
Integration Testing Based on Software Couplings �

Zhenyi Jin and A. Je�erson O�utt

ISSE Department

George Mason University

Fairfax, VA 22030

phone: 703-993-1654

fax: 703-993-1638

email: fzjin,ofutg@isse.gmu.edu

January 27, 1995

Abstract

Integration testing is an important part of the testing process, but few integration testing

techniques have been systematically studied or de�ned. This paper presents an integration

testing technique based on couplings between software components. The coupling-based testing

technique is described, and 12 coverage criteria are de�ned. The coupling-based technique is

compared with the category-partition method. Results show that the coupling-based technique

detected more faults with fewer test cases than category-partition on a subject program. This

modest result indicates that the coupling-based testing approach can bene�t practitioners who

are performing integration testing on software. While it is our intention to develop algorithms

to fully automate this technique, it is relatively easy to apply it by hand.

Keywords: Category-partition, Integration testing, Software module coupling, Software testing.

COMPASS Areas: Software Reliability, Measurement & Metrics.

1 Introduction

Testing software is one of the most common, though imperfect, methods for assuring software

quality. The general purpose of the research reported in this paper is to formalize, via new coverage

criteria, routine aspects of testing, particularly at the integration level. Formal coverage criteria

o�er the tester ways to decide what test inputs to use during testing, making it more likely that

�Partially supported by the National Science Foundation under grant CCR-93-11967.

1



the tester will �nd any faults in the program and providing greater assurance that the software is

of high quality and reliability.

The emphasis on modularity in software design has in
uenced designers to build software systems

by dividing them into components to master their complexity. One of the bene�ts of modularity is

that the software components can be tested independently, which is usually done by the programmer

during unit and module testing. Although much is known about unit and module testing and many

techniques and tools are available, the integrated components also need to be tested. Unit testing

techniques are sometimes applied during integration, but using these techniques for integration

testing su�ers from two problems. First, the unit testing techniques are usually too expensive to

be practically applied during integration, and second, there is no reason to believe that they will

�nd the kinds of faults that appear during integration. Some software faults cannot be detected

during unit testing; these are often faults in the interfaces between units. Thus, we must speci�cally

test for integration faults. Unfortunately, there are not many techniques in the literature that are

designed to be used during integration testing. Structural testing techniques and tools are needed

to support integration testing of software systems.

We consider a program unit to be one or more contiguous program statements having a name

by which other parts of the software can invoke it [SMC74]. A module1 is a collection of related

units, collected in a �le, package, module, class, etc. [Som92]. We consider unit and module testing

(or just unit testing) to be testing of program units and modules independently from the rest of

the software system. In some cases, such as when building general-purpose library modules, unit

testing is done without knowledge of the encapsulating software system. Integration testing refers

to testing parts of the system as it is built out of units. System testing is then testing applied to

an entire integrated system.

Integration testing can be based on speci�cations, design information, or the code itself. Most

of the current integration testing techniques are based on the speci�cations and functionality of

the software [OSW86, How87], and thus could be called \black-box" techniques, because they

treat the software's structure as a black box. At the unit level, we say that a testing technique

is white-box if it uses information about the actual code in the unit. At the integration level, a

white-box technique would use information about the individual units, although not necessarily the

1Older literature considered the terms module and unit to be synonymous, thus used the term module when we
use unit. We choose to di�erentiate between the two terms and use module to emphasize the modularity in design,
particularly with regard to the trend of data abstraction starting with Parnas' classic paper [Par72] and continuing
through the current OO languages.

2



statements. Speci�cally, we consider an integration testing technique to be a white-box technique

if it is based on the design information and the structure of the software. Using this information

should facilitate making precise statements about the adequacy and thoroughness of testing.

Modularity of software design can be measured by two properties, cohesion and coupling [CY79].

Cohesion describes a unit or module's functionality, while coupling measures the dependency rela-

tions between two units. Coupling between two units re
ects the interconnections between units;

faults in one unit may a�ect the coupled unit. Coupling provides summary information about the

design and the structure of the software.

