 2x+

3y � 5) can be viewed as the in�nite collection of points in<2: f(a1; a2)j 2a1+3a2 � 5 g. In general,

we say that a constraint of the form ((x1; : : : ; xk)j�) represents a subset of <k, de�ned as a collection

of all points a1; : : : ; ak that satisfy ((x1; : : : ; xk)j�). Equivalently, the constraint represents the k-

dimensional predicate, which is true on exactly those points in the collection. Thus, a constraint is

a higher-order object which can be viewed either as a set (collection) of points or a predicate which

is true on those points which are members of the collection. We de�ne a k-dimensional CST object

as a subset of <k representable by a disjunctive existential constraint ((x1; : : : ; xk)j�). By a slight

abuse of notation, we will also refer to the k-dimensional CST object as the k-dimensional predicate

represented by the constraint.

To integrate higher-order objects such as sets and predicates into object-oriented languages while

maintaining a �rst-order semantics, we use the ideas expounded in previous work [CKW89, KLW90].

Formally, a model of languages (logics) which have a higher-order syntax and a �rst-order semantics

is a general structure [End72]. Thus, a database is a structure in which every object in the data

model, including higher-order ones such as classes, and methods, has an atomic oid representing it.

Thus, variables ranging over higher-order objects range over a domain of atomic oids representing this

kind of objects. The fact that such an oid represents a higher-order object is captured by including in

a structure a mapping from oids to the corresponding higher-order objects. Formally, as in previous

data models of its kind, a LyriC database is represented as a structure with components for the

universe of the database, class membership, subclass ordering and mappings from oids to methods

(attributes), and classes. We omit the details as they appear elsewhere [KLW90], and consider only

the following components required in the sequel:

< U; �U ; 2U>

representing the universe of the database, the subclass ordering, and the class membership. We map

oids to CST objects by including a mapping from oids to in�nite collections of points:

R : U 7! [
Y1

k=1
2 (<k)]

whose k-th component is used to map an oid to its use as a (possibly in�nite) collection of points

in k-dimensional space. This mapping is applied only to oids corresponding to constraints such

that for a disjunctive existential constraint, ((x1; : : : ; xk)j�), R(m) ((x1; : : : ; xk)j�), is the m-

dimensional CST object de�ned by the constraint ((x1; : : : ; xm)j((x1; : : : ; xk)j�)). Here, if m > k,

all xk+1; : : : ; xm are new di�erent variable names.

Oids for CST objects, similar to those of other higher-order objects, are considered disjoint only

up to canonical form simpli�cation. Thus, we may have two oids which are equivalent semantically

but which would be considered di�erent because they do not have the same canonical form after

the particular simpli�cation algorithm is applied. Constraints may be created in queries using

constraint operations. The created constraints will correspond to new oids. We would use constraint

operations such as conjunction and disjunction as oid functions whose semantics is speci�ed by means

of constraint simpli�cation. These created constraints are also mapped with R to the appropriate

CST object. For example, if we have two constraints, 2x�4y+5z � 30 and 12u+8y�9z � �80 ,

their conjunction

2x� 4y + 5z � 30 ^ 12u+ 8y � 9z � �80

is considered as an oid function generating a new oid (which with no simpli�cation whatever in this

case), that is 2x� 4y + 5z � 30 ^ 12u+ 8y � 9z � �80 and which is mapped to the appropriate

collection of points in 4-dimensional space:

f a1; a2; a3; a4 : 2a1 � 4a2 + 5a3 � 30 ^ 12a4 + 8a2 � 9a3 � �80 g

In queries new CST objects will be created by means of using disjunctive existential constraints in

the SELECT clause.

3.3 CST Classes

CST objects are instances of CST classes, whose attributes and methods de�ne the information and

operations attached to the in�nite collections of points they represent. CST classes are distinguished

by their dimension. Thus, for each k � 1, we have the class CST (k) which represents constraints

de�ning collections of points in <k. Every class of CST objects that represent collections of points

in <k is a subclass CST (k). For example, the linear constraint, 2x� 4y + 6z � 6 , is an instance

of that class, and represents the in�nite collection of points, f a1; a2; a3 : 2a1 � 4a2 + 6a3 � 6 g,

in three-dimensional space. Note that it is also an instance of CST (j), for every j � k.