Since couplings are exactly where faults found during integration testing typically occur, we pro-

pose a new coupling-based testing technique. We de�ne criteria that require that each connection

between program units be covered. Coupling-based testing criteria are listed in Section 3 and Sec-

tion 5 presents empirical results that demonstrate the usefulness of the concept. This is done by

comparing with another integration testing technique, category-partition. In Section 6, conclusions

and future work are presented.

2 Coupling

A good software system should exhibit high cohesion in a module and low coupling between units.

Coupling between two units increases the interconnections between the two units and increases

the likelihood that a fault in one unit may a�ect others. Also, increased coupling may lower

the understandability and maintainability of a software system. Coupling was ordered into eight

di�erent levels by Page-Jones [PJ80] according to their e�ects on the understandability, maintain-

ability, modi�ability, and reusability of the coupled units. For each coupling level, the shared data

(parameters, global variables, etc.) are classi�ed by the way they are used.

The levels of coupling are used to evaluate the complexity of software system designs. Troy and

Zweben [TZ81] relate coupling levels to the number of faults in software. Their experiment showed

that coupling between units is an important factor in software quality and a good indicator of the

number of faults in the software. But their study was based on subjective interpretations of design

documents instead of actual code. O�utt et al. [OHK93] extended the eight levels of coupling

to twelve levels, providing a �ner grained measure of coupling. They also designed algorithms to

automatically measure the coupling levels between each pair of units in a program.

3



The coupling levels are de�ned between pairs of units, say A and B. For each coupling level, the call

return parameters are classi�ed by the way they are used. Classi�cation of uses are computation

uses (C-uses), predicate uses (P-uses) (as de�ned in data 
ow testing [FW88]), and indirect uses

(I-uses) (as de�ned by O�utt and Harrold [OHK93]). A C-use occurs when a variable is used on the

right side of an assignment statement or as an output statement. A P-use occurs when a variable is

used in a predicate statement. An I-use occurs when a variable is used in an assignment to another

variable, and the de�ned variable is later used in a predicate; the I-use is considered to be on the

predicate. The 12 levels of coupling are listed as follows:

0. Independent coupling { A does not call B and B does not call A, and there are no common

variable references or common references to external media between A and B.

1. Call coupling { A calls B or B calls A but there are no parameters, common variable references,

or common references to external media between A and B.

2. Scalar data coupling { Some scalar variable in A is passed as an actual parameter to B and

it has a C-use but no P-use or I-use.

3. Stamp data coupling { A record in A is passed as an actual parameter to B and it has a C-use

but no P-use or I-use.

4. Scalar control coupling { Some scalar variable in A is passed as an actual parameter to B and

it has a P-use.

5. Stamp control coupling { A record in A is passed as an actual parameter to B and it has a

P-use.

6. Scalar data/control coupling { Some scalar variable in A is passed as an actual parameter to

B and it has an I-use but no P-use.

7. Stamp data/control coupling { A record in A is passed as an actual parameter to B and it

has an I-use but no P-use.

8. External coupling { A and B communicate through an external medium such as a �le.

9. Nonlocal coupling { A and B share references to the same nonlocal variables. A nonlocal

variable is visible to a subset of the units in the system, typically within one module. For

example, a variable declared in the body part of an Ada package is nonlocal for that package.

4



10. Global coupling { A and B share references to the same global variable; a global variable is

visible to the entire system.

11. Tramp coupling { A formal parameter in A is passed to B as an actual parameter; B sub-

sequently passes the corresponding formal parameter to another module without B having

accessed or changed the variable.

3 Coupling-Based Testing Criteria

An important problem in software testing is deciding when to stop. Test cases are run on test

programs to �nd failures. Unfortunately, we cannot exhaustively search the entire domain D (which

in most cases is e�ectively in�nite). Adequacy criteria are therefore de�ned for testers to decide

whether software has been adequately tested for a speci�c testing criterion [FW88].

Test requirements are speci�c things that must be satis�ed or covered; e.g., reaching statements

are the requirements for statement coverage, killing mutants are the requirements for mutation,

and executing DU pairs are the requirements in data 
ow testing. A testing criterion is a rule

or collection of rules that impose requirements on a set of test cases. Test engineers measure the

extent to which a criterion is satis�ed in terms of coverage, which is the percent of requirements

that are satis�ed.

3.1 Data Flow De�nitions

The coupling-based testing criteria are based on the design and data structures of the program,

and on the data 
ow between the program units. Thus, data 
ow de�nitions are needed to support

coupling testing criteria de�nitions. Some of the traditional de�nitions are given here; most of them

are taken from White [Whi87]. New de�nitions are given later.

A basic block is a maximum sequence of program statements such that if any one statement of

the block is executed, then all statements in the block are executed. A basic block has only one

entry point and one exit point. A control 
ow graph (CFG) of a program is a directed graph that

represents the structure of the program. Nodes are basic blocks, and edges represent potential

control 
ow from node to node.

A de�nition (def) is an occurrence of a variable where a value is stored into memory (assignment,

5



input, etc.). A use is an occurrence of a variable where its value is accessed. A computation use

(C-use) is a node where a variable is used in a computation, as a functional parameter or in an I/O

statement. A predicate use (P-use) is an edge where a variable is used in a decision. A def-clear

path for a variable X through the CFG is a sequence of nodes that do not contain a de�nition of

X .

A caller is a unit that invokes another unit, the callee. An actual parameter is in the caller, its value

is assigned to a formal parameter in the callee. The interface between two units is the mapping

of actual to formal parameters. An oracle can recognize the correct outcome of a set of tests as

applied to a tested object.

3.2 Coupling-Based Testing

Coupling-based testing requires that the program execute from de�nitions of actual parameters

through calls to uses of the formal parameters. These coupling paths are de�ned based on the

12 levels of coupling listed in Section 2, and are de�ned precisely in this section. The underlying

premise of the coupling-based testing criteria is that to achieve con�dence in the interfaces between

integrated program units, we must ensure that variables de�ned in caller units be appropriately

used in callee units. Because we limit our technique to the unit interfaces, we are only concerned

with de�nitions of variables just before calls to other units, and uses of variables just after returns

from the called unit.

To make integration testing a manageable process, testing must be guided by the modularization

of the software. Each unit module to be integrated should pass an isolated test. Integration testing

must be performed at a higher level of abstraction { looking at program units as atomic building

blocks and focusing on their interconnections.

3.2.1 Testing Steps

Generation of test data based on couplings is performed in two major steps: static analysis of the

program units to obtain information about test case requirements and dynamic analysis to generate

test cases.

Static analysis includes several steps. First, the mapping of parameter variables between units are

6



syntactically determined. Second, data 
ow analysis is applied to each unit to �nd appropriate

de�nitions of actual parameters and uses of formal parameters. Third, the dependency relations

between units are found. This includes their couplings through calls as well as through global

variables.

Dynamic analysis focuses on test cases. First, test cases are created that satisfy the 12 coupling-

based testing criteria. Then the test cases are run on the software and failures are noted.

3.2.2 Coupling-Based Testing De�nitions

To formally de�ne the coupling-based testing criteria, we introduce several de�nitions. A and B

are two units, and A calls B. x is an actual parameter in A mapping to a formal parameter y in

B. There could be more than one parameter, but we consider only one parameter at a time. Our

de�nitions use the following variables:

M : A or B.

VA : set of variables in A.

VB : set of variables in B.

NA : set of nodes in A.

NB : set of nodes in B.

EA : set of edges in A.

EB : set of edges in B.

v : a variable in VA or VB.

C : a unit that is called by unit B in the case of tramp coupling.

def(M,v) : a de�nition of a variable v in unit M.

use(M,v) : a use of a variable v in unit M.

call site : A node in A where B is called.

Call(A, B, call site, x ! y): TRUE if unit A calls B at call site and actual parameter x maps

to formal parameter y. This is variable speci�c; if there is more than one parameter, they are

analyzed one at a time. The value is FALSE if there is no such call at the given call site.