The operations of CST superclasses de�ne the constraint operations such as intersection or union

as methods. These methods are polymorphic in that they have multiple signatures. As an example

for the usage of constraint classes, consider the class Drawer:

CLASS Drawer [color : Color; extent : CST (2);]

whose extent attribute is over CST classes, and describe te drawer's location and volume, respec-

tively. An instance of this class could be:

d : [color ! 0red0; extent ! 2x� 4y � 45]

Observe that we regard an attribute over a CST class such as location as a single-valued and not

as a multi-valued attribute. This corresponds to our view of a CST-object as a �rst-class object in

the data model.

Given the semantics of constraints as described in section 3.1, an instance of class CST (k+1) is

also an instance of the class CST (k) for every k � 1. Hence, we de�ne CST (k + 1) to be a subclass

of CST (k). The di�erent canonical forms of constraints can be used to further specialize constraint

classes in order to limit operations allowed on constraints within the LyriC language to tractable

complexity classes. Such limitations can be enforced by means of a type checking mechanism of

LyriC that is similar to that of XSQL [KKS92].

One can place additional attributes and methods on subclasses of the above mentioned constraint

classes in order to capture additional information. For example, in the maneuver decision aid we

would have a CST class corresponding to regions in which we would add a rating attribute giving

the rating of the maneuver region:

CLASS Region SUBCLASS CST (4) [rating : integer]

Note that the names of variables do not participate in any way in de�ning the class to which

a particular constraint belongs. They will be used only in database schema de�nitions as we next

discuss.

3.4 Schemas of Constraint Databases

We discussed above the usage of CST classes to represent CST objects. We next turn to their usage

in database schemas to represent spatio-temporal information on other objects. This is done by

means of classes in which some attributes are over a CST class such as the location attribute of

the class Drawer above. While such classes capture the right semantics of such spatio-temporal

information, the user would like stronger means to describe CST information. First, we would like

the variables in constraints to act as logical variables in the sense that their names are signi�cant and

using the same variable name in di�erent constraints implies the need to substitute the same value.

Moreover, attributes of di�erent classes are often jointly constrained such as the drawer center

attribute of a desk and the extent attribute of the desk's drawer.

Accordingly, we allow the user to list the variables that appear in the constraints assigned to

di�erent attributes over CST classes. These variables will be used to facilitate constraint manipula-

tion. Thus, for a constraint class CST (k) we would place in parenthesis the names of the variables

as, CST (x1; : : : ; xk). Figure 1 shows an example of a class in which the CST attributes include a

speci�cation of the variables to be used in them in addition to the dimension of the CST objects (for

the moment ignore the variable attached to reference attributes and those attached to class names).

Note that an attribute over a CST class may be set-valued, e.g. drawer center attribute in the

class File Cabinets Fig. 1.

To enable the user to specify a database in a modular way, we have to allow for constraints in

di�erent parts of the database to use the same names for variables. Thus, variables in separate

classes may have the same name without implying the projection of the two CST objects which are

assigned to these attributes over the same coordinate have the same value. This can be regarded as

a simple extension of the usual approach in object-oriented models in which distinct attributes in

di�erent classes may have the same name. For example, the same variables can be used in de�ning

schema for the extent of a Office Object and for the extent of a drawer of an object. However,

each CST attribute is used to represent a distinct collection of points.

Occurrence of the same variable name in the de�nition of two constraint attributes of the same

class is signi�cant in the following. It implies that for a point in one of them there is a corresponding

point in the other with the same value in the coordinate corresponding to the same variable if both

attributes are conjoined in a LyriC query (see 4 below). E�ectively, it would introduce an implicit

equality constraint if the CST attributes of the same object appear as arguments of a constraint

operations in a query. For example, translation and extent attributes of Office Objects use

the same w; z variables so that they translate the extent >from one coordinate system to another.

If we want to translate the extent of an object expressed in the local coordinates into the room's

coordinates by means of conjuncting it with the translation attribute, we would like to enforce

the equality between the corresponding arguments of these predicates by using the same names w; z

in their schema. Although we can always express equalities in the query itself, we would often want

to capture some of the equalities at the level of the schema and thereby automatically get thme in

the query.