Record(v): TRUE if v is a record, FALSE otherwise. This is used in stamp coupling.

Return(v): TRUE if v is used in the return(v) statement in a unit, FALSE otherwise.

7



Start(M): The �rst node in M.

Last-def-before-call: The set of nodes i that de�ne x and for which there is a def-clear path from

the node to the call statement for A. This is de�ned as:

� ldbc-def(A, call site, x) = fi, i 2 NA j node i has a de�nition of variable x
V

there is a

def-clear path with respect to x from node i to call siteg

First-use-after-call: The set of nodes i in A that have uses of x and for which there are no other

uses between the call statement for A and these nodes. This is de�ned as:

� fac-use(A, call site, x) = fi, i 2 NA j node i has a use of variable x
V

there are no other

uses between call site and node ig

Last-def-before-return: If B is a function that returns a value to A, then Last-def-before-return

is the set of nodes that de�ne the returned variable y, and for which there is also a def-clear path

from the node to the return statement. This is de�ned as:

� ldbr-def(B, y) = fj 2 NB j y is de�ned in node j
V

there is a def-clear path with respect

to y from j to return(y)g

First-P-use-in-callee: The set of edges in B that have a predicate use of y such that there is at

least one path from Start(B) to the edge with no other P-uses of y. This is de�ned as:

� fp-use(B, y) = f(j1, j2) 2 EB j y has a P-use at edge(j1, j2)
V
9 a path from Start(B) to

edge(j1, j2) with no uses of yg

First-C-use-in-callee: The set of nodes in B that have a computation use of y, such that there

is at least one path from Start(B) to the node with no other C-uses of y. This is de�ned as:

� fc-use(B, y) = fj 2 NB j y has a C-use in node j
V
there is a path with no uses of y between

Start(B) and node jg 9 a path from Start(B) to node j with no uses of yg

8



First-I-use-in-callee: The set of edges in B that have an indirect use of y (I-use), such that there

is at least one path from Start(B) to the edge with no other I-uses of y. It is de�ned as:

� �-use(B, y) = fj 2 EB j y has an I-use at edge j
V
9 a path from Start(B) to edge j with

no uses of yg

First-use-in-callee: The set of nodes for which parameter y in B has a computation use, or an

incoming edge has a predicate use or an indirect use, and there is at least one path from the begin

statement to the use. This is de�ned as:

� f-use(B, y) = fj 2 NB j ((y has a C-use at node j)
W
(y has an I-use on edge (i, j), i 2 NB)

W
(y has a P-use on edge (i, j)), i 2 NB)

V
there is a path with no other uses of y between

Start(B) and node jg

3.2.3 Coupling-Based Testing Criteria

The 12 coupling-based testing criteria are based on the de�nitions above. For each, we describe

the criterion, then de�ne it formally.

1. No coupling: No coupling means that A and B are not connected in any way. There is no

coupling path between these two units, and no test requirement is necessary.

2. Scalar data coupling path: The scalar data coupling criterion requires that for each scalar

parameter x, and each last de�nition of x before a call site, a test case executes at least

one path from the last de�nition, to the call, and to each of the �rst C-uses of the formal

parameter y in B. This is de�ned as:

� Scalar-data-coupling(A, B, call site, x, y) = f(i, j) i 2 NA, j 2 NB j i 2 ldbc-def(A,

call site, x)
V

j 2 fc-use(B, y)g

3. Stamp data coupling path: The stamp data coupling criterion requires that for each record

parameter x, and each last de�nition of x before a call site, a test case executes at least

one path from the last de�nition, to the call, and to each of the �rst C-uses of the formal

parameter y in B. It is de�ned as:

9



� Stamp-data-coupling(A, B, call site, x, y) = f(i, j) i 2 NA, j 2 NB j Record(x)
V

Record(y)
V

i 2 ldbc-def(A, call site, x)
V

j 2 fc-use(B, y)g

4. Scalar control coupling path: The scalar control coupling criterion requires that for each scalar

parameter x, and each last de�nition of x before a call site, a test case executes at least one

path from the last de�nition, to the call, and to each of the �rst P-uses of the formal parameter

y in B. It is de�ned as:

� Scalar-control-coupling(A, B, call site, x, y) = f(i, j) i 2 NA, j 2 NB j i 2 ldbc-def(A,

call site, x)
V

j 2 fp-use(B, y)g

5. Stamp control coupling path: The stamp control coupling criterion requires that for each

record parameter x, and each last de�nition of x before a call site, a test case executes at

least one path from the last de�nition, to the call, and to each of the �rst P-uses of the formal

parameter y in B. It is de�ned as:

� Stamp-control-coupling(A, B, call site, x, y) = f(i, j) i 2 NA, j 2 NB j Record(x)
V

Record(y)
V

i 2 ldbc-def(A, call site, x)
V

j 2 fp-use(B, y)g

6. Scalar data/control coupling path: The scalar data/control coupling criterion requires that for

each scalar parameter x, and each last de�nition of x before a call site, a test case executes

at least one path from the last de�nition, to the call, and to each of the �rst I-uses of the

formal parameter y in B. It is de�ned as:

� Scalar-data/control-coupling(A, B, call site, x, y) = f(i, j) i 2 NA, j 2 NB j i 2 ldbc-

def(A, call site, x)
V

j 2 �-use(B, y)g

7. Stamp data/control coupling path: The stamp data/control coupling criterion requires that

for each record parameter x, and each last de�nition of x before a call site, a test case executes

at least one path from the last de�nition, to the call, and to each of the �rst I-uses of the

formal parameter y in B. It is de�ned as:

� Stamp-data/control-coupling(A, B, call site, x, y) = f(i, j) i 2 NA, j 2 NB j Record(x)
V
Record(y)

V
i 2 ldbc-def(A, call site, x)

V
j 2 �-use(B, y)g

8. External coupling path: The external coupling criterion requires that for each pair of refer-

ences to the same external �le, both i and j must be executed on the same execution path.

10



9. Nonlocal coupling path: The nonlocal coupling criterion requires that for each nonlocal vari-

able x that is de�ned in A and used in B, and each de�nition of x in A, a test case executes

at least one path from the last de�nition to each of the �rst uses of x in B. It is de�ned as:

� Nonlocal-coupling(A, B, x) = f(i, j) i 2 NA, j 2 NB j i 2 def(A, x)
V

j 2 use(B, x)g

10. Global coupling path: The global coupling criterion requires that for each global variable x,

that is de�ned in A and used in B, and each de�nition of x in A, a test case executes at least

one path from the de�nition to each of the �rst uses of x in B. It is de�ned as:

� Global-coupling(A, B, x) = f(i, j) i 2 NA, j 2 NB j i 2 def(A, x)
V

j 2 use(B, x)g

11. Tramp coupling path: The tramp coupling criterion requires that for each parameter x that is

de�ned in A, passed through B, and used in C, and each last de�nition of x before a call site,

some test case executes at least one path from the last de�nition in A, through B, and to

each of the �rst uses in C. It is de�ned as:

� Tramp-coupling(A, B, C, call site, x ! z) = f(i, j, k) i 2 NA, j 2 NB , k 2 NC j i 2

ldbc-def(A, call site, x)
V
Call(B, C, call site, x ! z)

V
k 2 f-use(C, z)g

To simplify the de�nitions, the above criteria ignore the issue of returning values via parameters {

in e�ect, assuming every parameter is a call-by-value. The following de�nition is generalized and

applies to all the above criteria involving parameters. If a parameter x is call-by-reference, then

the criterion requires that a path be executed from each last de�nition before return of the formal

parameter y in B to each �rst use after the call of x in A. This is de�ned as:

� f(j, i) i 2 NA, j 2 NB j j 2 ldbr-def(B, y)
V

i 2 fac-use(A, call site, x)g

4 Related Work

Most integration testing techniques have been black-box in nature and are thus di�cult to compare

with coupling-based testing, except on an empirical basis. Inter-procedural data 
ow testing is

one white-box integration testing approach that has some similarities with coupling-based testing

[HS89, HR94]. In standard intra-procedural data 
ow testing, test cases are created to exercise

subpaths from defs of variables to uses of variables within the same unit. In inter-procedural

11



data 
ow testing, defs in one unit are required to reach uses in another unit of the same module.