We would often require inter-object constraints, in particular to relate various attributes of an

object and its parts. These mutually constrained objects may belong to di�erent classes. In our

running example, the extent attribute of the drawer in the desk's coordinates will be restricted by

its translation attribute and by the drawer center attribute of the desk, expressing the exibility

of the movement of the drawer in its tracks.

These shared variables in a schema only imply a possibility that they will have the same value,

but this possibility will be used only if the same attributes will be retrieved in the same query, and

will appear within the same constraint formula used inside the SELECT or WHERE clauses. Thus,

their usage is analogous to the use of the same attribute name to facilitate a natural join between

di�erent relations in a relational database.

To preserve modularity of classes, both in terms of freedom to list variables in distinct classes

independently, and the ability to delimit the objects referencing instances of the class to constrain its

attributes, we would introduce an interface mechanism for classes in which CST attributes are used.

For each such class, we would have an interface listing the variables used in its attributes which

may be possibly constrained in attributes of objects referencing that class (i.e. that have attributes

ranging over the class). For a class C, its interface is speci�ed by attaching a list of the variables

that can be externally constrained to its name, i.e. C(x1; : : : ; xn). A class C0 which has an attribute

A over class C may rename its interface as in A : C0(y1; : : : ; yn). This allows its CST attribute to

use variables independent of those of class C. As an example, see the class File Cabinet in Figure 1

where the drawer attribute renames the interface of the Drawer class, and then constrains it in the

attribute drawer center

Consider a room with a desk depicted in Figure 2.

The following is the constraint description of the object my-desk in the room:

U

1

1

W

Z

Z1 (x,y)

(p,q)

my_desk

W1

V

4−4

2

−2

6

4 −2

Figure 2: An instance of an object in the room

my desk.inv number 22-354

my desk.location ((x; y)j(x = 6 ^ y = 4))

my desk.catalog object[co]

co.name 'standard desk'

co.color 'red'

co.extent ((w; z)j(�4 � w � 4 ^�2 � z � 2))

co.translation ((w; z; x; y; u; v)j(u= x+w ^ v = y + z))

co.drawer center ((p; q)j(p = �2 ^�2 � q � 0))

co.drawer[D]

d.extent ((w; z)j(�1 � w � 1 ^�1 � z � 1))

d.translation ((w; z; x; y; u; v)j(u= x+w ^ v = y + z))

4 The LyriC Query Language

The LyriC query language is intended to query constraint object bases in our data model. Before

formally de�ning the LyriC syntax and semantics, we �rst explain them intuitively through a number

of examples.

4.1 LyriC by Examples

Path expressions in LyriC have the same syntax and semantics as those of XSQL. For instance, the

path expression,

standard desk:drawer:extent (3)

describes a path that starts in the object of class O�ce Objects denoted by standard desk, continues

to the drawer of that desk and ends in extent of that drawer. A similar path expression can be

utilized in the following query to retrieve all extent attributes of drawers in desks, which form

constraints:

SELECT Y

FROM Desk X

WHERE X.drawer.extent[Y]

This query treats CST objects purely as logical oids. For a standard desk object that appears in

the example database of Section 3, this query will return the expression,

((w; z)j(�1 � w � 1 ^ �1 � z � 1))

which is a logical oid of the extent of the drawer of the standard desk.

The following LyriC query returns, for each catalog object, its extent in the global (room) coor-

dinates, assuming its center is located at the point (6; 4).

SELECT CO, ((u; v) j (E(w; z) ^D(w; z; x; y; u; v)^ x = 6 ^ y = 4))

FROM Office Object CO

WHERE CO.extent[E] and CO.translation[D]

First note that the FROM and WHERE clauses here are not di�erent from those in XSQL.

For each instantiation of oids into variable selectors CO, E, and D, consistent with the FROM

clause and the path expressions in the WHERE clause, the query produces a tuple of two oids:

co for the catalog object and another one, for the extent in the room coordinates, expressed by,

((u; v) j (e(w; z) ^ D(w; z; x; y; u; v) ^ x = 6 ^ y = 4)). We can view this expression as de�ning a

collection of all points (u; v) such that there exist w; z; x; y such that (w; z) satisfy e (meaning it is

in the extent of the desk) and such that w; z; x; y; u; v satisfy the equation in d, and such that x = 6

and y = 4. Note that the syntax and semantics here are very close to those of the relational calculus.

As in the relational calculus, the CST expressions in LyriC queries are invariant to variable names

used. It might be convenient though to use the variables names appearing in a schema. Recall now

that in the database schema in Figure 1, the same variables (w; z) are used in the description of

extent and translation of the same object. This lets us rewrite the above query in a shorter form

using the implicit equation introduced by variable names:

SELECT CO, ((u; v) j (E ^D ^ x = 6 ^ y = 4))

FROM Office Object CO

WHERE CO.extent[E] and CO.translation[D]

To see why the above mentioned expression correspond to what we need to �nd, observe that

D(w; z; x; y; u; v)^ x = 6 ^ y = 4 , gives equations describing the connection between local (object)

coordinates (w; z) of a point, and its global coordinates (u; v) assuming the center of the object is at

(6; 4). For instance, for the catalog object co corresponding to my desk from the example database

(i.e. my desk.catalog object[co],D(w; z; x; y; u; v)^x = 6^y = 4, is (u = x+w^v = y+z)^x =

6^y = 4, or, equivalently, u = 6+w^v = 4+ z. Then (e(w; z)^D(w; z; x; y; u; v)^x = 6^ y = 4))

would become (�4 � w � 4 ^�2 � z � 2) ^ u = 6 + w ^ v = 4 + w. Thus, if we project on (u; v),

i.e. consider ((u; v)j(�4 � w � 4 ^�2 � z � 2) ^ u = 6 + w ^ v = 4 + w), LyriC would simplify it

to ((u; v)j2 � w � 10 ^ 2 � v � 6), which is exactly the extent of the standard desk in the global

coordinates assuming its center is at (6; 4). To verify this see Figure 2. The symbolic expression

((u; v)j2 � w � 10^ 2 � v � 6) (again invariant to variable names) is a logical oid to be returned in

the SELECT clause.

The following LyriC query answers the following question. Assuming the room is 20 � 10, for

each desk whose center may appear in the left upper quater of the room, �nd the area that can be

occupied by its drawer (in any position) in the room's coordinates:

SELECT O, ((u; v)j(D(w; z; x; y; u; v)^DD(w1; z1; x1; y1; u1; v1)^w = u1 ^ z = v1

^DC(p; q) ^DE(w1; z1))

FROM Object In Room O, Desk DSK

WHERE O.location[L] and ((L(x; y) ^ 0 � x � 10 ^ 5 � y � 10)) and

O.catalog object[DSK] and

DSK.translation[D] and

DSK.drawer center[DC] and

DSK.drawer.translation[DD]and

DSK.drawer.extent[DE]

The expression :

((u; v)j(D(w; z; x; y; u; v)^DD(w1; z1; x1; y1; u1; v1)^ (w = u1) ^ (z = v1)^

L(x; y) ^DC(p; q) ^DE(w1; z1))

gives an area (described in the global coordinates) of all points that can be occupied by the drawer of

a desk. Here too we have implicit equalities derived from the schema. Namely, since in the schema

the attribute drawer of the desk is \invoked" with actual parameters (p; q), while the \formal"

parameters are (x; y), we must have an equality stating that the �rst and second arguments of

DSK.drawer center must be equal to the third and fourth arguments of DSK.drawer.translation

correspondingly. In the query it will translate to the equalities p = x1 ^ q = y1. Thus the CST

expression to be evaluated in the SELECT clause is in fact

((u; v)j(p = x1 ^ q = y1 ^ D(w; z; x; y; u; v)^DD(w1; z1; x1; y1; u1; v1)^w = u1 ^ z = v1^

L(x; y) ^DC(p; q) ^DE(w1; z1))

Note also that D(w; z; x; y; u; v)^DD(w1; z1; x1; y1; u1; v1) ^w = u1 ^ z = v1 describes equations

relating coordinates (w1; z1) of a point described in the drawer's system with the coordinates (u; v)

of the same point described in the global coordinate system.