Sometimes these are through direct paths via function calls, other times through a sequence of

external calls to the module. The point of this approach is to create sequences of calls to the module

based on DU pairs inside a module. Coupling-based testing chooses values for call parameters based

on requirements that are constructed on existing calls within the software. It is thought that this

will make it easier to automatically generate test data (a problem that has not been addressed

for inter-procedural data 
ow testing), and that aliasing will not be a problem with coupling-

based testing. It also seems likely that coupling-based testing will scale up more readily than

inter-procedural testing, and can be applied more easily by hand.

5 Proof of Concept Study

To demonstrate the feasibility of these criteria, we have undertaken a study to compare the coupling-

based testing technique with another technique that is used for integration testing, category par-

tition. Our goal was not to undertake a full experimental analysis of the two techniques, but to

demonstrate that the coupling criteria can be used in an e�ective way. Thus, the results of this

study should be taken as preliminary.

5.1 Category-Partition Testing

The category-partition testing technique [OB88, BHO89] creates functional test cases by decompos-

ing functional speci�cations into test speci�cations for major functions of the software. It identi�es

those elements that in
uence the functionality and generates test cases by methodically varying the

elements over all values of interest. Thus, it can be considered a black-box integration technique.

The category-partition method o�ers the test engineer a general procedure for creating test spec-

i�cations. The test engineer's key job is to develop categories, which are de�ned to be the major

characteristics of the input domain of the function under test, and to partition each category into

equivalence classes of inputs called choices. By de�nition, choices in each category must be disjoint,

and together the choices in each category must cover the input domain.

12



5.2 Empirical Study

We compared coupling-based testing with category-partition testing in terms of their fault-detection

ability. We used one moderate size program, faults created for previous experimentation [AO94],

and generated test cases by hand.

Mistix is based on the Unix �le system, and has been used in course projects in graduate software

engineering classes at George Mason University and in previous research [AO94, Irv94]. We used

a C version of Mistix on a Sun workstation. Mistix has 31 function units, 65 function calls, and

has 533 lines of code.

An oracle version of Mistix had been previously written, and 21 faults had been inserted for

previous research [AO94]. Some of the faults can only be found at the integration level, and some

can only be detected at the unit level. Some of the faults were inserted into functions that are not

called or used in the Mistix program. The descriptions of these faults are in Table 1.

The Mistix program does not have any call, stamp data/control, or external coupling, but does

exhibit all other kinds of coupling listed in Section 2. Results of category-partition testing on

Mistix were provided by Ammann and O�utt [AO93], including 72 test cases and fault detection

information. The coupling-based testing was applied by hand by the �rst author. This was done

by generating test cases manually to satisfy the coupling criteria described in Section 3.

To avoid any bias that could be created by having knowledge of faults and one set of test cases

before creating the other set, the category-partition testing results were not reviewed until after

coupling-based testing was �nished. The coupling-based technique yielded 37 test cases, which were

generated manually all at once (before any execution). Each test case was executed against the

buggy version of Mistix. After each execution, failures (if any) were checked and corresponding

faults were debugged. This process was repeated on each test case until no more failures occurred.

The number of faults detected were recorded and used in the analysis.

5.3 Results and Analysis

The faults are summarized in Table 2, detailed testing results from the coupling-based and category-

partition techniques are listed in Table 3, and a summary of the results is given in Table 4. Several

of the modules were developed as reusable components, and had functionality that was not used

13



Faults Description
Fault 1 Same integer constant value always stored in linked list.
Fault 2 Tail of linked list is lost; cannot detect at unit level
Fault 3 Character list counter is not incremented.