The condition ((L(x; y) ^ 0 � x � 10 ^ 5 � y � 10)) in the WHERE clause is true, if the logical

formula corresponding to it is satis�able, i.e. there exist a real number substitution into the variables

that makes the formula true. In our query, it would mean that there exist a possible location of the

DSK (x; y) that satis�es ((x; y)j0 � x � 10 ^ 5 � y � 10), meaning that the point in the left upper

quater of the room.

The next LyriC query gives, for each red desk in the catalog with a drawer in the middle of the

table, its extent above the 45 degree line through its center.

SELECT DSK, ((w; z)j(DSK:drawer:extent(w; z)^ z � w))

FROM Desk DSK

WHERE DSK.color = 'red' and DSK.drawer center[C] and (C(p; q) j= p = 0)

Here we use CST predicate j= in the WHERE clause. Its meaning is the standard one in logic,

namely, it is true if for all real numbers p; q, C(p; q)) p = 0, i.e. every possible center of the drawer

must be in the middle of the desk.

The following query �nds all desks in the room whose drawer does not touch the walls of the

room, assuming the room is 20� 10.

SELECT DSK

FROM Object In Room O, Desks DSK

WHERE O.catalog object[DSK]

DSK.drawer center[C] and

DSK.translation[D] and

DSK.drawer.extent[DRE] and

DSK.drawer.translation[DRD] and

(C(p; q) ^E(w; z) ^DRD(w1; z1; x1; y1; u1; v1)^D(w; z; x; y; u; v)

^w = u1 ^z = v1 0 < u < 20^ 0 < v < 10)

By combining higher-order variables with constraints, we can de�ne powerful views that classify

objects according to their spatial attributes. Assume a class Region of o�ce regions which is a

subclass of CST (2), we can classify the objects in a design into di�erent classes, according to the

element of Region in which they are places. This is done by means of the following view:

CREATE VIEW X AS SUBCLASS OF Object In Room

SELECT X FROM Object In Room Y, Region X

WHERE X.extent[U] and (U j= X)

Note that X is used in the CREATE clause as the oid of the class, in the FROM clause as the

oid of an object, and in the WHERE clause as a constraint.

4.2 Syntax and Semantics of LyriC

The syntax of LyriC query language is a superset of XSQL. Therefore we only briey describe the

additions, which include a number of operators to create new CST objects in the SELECT clause

and a number of predicates to be applied to CST objects in the WHERE clause. We will call all

variables in the query, that are not variable selectors, constraint variables.

Pseudo-Linear formula is an arithmetic expression that may involve constraint variables, con-

stants and path expressions that, when instantiated, de�ne constants of type real or integer. The

formula is required to be pseudo linear in the sense that when all non-constraint variables are in-

stantiated, the formula must be representable as a linear arithmetic constraint.

We de�ne now CST formulas. Speci�cally, conjunctive, disjunctive, existential conjunctive, and

disjunctive existential formulas are de�ned as extensions of the corresponding types of constraints

de�ned in Section 3 as follows. First, we allow pseudo-linear formula everywhere that a linear arith-

metic constraint is allowed. Second, everywhere in the de�nitions where we allowed conjunctive,

disjunctive, existential conjunctive, or disjunctive existential constraints, we will also allow an ex-

pression of the form, O(x1; : : : ; xn), or of the form O where O is a path expression, that, when

instantiated, de�nes an n-dimensional CST object of the corresponding (conjunctive, disjunctive

etc.) type, and where x1; : : : ; xn are constraint variables. If the variables are not speci�ed, they are

simply copied from the schema.

Since a CST object is de�ned as an interpreted predicate, the truth value of O for an instantiation

of real numbers into x1; : : : ; xn is de�ned. Thus, when all non-constraint variables are instantiated,

the truth value assignment of a CST formula is de�ned exactly as for the constraints, while taking

into account the truth values of the CST predicates (objects).

LyriC allows the following additional types of attributes in the SELECT clause:

1. An disjunctive existential formula of the form ((x1; : : : ; xn) j �)

This formula will de�ne an n-dimensional CST object as an interpreted n-dimensional predi-

cate, and its logical oid as the required canonical form of constraints.

2. An expression of the form, MAX(f SUBJECT TO (x1; : : : ; xn)j�)), or

MIN(f SUBJECT TO (x1; : : : ; xn)j�)), where f(x1; : : : ; xn) is an objective function described

as a linear combination of constraint variables, and � is an existential conjunctive formula. The

meaning of this operator is a linear programming problem of �nding maximum or minimum

of a linear objective function subject to a system of linear constraints.

3. An expression of the form MAX POINT(f SUBJECT TO (x1; : : : ; xn)j�) or MIN POINT(f SUBJECT

TO (x1; : : : ; xn)j�), with the same meaning for f and �, to �nd a point in n-dimensional space

at which the maximum, or, respectively, minimum is achieved.

In the WHERE clause, LyriC also allows the following constraint predicates:

1. A satis�ability predicate in the form of a disjunctive existential formula �. This predicate gets

the value true in the WHERE clause if � is satis�able, i.e. there exist instantiations of real

numbers into its free constraint variables that makes the formula true.

2. An expression of the form:

((x1; : : : ; xn)j�) j= ((y1; : : : ; ym)j�
0)

where � and �0 are disjunctive formulas. This j= predicate gets the value true in the WHERE

clause if for every real numbers instantiation into x1; : : : ; xn; y1; : : : ; ym, the truth value of

((x1; : : : ; xn)j�) implies the truth value of ((y1; : : : ; ym)j�
0)

The semantics of a LyriC query is de�ned as an extension of that of XSQL. Hence, we just describe

those aspects of LyriC that pretain speci�cally to constraints. To evaluate CST predicates satis�able

or implies, we �rst add implicit equality constraint derived from the schema. Then, the truth value

of the CST operators is evaluated as explained earlier. The Boolean operators (and, or, and not) are

evaluated in the usual way. To create an oid of a new CST object, we �rst add implicit constraint

derived by the schema. Then, we evaluate the oid as explained earlier. One can generate new

objects some of whose attributes are constraints by using oid functions as in XSQL, as constraints

are regarded as another kind of oid.

5 Complexity of LyriC Query Evaluation

To show the tractability of evaluating LyriC queries we show how to translate them into SQL with

linear constraints [BJM93]. Note that the de�nition of a database in LyriC as a general structure

(see section 3.2) means that it is essentially a collection of at relations [KLW90]. These represent

the extent of classes and the mapping used to represent attributes. We assume in the translation that

methods are not employed in queries as they provide unlimited computational power. We next join

the class relations, the single-valued attribute relations, and the the multi-valued attribute relations

(after unnesting them) together, obtaining a at relation for each class in the database.

We next translate a LyriC query into a SQL query with constraints [KKR93]. We �rst atten

all path expressions into a single level by the addition of class names and variables in the FROM

clause. Thus, the language is equivalent to SQL with linear constraints and hence has a PTIME

data complexity.

A more sophisticated implementation that we plan to develop would be through a constraint

algebra in which higher-order operators manipulate collections of objects (e.g. sets, lists) some of

whose elements may be constraints. Thus, the algebra is an FP-like language [Bac78, BK93] in

which functional forms capture common data collections processing abstractions such as �ltering

elements, and applying a function to all elements of a collection, and primitive functions manipulate

objects of di�erent types such as intersecting constraints. Since constraint database optimization

considerably di�ers >from that of regular databases, the algebra will have to accommodate some

new optimization frameworks, such as the one in [BJM93]. A full description of the algebra, the

translation of LyriC into it, and an algebraic optimizer is an issue of future research.

6 Related Work

No technology for declarative and e�cient querying in the target CST applications exists today.

Existing tools for constraint manipulation are built for specialized applications and are not well

integrated with available DBMS. This causes an impedance mismatch in terms of query manipula-

tion, and prevent e�cient implementation of query evaluation over constraint databases. Existing

DBMS do not deal with and manipulate constraints as stored data 2. Constraint Logic Programming

[JaL87, CHIP, Prolog3] on the other hand was not designed to deal with large amounts of stored

data, and support spatio-temporal features. Extensions of DBMS with spatio-temporal operators

[OrM88, Gut89, HaC91] are typically limited to low (two- or, at most three-) dimensional space,

have restrictions on using these operators in query languages, and lack global economical �ltering

and deep optimization.

2Note, integrity constraints used in conventional databases are not data, but rather something the data must

satisfy.