Trivial, but cannot be detected at system level, because characters never used.
Fault 4 Lose the tail of a linked list. But the tail is unused.

So it can only be found during unit testing.
Fault 5 Lookup will fail only when the integer value is not on the list.
Fault 6 Will fail when char is used and the character is equivalent to an integer.
Fault 7 Lost the rest of the linked list.
Fault 8 Wrong assignment for the element type tag.
Fault 9 OR operator is used when AND should be.
Fault 10 Fails when list has di�erent types of elements.
Fault 11 Function returns an incorrect value. It returns name instead of directory.
Fault 12 Wrong prompt.
Fault 13 All directories' parents are listed as the root.
Fault 14 Wrong operation, should call FindDir function instead of IsFile function.
Fault 15 Copy �les to the wrong directory.
Fault 16 Prints the wrong directory,

should be current directory name instead of the next directory name.
Fault 17 Directory names are not given.
Fault 18 Misspelled input abbreviation.
Fault 19 Wrong global de�nition that allows invalid commands.
Fault 20 Linked list fails to operate when there are di�erent types of elements on the list.
Fault 21 Linked list fails to operate when there are di�erent types of elements on the list.

Table 1: Descriptions of 21 Faults Inserted into Mistix

in Mistix. Thus, of the 21 faults, 8 faults are functions that are never called in Mistix, thus they

cannot be detected at the integration level. Fault 4 can also only be detected at the unit testing

level. So there are a total of 12 faults that can be detected during integration testing (see Tables

2 and 4).

From Table 4 we can see that the category-partition technique resulted in 72 test cases, which

detected seven faults. Four faults were missed because of bad choices or no choices, and one fault

was related to an input abbreviation that was not used. The coupling-based technique resulted

in 37 test cases that detected 11 faults. Fault 9 is related to condition predicates that have to be

generated from a unit that is never called in Mistix, so no test cases were generated to represent

the condition and the fault was missed.

14



Inserted faults Amount
unit never called 8

unit level faults 1

could be detected 12

total 21

Table 2: Inserted Faults Summary

The goals of this empirical pilot study were twofold. The �rst goal was to see if coupling-based

testing could be practically applied. The second was to make a preliminary evaluation of the merit

of the coupling-based testing criteria by comparing it with the category-partition technique. Both

goals were satis�ed; the coupling-based technique was applied and worked well, and performed bet-

ter than the category-partition method with half as many test cases. There are several limitations

to the interpretation of the results. First, Mistix is of moderate size; it has only three layers of

call hierarchies, and three types of coupling were not used. Longer and more complicated programs

are needed. Second, the 21 faults inserted into Mistix were generated intuitively. More study

should be carried out to reveal the types of faults that occur at the at integration level. In future

studies, it is desired to have an automated test case generator to generate test cases based on the

coupling criteria, with which bigger and more complicated software can be experimented. Also,

other integration level testing techniques [How87, HB89, HS89, LW90] should be compared with

the coupling-based testing technique.

6 Conclusions

This paper has introduced a new integration testing technique, coupling-based testing. A set

of twelve coupling-based criteria were de�ned. To demonstrate the concept of this new testing

technique, coupling-based testing was applied to a moderately-sized software systems and the results

were compared with the category-partition technique on their e�ectiveness in detecting faults.

Coupling-based testing is more e�ective than category-partition on this program, which suggests

that coupling-based testing can be a powerful testing technique for integration testing.

References

[AO93] P. Ammann and A. J. O�utt. Functional and test speci�cations for the MiStix �le

15



Faults Category-Partition Coupling-based
Fault 1 found found

Fault 2 found found

Fault 3 unit never called unit never called

Fault 4 a�ected data item never used can only be found at unit testing

Fault 5 unit never called unit never called

Fault 6 unit never called unit never called

Fault 7 no such choice found

Fault 8 unit never called unit never called

Fault 9 found no test cases generated could cover it

Fault 10 unit never called unit never called

Fault 11 unit never called unit never called

Fault 12 non-functional found

Fault 13 no such choice found

Fault 14 found found

Fault 15 not found found

Fault 16 found found

Fault 17 found found

Fault 18 abbreviation ignored found

Fault 19 found found

Fault 20 unit never called unit never called

Fault 21 unit never called unit never called

Table 3: Faults Detected

system. Technical report ISSE-TR-93-100, Department of Information and Software
Systems Engineering, George Mason University, Fairfax VA, 1993.