The work [KKR93] proposed a framework for integrating abstract constraints into database

query languages by providing a number of design principles and studied important properties of

speci�c instances of the framework. However, they did not consider languages supporting complex

objects and did not focus on optimization. The work [HHLB89] considered more than just linear

constraints (but only equalities). However, reasoning with the constraints was limited to local

propagation steps, and hence is not practical for linear programming problems. A restricted form of

linear constraints, called linear repeating points, was used to model in�nite sequences of time points

[KSW90, BNW91, NS92]. More recent works on deductive databases [MFPR, SrR92, KS93, LS92]

have attempted to extend optimization methods for Datalog to cope with constraints. However,

that research concentrated on optimizing recursion and repositioning of constraints, and assume as

given, the implementation and optimization of the basic relational database operations involving

constraints. The work [BJM93] introduced Linear Constraint Databases, concentrating on their

optimization, and proposed a new generic optimization framework.

Srivastava, Ramakrishnan and Revesz [SRR94] have proposed an integration of constraints into

an object-oriented data model. They suggest that attributes whose values are only partially known

to be speci�ed using constraints. In contrast, in our model, constraints are used as a complete

speci�cation of a CST object (even without universal quanti�cation over variables). This di�erent

philosophy, implies that their concerns about the di�erent possible semantics of incomplete infor-

mation, represented as constraints, are irrelevant to us, and their model serves di�erent applications

than ours. In their model constraints are integrated into the model in a more limited way than in

LyriC , where they are �rst-class citizens in a very general object-oriented data model. Moreover.

we avoid the limitations of regarding the database as a global constraint as discussed in section 3.4

above. We are concerned just with linear constraints because they o�er a tractable and practically

expressive class of constraints. Basing LyriC on SQL seems to us as a more practical and complete

way to query databases than declarative query languages such as COQL. Updating CST attributes

is completely general as it should be in the required applications, and is not limited to monotonicly

increasing re�nement of constraint attributes as in their model (e.g. there is no reason that moving

a desk would be limited in any way).

Acknowledgement: We are indebted to Paul Exarkhopoulo, and Dimitra Vista for helpful advice

and comments, and Ami Motro for suggesting the name LyriC .

References

[AB91] Abiteboul, S., A. Bonner, \Objects and Views," Proc. ACM SIGMOD Conf. on Man-

agement of Data, 1991.

[AK89] Abiteboul, S., P. C. Kanellakis, \Object Identity as a Query Language Primitive,"

Proc. ACM SIGMOD Conf. on Management of Data, 1989, pp. 143{153.

[Bac78] J. Backus. Can programming be liberated from the von Neumann style? A functional

style and its algebra of programs. Communications of the ACM, 21(8):613{641, August

1978.

[BEER89] Beeri, C., \Formal Models for Object-Oriented Databases," Proc. First Int. Conf. on

Deductive and Object-Oriented Databases, Kyoto, Japan, Dec. 1989, pp. 370{395. IEEE

Trans. on Knowledge and Data Engineering, Dec. 1989.

[BJM93] A. Brodsky, J. Ja�ar, M.J. Maher, Toward Practical Constraint Databases. Proc. 19th

International Conference on Very Large Data Bases, Dublin, 1993. pp. 322-331, Atlantic

City, May 1990.

[BK93] C. Beeri, Y. Kornatzky. Algebraic optimization of object-oriented query languages.

Theoretical Computer Science, 116(1), 1993.

[BNW91] M. Baudinet, M. Niezette, P. Wolper, On the representation of in�nite temporal data

and queries, Proc. ACM Symp. on Principles of Database Systems, 1991.

[BVCS93] M. Benjamin, T. Viana, K. Corbett, A. Silva, Satisfying Multiple Rated-Constraints in

a Knowledge Based Decision Aid, Proc. IEEE Conf. on Arti�cial Intelligence Applica-

tions, Orlando, 1993.

[CHIP] M. Dincbas, P. Van Hentenryck, H. Simnis, A. Aggoun, T. Graf, F. Berthier, The Con-

straint Logic ProgrammingLanguage CHIP, Proc. Fifth Generation Computer Systems,

Tokyo Japan, 1988.

[CKW89] W. Chen, M. Kifer, and D.S. Warren, HiLog: A First Order Semantics for Higher-Order

Logic ProgrammingConstructs, In 2-nd Intl. Workshop on Database Programming Lan-

guages, Morgan-Kaufmann, june 1989.