[AO94] P. Ammann and A. J. O�utt. Using formal methods to derive test frames in category-
partition testing. In Proceedings of the Ninth Annual Conference on Computer Assurance
(COMPASS 94), pages 69{80, Gaithersburg MD, June 1994. IEEE Computer Society
Press.

[BHO89] M. Balcer, W. Hasling, and T. Ostrand. Automatic generation of test scripts from formal
test speci�cations. In Proceedings of the Third Symposium on Software Testing, Analysis,
and Veri�cation, pages 210{218, Key West Florida, December 1989. ACM SIGSOFT 89.

Category-partition Coupling-based
number of test cases 72 37

faults found 7 11

faults missed 5 1

Table 4: Faults Detected

16



[CY79] L. L. Constantine and E. Yourdon. Structured Design. PrenticeHall, Englewood Cli�s,
NJ, 1979.

[FW88] P. G. Frankl and E. J. Weyuker. An applicable family of data 
ow testing criteria. IEEE
Transactions on Software Engineering, 14(10):1483{1498, October 1988.

[HB89] D. Ho�man and C. Brealey. Module test case generation. In Proceedings of the Third
Workshop on Software Testing, Veri�cation and Analysis, pages 66{74, Key West Florida,
December 1989. ACM SIGSOFT.

[How87] W. E. Howden. Functional Programing Testing and Analysis. McGraw-Hill Book Com-
pany, New York NY, 1987.

[HR94] Mary Jean Harrold and Gregg Rothermel. Performing data 
ow testing on classes. In
Proceedings of the Second ACM SIGSOFT Symposium on Foundations of Software En-
gineering, New Orleans, LA, December 1994. ACM Press.

[HS89] M. J. Harrold and M. L. So�a. Interprocedural data 
ow testing. In Proceedings of the
Third Symposium on Software Testing, Analysis, and Veri�cation, Key West Florida,
December 1989. ACM SIGSOFT 89.

[Irv94] A. Irvine. The e�ectiveness of category-partition testing of object-oriented software.
Master's thesis, Department of Information and Software Systems Engineering, George
Mason University, Fairfax VA, 1994.

[LW90] H. K. N. Leung and L. White. A study of integration testing and software regression at
the integration level. In Conference on Software Maintenance-1990, pages 290{301, San
Diego, CA, Nov 1990.

[OB88] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and gen-
erating functional tests. Communications of the ACM, 31(6):676{686, June 1988.

[OHK93] A. J. O�utt, M. J. Harrold, and P. Kolte. A software metric system for module coupling.
The Journal of Systems and Software, 20(3):295{308, March 1993.

[OSW86] T. J. Ostrand, R. Sigal, and E. J. Weyuker. Design for a tool to manage speci�cation-
based testing. In Proceedings of the Workshop on Software Testing, pages 41{50, Ban�
Alberta, July 1986. IEEE Computer Society Press.

[Par72] D. Parnas. On the criteria to be used in decomposing a system into modules. Commu-
nications of the ACM, December 1972.

[PJ80] M. Page-Jones. The Practical Guide to Structured Systems Design. YOURDON Press,
New York, NY, 1980.

[SMC74] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM Systems
Journal, 13(2):115{139, 1974.

[Som92] I. Sommerville. Software Engineering. Addison-Wesley Publishing Company Inc., 4th
edition, 1992.

[TZ81] D. A. Troy and S. H. Zweben. Measuring the quality of structured designs. The Journal
of Systems and Software, 2:112{120, 1981.

[Whi87] L. J. White. Software testing and veri�cation. In Marshall C. Yovits, editor, Advances
in Computers, volume 26, pages 335{390. Academic Press, Inc, 1987.

17