[End72] H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[Gut89] R.H. Guting, GRAL: An extensible relational database system for geometric applica-

tions, Proc. 19th Symp. on Very Large Databases, 1989.

[HaC91] L.M. Haas, W.F. Cody, Exploiting extensible DBMS in integrated geographic informa-

tion systems, Advances in Spatial Databases, Proc. 2nd Symp. on Spatial Databases,

Lecture Notes in Computer Science 525, Springer Verlag, Berlin, 1991.

[HHLB89] M.R. Hansen, B.S. Hansen, P. Lucas, P. van Emde Boas, Integrating Relational

Databases and Constraint Languages, Computer Languages 14, 2, 63{82, 1989.

[HMS92] N. Heintze, S. Michaylov & P.J. Stuckey, CLP(R) and Some Electrical Engineering

Problems, Journal of Automated Reasoning 9, October 1992, 231-260.

[JaL87] J. Ja�ar, J-L. Lassez, Constraint Logic Programming, Proc. Conf. on Principles of

Programming Languages, 1987, 111{119.

[JMSY92] J. Ja�ar, M.J. Maher, P.J. Stuckey & R.H.C. Yap, Output in CLP(R), Proc. Int. Conf.

on Fifth Generation Computer Systems 1992, Tokyo, Japan, Vol. 2, 1992, 987{995.

[KKR93] P. Kanellakis, G. Kuper, P. Revesz, Constraint Query Languages, Journal of Computer

and System Sciences, to appear. (A preliminary version appeared in Proc. 9th PODS,

299{313, 1990.)

[KKS92] M. Kifer, W. Kim, Y. Sagiv. Querying object-oriented databases. In ACM SIGMOD

Intl. Conf. on Management of Data, pages 393{402, 1992.

[KLW90] Kifer, M., G. Lausen, J. Wu, \Logical Foundations of Object-Oriented and Frame-Based

Languages," Technical Report #90/14, Department of Computer Science, SUNY at

Stony Brook, August 1990. to appear in J. of ACM.

[KS93] D. Kemp, P. Stuckey, Bottom Up Constraint Logic Programming Without Constraint

Solving, Technical Report, Dept. of Computer Science, University of Melbourne, 1992.

[KSW90] F. Kabanza, J.-M. Stevenne, P. Wolper, Handling in�nite temporal data, Proc. ACM

Symp. on Principles of Database Systems, 1990.

[KW89] Kifer, M., J. Wu, \A Logic for Object-Oriented Logic Programming (Maier's O-Logic

Revisited)," Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database

Systems, 1989, pp. 379{393.

[KV84] G.M. Kuper and M.Y. Vardi. A new approach to database logic. In Proc. Third ACM

Symp. on Principles of Database Systems, pages 86{96, 1984.

[LS92] A. Levy, Y. Sagiv, Constraints and Redundancy in Datalog, Proc. 11-th PODS, 67-80,

1992.

[MFPR] I.S. Mumick, S.J. Finkelstein, H. Pirahesh, R. Ramakrishnan, Magic Conditions, Proc.

9th PODS, 314{330, 1990.

[NS92] M. Niezette and J.-M. Stevenne, An e�cient symbolic representation of periodic time,

Proc. of First International Conference on Information and Knowledge management,

1992.

[OrM88] J.A. Orenstein, F.A. Manola, PROBE spatial data modeling and query processing in an

image database application, IEEE Trans. on Software Engineering 14, 5, pp. 611{629,

1988.

[Prolog3] A. Colmerauer, An Introduction to Prolog 3, CACM, 33:7:69-90,1990.

[Sri92] D. Srivastava, Subsumption and Indexing in Constraint Query Languages with Linear

Arithmetic Constraints, Annals of Mathematics and Arti�cial Intelligence, to appear.

[SrR92] D. Srivastava, R. Ramakrishnan, Pushing Constraint Selections, Proc. 11th PODS,

301{315, 1992.

[SRR94] D. Srivastava, R. Ramakrishnan, P. Revesz, \Constraint Objects", Proc. 2nd Workshop

on the Principles and Practice of Constraint Programming, Orcas Island, WA, May

1994.

